Journal of Mathematical Research & Exposition May, 2008, Vol. 28, No. 2, pp. 429–434 DOI:10.3770/j.issn:1000-341X.2008.02.025 Http://jmre.dlut.edu.cn

A Note to Hutton's Theorem

FU Wen Qing, LI Sheng Gang

(College of Mathematics and Information Science, Shaanxi Normal University, Shaanxi 710062, China) (E-mail: palace_2000@163.com; shenggangli@yahoo.com.cn)

Abstract It is proved in this paper that there is a bijection φ from $\mathcal{J} \cup \mathcal{J}'$ to $\delta \cup \delta'$ which satisfies: (1) $\varphi | \mathcal{J} : (\mathcal{J}, \subset) \longrightarrow (\delta, \leq)$ is a frame isomorphism; (2) $\varphi | \mathcal{J}' : (\mathcal{J}', \subset) \longrightarrow (\delta', \leq)$ is a coframe isomorphism, where \mathcal{J} is the ordinary topology on [0, 1], δ is the ordinary *L*-topology on *L*-unit interval I(L), and *L* is a frame with an order-reversing involution. This result improves Theorem 3 in Hutton's paper.

Keywords *L*-unit interval; ordinary topology; meet-preserving mapping; join-preserving mapping.

Document code A MR(2000) Subject Classification 54A40 Chinese Library Classification 0177.2; 0189.1

1. Introduction and preliminaries

In this paper, L is supposed to be a frame with the least element 0 and the greatest element 1, and equipped with an order-reversing involution \prime satisfying $a \lor a' = 1$ for every $a \in L$. Again let L^X be the set of all mappings (called L-subsets) from a set X to L, R the real line, I = [0, 1] the ordinary unit interval, \mathcal{J} the ordinary topology on [0, 1], H(I) the set of all monotonic decreasing mappings $\lambda : R \longrightarrow L$ satisfying $\lambda(t) = 1$ for $t \in (-\infty, 0)$ and $\lambda(t) = 0$ for $t \in [1, +\infty)$. For any two elements λ_1 and λ_2 in H(I), define $\lambda_1 \sim \lambda_2 \iff \lambda_1(t+) = \lambda_2(t+)$ and $\lambda_1(t-) = \lambda_2(t-)$ ($\forall t \in R$), where $\lambda(t+) = \bigvee_{s>t} \lambda(s)$ and $\lambda(t-) = \bigwedge_{s < t} \lambda(s)$ ($\lambda \in H(I), t \in R$). It can be verified that \sim is an equivalence relationship on H(I). The equivalence class containing element λ is written as $[\lambda]$, and the ordinary L-topology δ on $I(L) = H(I)/\sim$ is generated by the subbase $\{R_t, L_t \mid t \in R\}$, where $R_t([\lambda]) = \lambda(t+)$ and $L_t([\lambda]) = (\lambda(t-))'$ ($\forall [\lambda] \in I(L)$). The L-topological space $(I(L), \delta)$ is called L-unit interval which was first defined by B. Hutton^[1]. Hutton also proved the following:

Theorem 1^[1] If L is a completely distributive complete lattice with an order-reversing involution ' satisfying $a \lor a' = 1$ ($\forall a \in L$), then there exists a frame isomorphism (i.e. a bijection or oneone correspondence which preserves both arbitrary joins and finite meets) $\varphi : (\mathcal{J}, \subset) \longrightarrow (\delta, \leq)$.

In this paper we will generalize the above theorem.

2. Main results and their proofs

Received date: 2006-06-20; Accepted date: 2007-07-13 Foundation item: the National Natural Science Foundation of China (No. 10271069). For each $W \in \mathcal{J}$, W is the union of a family $\{(a_i, b_i)\}_{i < \alpha}$ of disjoint nonempty intervals (called constitution intervals of W), where α is a cardinal number not more than \aleph_0 (the cardinal number of the set of all natural numbers), $a_i \in \{-\infty\} \cup [0,1), b_i \in \{+\infty\} \cup (0,1]$, and we make the convention that $(-\infty, b) = (x, b) = [0, b)$ $(x < 0), (a, +\infty) = (a, y) = (a, 1]$ (y > 1). We use the equality $W = \bigsqcup_{i < \alpha} (a_i, b_i)$ to denote this fact, and define a mapping $\varphi : \mathcal{J} \cup \mathcal{J}' \longrightarrow \delta \cup \delta'$ as follows (where $\mathcal{J}' = \{[0, 1] - V \mid V \in \mathcal{J}\}$, and $\delta' = \{A' \mid A \in \delta\}$):

$$\forall [\lambda] \in I(L), \quad \varphi(W)([\lambda]) = \begin{cases} \bigvee_i (\lambda(a_i+) \land \lambda(b_i-)'), & \text{if } W = \bigsqcup_i (a_i, b_i) \in \mathcal{J}, \\ \bigwedge_i (\lambda(a_i+)' \lor \lambda(b_i-)), & \text{if } W = [0,1] - \bigsqcup_i (a_i, b_i) \in \mathcal{J}', \end{cases}$$

that is,

$$\forall [\lambda] \in I(L), \quad \varphi(W) = \begin{cases} \bigvee_i (R_{a_i} \wedge L_{b_i}), & \text{if } W = \bigsqcup_i (a_i, b_i) \in \mathcal{J}, \\ \bigwedge_i (R'_{a_i} \vee L'_{b_i}), & \text{if } W = [0, 1] - \bigsqcup_i (a_i, b_i) \in \mathcal{J}'. \end{cases}$$

This mapping has the following properties:

Theorem 2 (1) φ is a bijection which preserves the order-reversing involution.

- (2) φ preserves the partial order.
- (3) If $\mathcal{A} \subset \mathcal{J}$, then $\varphi(\bigcup \mathcal{A}) = \bigvee_{A \in \mathcal{A}} \varphi(A)$.
- (4) If $\mathcal{A} \subset \mathcal{J}'$ then $\varphi(\bigcap \mathcal{A}) = \bigwedge_{A \in \mathcal{A}} \varphi(A)$.
- (5) If $A, B \in \mathcal{J} \cup \mathcal{J}'$ and $A \cap B \in \mathcal{J} \cup \mathcal{J}'$, then $\varphi(A \cap B) = \varphi(A) \land \varphi(B)$.
- (6) If $A, B \in \mathcal{J} \cup \mathcal{J}'$ and $A \cup B \in \mathcal{J} \cup \mathcal{J}'$, then $\varphi(A \cup B) = \varphi(A) \lor \varphi(B)$.

Proof Step 1. φ preserves the order-reversing involution. For any $W \in \mathcal{J}' \cup \mathcal{J}$, if $W \in \mathcal{J}$, say $W = \bigsqcup_i (a_i, b_i)$, then $\varphi(W) = \bigvee_i (R_{a_i} \wedge L_{b_i})$, and thus $\varphi(W') = \varphi([0, 1] - \bigsqcup_i (a_i, b_i)) = \bigwedge_i (R'_{a_i} \vee L'_{b_i}) = [\bigvee_i (R_{a_i} \wedge L_{b_i})]' = [\varphi(W)]'$. Similarly, $\varphi(W') = [\varphi(W)]'$ if $W \in \mathcal{J}'$.

Step 2. For any $A, B \in \mathcal{J}, \varphi(A \cap B) = \varphi(A) \land \varphi(B)$. Suppose $A, B \in \mathcal{J}$, say $A = \bigsqcup_i (a_i, b_i)$ and $B = \bigsqcup_i (c_j, d_j)$. Then

$$A \cap B = [\bigsqcup_i (a_i, b_i)] \cap [\bigsqcup_j (c_j, d_j)] = \bigcup_{i,j} [(a_i, b_i) \cap (c_j, d_j)].$$

By the join infinite distributive law, for every $[\lambda] \in I(L)$, we have

$$\begin{split} &[\varphi(A) \land \varphi(B)]([\lambda]) = \varphi(A)([\lambda]) \land \varphi(B)([\lambda]) \\ &= [\bigvee_i (\lambda(a_i+) \land \lambda(b_i-)')] \land [\bigvee_j (\lambda(c_j+) \land \lambda(d_j-)')] \\ &= \bigvee_{i,j} [\lambda(\max\{a_i, c_j\}+) \land \lambda(\min\{b_i, d_j\}-)']. \end{split}$$

Notice that if $(a, b) \cap (c, d) = \emptyset$, then $\min\{b, d\} \le \max\{a, c\}, \lambda(\min\{b, d\}-)' \le \lambda(\max\{a, c\}+)', \lambda(\max\{a, c\}+) \land \lambda(\min\{b, d\}-)' = 0$, and thus

$$[\varphi(A) \land \varphi(B)]([\lambda]) = \bigvee_{i,j;(a_i,b_i) \cap (c_j,d_j) \neq \emptyset} (\lambda(\max\{a_i,c_j\}+) \land \lambda(\min\{b_i,d_j\}-)') \quad (\forall [\lambda] \in I(L)).$$

Furthermore, if $(a_i, b_i) \cap (c_j, d_j) \neq \emptyset$, then $(a_i, b_i) \cap (c_j, d_j) = (\max\{a_i, c_j\}, \min\{b_i, d_j\})$, and

$$A \cap B = \bigcup_{i,j} [(a_i, b_i) \cap (c_j, d_j)] = \bigcup_{i,j; (a_i, b_i) \cap (c_j, d_j) \neq \emptyset} (\max\{a_i, c_j\}, \min\{b_i, d_j\}).$$

As $(\max\{a_{i_1}, c_{j_1}\}, \min\{b_{i_1}, d_{j_1}\}) \cap (\max\{a_{i_2}, c_{j_2}\}, \min\{b_{i_2}, d_{j_2}\}) \subset [(a_{i_1}, b_{i_1}) \cap (a_{i_2}, b_{i_2})] \cap [(c_{j_1}, d_{j_1}) \cap (c_{j_2}, d_{j_2})] = \emptyset$ if $(i_1, j_1) \neq (i_2, j_2)$, $\{(\max\{a_i, c_j\}, \min(b_i, d_j) \mid (a_i, b_i) \cap (c_j, d_j) \neq \emptyset\}$ are the constitution intervals of $A \cap B$. Thus $A \cap B = \bigsqcup\{(\max\{a_i, c_j\}, \min\{b_i, d_j\}) \mid i, j, (a_i, b_i) \cap (c_j, d_j) \neq \emptyset\}$. By definition of φ we have

$$\varphi(A \cap B)([\lambda]) = \bigvee_{i,j;(a_i,b_i) \cap (c_j,d_j) \neq \emptyset} (\lambda(\max\{a_i,c_j\}+) \wedge \lambda(\min\{b_i,d_j\}-)') \quad (\forall [\lambda] \in I(L)).$$

Therefore, $\varphi(A) \wedge \varphi(B) = \varphi(A \cap B)$.

Step 3. (proof of (3)) As $\varphi(\bigvee \mathcal{A}) = \varphi(\emptyset) = 0_{I(L)} = \bigvee_{A \in \emptyset} \varphi(A)$ for $\mathcal{A} = \emptyset$, we only need to show the case $\mathcal{A} \neq \emptyset$.

First we consider the special case W = (a, b) and V = (c, d). By definition of φ , when $W \cap V = \emptyset$, $\varphi(W \cup V) = \varphi(W) \lor \varphi(V)$, thus we only need to show the case a < c < b < d. Take an $e \in (c, b)$, then by the distributive law and the property of the order-reversing involution of L, we have

$$\begin{split} [\varphi(W) \lor \varphi(V)]([\lambda]) &= [\varphi(W)([\lambda])] \lor [\varphi(V)([\lambda])] = [\lambda(a+) \land \lambda(b-)'] \lor [\lambda(c+) \land \lambda(d-)'] \\ &\geq [\lambda(a+) \land \lambda(e)'] \lor [\lambda(e) \land (\lambda(d-))'] \\ &= \lambda(a+) \land \lambda(d-)' = \varphi((a,d))([\lambda]) = \varphi(W \cup V)([\lambda]) \quad (\forall \lambda \in I(L)), \end{split}$$

i.e., $\varphi(W \cup V) \leq \varphi(W) \lor \varphi(V)$. By Step 3, for any $A, B \in \mathcal{J}$ with $A \subset B$, we have $\varphi(A) \leq \varphi(B)$. It follows that $\varphi(W) \leq \varphi(W \cup V)$, $\varphi(V) \leq \varphi(W \cup V)$, $\varphi(W) \lor \varphi(V) \leq \varphi(W \cup V)$, and $\varphi(W \cup V) = \varphi(W) \lor \varphi(V)$. This implies that $\varphi(\bigcup_{i=1}^{n} (a_i, b_i)) = \bigvee_{i=1}^{n} \varphi((a_i, b_i))$.

Now we consider the general case. Let $\mathcal{A} = \{A_i\}_{i \in I} \subset \mathcal{J}, A_i = \bigcup_{j \in J_i} (a_j^i, b_j^i), \bigcup_{i \in I} A_i = A = \bigsqcup \mathcal{B}$, where \mathcal{B} is a collection of disjoint nonempty open intervals. Take $(a, b) \in \mathcal{B}$ and $[c, d] \subset (a, b)$, then $[c, d] \subset \bigcup_{i,j} (a_j^i, b_j^i)$. As [c, d] is compact, there exists a finite subcollection $\{(a_1, b_1), (a_2, b_2), \ldots, (a_n, b_n)\}(n \in N)$ of $\{(a_j^i, b_j^i)\}_{i,j}$ such that $[c, d] \subset \bigcup_{k=1}^n (a_k, b_k)$. We have

$$\varphi((c,d)) \le \varphi(\bigcup_{k=1}^n (a_k, b_k)) = \bigvee_{k=1}^n \varphi((a_k, b_k)) \le \bigvee_{k=1}^n \varphi(A_{i_k}) \le \bigvee_{i \in I} \varphi(A_i).$$

By the join infinite distributive law, we have

$$\lim_{c \to a+} \varphi((c,d))([\lambda]) = \bigvee_{c,d} \varphi((c,d))([\lambda]) = \bigvee_{c > a} (\lambda(c+) \wedge \lambda(d-)')$$
$$= (\bigvee_{c > a} \lambda(c+)) \wedge \lambda(d-)' = \lambda(a+) \wedge \lambda(d-)' = \varphi((a,d))([\lambda])$$

Furthermore, let $c \longrightarrow a+$, and $d \longrightarrow b-$. Then we have

$$\varphi((c,d))([\lambda]) = \lambda(c+) \land \lambda(d-)' \longrightarrow \lambda(a+) \land \lambda(b-)' = \varphi((a,b))([\lambda])(\forall [\lambda] \in I(L)).$$

This means that $\varphi((a,b)) \leq \bigvee_{i \in I} \varphi(A_i)$. Therefore, $\varphi(\bigcup A_i) = \varphi(\bigsqcup B) = \bigvee_{(a,b) \in B} \varphi((a,b)) \leq \varphi(A_i)$.

 $\bigvee_{i \in I} \varphi(A_i)$. By Step 3, we have $\varphi(A) \ge \bigvee_{i \in I} \varphi(A_i)$, hence $\varphi(\bigcup_{i \in I} A_i) = \bigvee_{i \in I} \varphi(A_i)$.

Step 4. (proof of (4)) Let $\mathcal{A} \subset \mathcal{J}'$. By (1) and (3), $\varphi(\bigcap \mathcal{A}) = \varphi([0,1] - \bigcup_{(a,b) \in \emptyset} (a,b)) = \bigwedge_{(a,b) \in \emptyset} (R'_{a_i} \vee L'_{b_i}) = 1_{I(L)} = \bigwedge_{A \in \mathcal{A}} \varphi(A)$ if $\mathcal{A} = \emptyset$. If $\mathcal{A} \neq \emptyset$, then $\varphi(\bigcap \mathcal{A}) = \varphi((\bigcup_{A \in \mathcal{A}} A')') = [\bigvee_{A \in \mathcal{A}} (\varphi(A'))]' = \bigwedge_{A \in \mathcal{A}} \varphi(A)'' = \bigwedge_{A \in \mathcal{A}} \varphi(A)$.

Step 5. φ is a bijection. Firstly, for any $W, V \in \mathcal{J}$ with $W - V \neq \emptyset$, let $x \in W - V$ and $[\lambda] = \chi_{(-\infty,x]}$. Then $[\lambda] \in I(L)$ and $\varphi(W)([\lambda]) = 1 \neq 0 = \varphi(V)([\lambda])$ by definition of φ . By Step 1, φ is an injection. Secondly, as L is a frame with an order-reversing involution and $\{(a,b) \mid a, b \in [0,1] \cup \{-\infty, +\infty\}, a < b\}$ is a base of \mathcal{J} , $\{\varphi((a,b)) \mid a, b \in [0,1] \cup \{-\infty, +\infty\}$ and $a < b\}$ is a base of δ by Step 1 and Step 3, which means φ is a surjection.

Step 6. (proof of (2)) Suppose $A, B \in \mathcal{J} \cup \mathcal{J}'$ with $A \subset B$. We consider the following four cases:

Case 1 $A, B \in \mathcal{J}$. By Step 3, $\varphi(A) \leq \varphi(B)$.

Case 2 $A, B \in \mathcal{J}'$. By (1) and the result of Case 1, we have $\varphi(B)' \leq \varphi(A)'$, i.e., $\varphi(A) \leq \varphi(B)$.

Case 3 $A \in \mathcal{J}$ and $B \in \mathcal{J}'$. As φ is a bijection, both $\varphi | \mathcal{J}'$ and $\varphi^{-1} | \mathcal{J}'$ are order-preserving, and $\varphi | \mathcal{J}'$ is meet-preserves, we have $\varphi(A_0^-) = \varphi(\bigcap \{B_0 \mid B_0 \in \mathcal{J}', A_0 \subset B_0\}) = \bigwedge \{\varphi(B_0) \mid B_0 \in \mathcal{J}', A_0 \subset B_0\} = \bigwedge \{D \mid D \in \delta', \varphi(A_0) \leq D\} = \varphi(A_0)^-$ for every $A_0 \in \mathcal{J} \cup \mathcal{J}'$. Since $B \in \mathcal{J}', A^- \subset B$, by the proof of Case 2, we have $\varphi(A) \leq \varphi(A)^- = \varphi(A^-) \leq \varphi(B)$.

Case 4 $A \in \mathcal{J}'$ and $B \in \mathcal{J}$. As $A \subset B$, we have $A \cap B' = \emptyset$, and thus $\varphi(A \cap B') = \varphi(A) \land \varphi(B') = \varphi(A) \land \varphi(B)' = 0_X$, i.e., $\varphi(A)(x) \land \varphi(B)(x)' = 0$ ($\forall x \in I(L)$). Since $a \lor a' = 1$ ($\forall a \in L$), $\varphi(A)(x) = \varphi(A)(x) \land 1 = \varphi(A)(x) \land [\varphi(B)(x) \lor \varphi(B)(x)'] = [\varphi(A)(x) \land \varphi(B)(x)] \lor [\varphi(A)(x) \land \varphi(B)(x)] = [\varphi(A)(x) \land \varphi(B)(x)] \lor [\varphi(A)(x) \land \varphi(A)(x) \land \varphi(A)$

Step 7 (proof of (5))

Case 1 $A, B \in \mathcal{J} \cup \mathcal{J}', A \cap B \in \mathcal{J}$. If $A, B \in \mathcal{J}'$, then $\varphi(A \cap B) = \varphi(A) \land \varphi(B)$ by (4). If $A, B \in \mathcal{J}$, then $\varphi(A \cap B) = \varphi(A) \land \varphi(B)$ by Step 2. If $A \in \mathcal{J}$ and $B \in \mathcal{J}'$, then $(A \cap B)^o = A^o \cap B^o = A \cap B$ because $A \cap B \in \mathcal{J}$, and thus $A \subset B' \cup B^o$. Since $B \in \mathcal{J}'$, $B', B^o \in \mathcal{J}$, by Step 4, $\varphi(A) \leq \varphi(B' \cup B^o) = \varphi(B') \lor \varphi(B^o)$. It follows that $\varphi(A) \land \varphi(B) \leq (\varphi(B') \lor \varphi(B^o)) \land \varphi(B) = (\varphi(B') \land \varphi(B)) \lor (\varphi(B^o) \land \varphi(B)) = (\varphi(B)' \land \varphi(B)) \lor (\varphi(B^o) \land \varphi(B)) = \varphi(A \cap B)$. By Step 2, $\varphi(A \cap B) = \varphi(A \cap B^o) \leq \varphi(A) \land \varphi(B^o) \leq \varphi(A) \land \varphi(B)$. Therefore, $\varphi(A \cap B) = \varphi(A) \land \varphi(B)$. Similarly, $\varphi(A \cap B) = \varphi(A) \land \varphi(B)$ if $A \in \mathcal{J}'$ and $B \in \mathcal{J}$.

Case 2 $A, B \in \mathcal{J} \cup \mathcal{J}', A \cap B \in \mathcal{J}'$. By Step 4, it suffices to show the case that $A \in \mathcal{J}, B \in \mathcal{J}'$ and $A \cap B \in \mathcal{J}'$. As φ preserves the partial order, $\varphi(A \cap B) \leq \varphi(A) \wedge \varphi(B)$. Thus we only need to show $\varphi(A \cap B) \geq \varphi(A) \wedge \varphi(B)$. Firstly, since $A \in \mathcal{J}$ and $A \cap B \in \mathcal{J}'$, we have $\varphi(A \cap B) \geq \varphi((A \cap B))$
$$\begin{split} B)^{o-}) &= \varphi((A \cap B^o)^-) = [\varphi(A \cap B^o)]^- = [\varphi(A) \land \varphi(B^o)]^- = \bigwedge \{C \in \delta' \mid \varphi(A) \land \varphi(B^o) \leq C\}. \\ \text{Secondly, for every } C \in \delta \text{ satisfying } \varphi(A) \land \varphi(B^o) \leq C \text{ and every } D \leq \varphi(A) \land \varphi(B), \text{ we have } D^o \leq [\varphi(A) \land \varphi(B)]^o = \varphi(A) \land \varphi(B^o), D^o \leq C, \text{ and } D \leq D^- \leq C \text{ since } C \text{ is closed. Therefore, } \varphi(A) \land \varphi(B) \leq C. \text{ Since } C \text{ is arbitrary, } \varphi(A) \land \varphi(B) \leq \bigwedge \{C \in \delta' \mid \varphi(A) \land \varphi(B^o) \leq C\} = \varphi(A \cap B). \end{split}$$

Step 8 (proof of (6)) We only need to consider the following four cases:

Case 1 A, $B \in \mathcal{J}'$. By Step 2 and the fact that φ preserves the order-reversing involution, we have $\varphi(A \cup B) = \varphi(A) \lor \varphi(B)$.

Case 2 $A \in \mathcal{J}, B \in \mathcal{J}'$, and $A \cup B \in \mathcal{J}'$. By Case 1 of Step 7 and the fact that φ preserves the order-reversing involution, we have $\varphi(A \cup B) = \varphi(A) \lor \varphi(B)$.

Case 3 A, $B \in \mathcal{J}$. Then $\varphi(A \cup B) = \varphi(A) \lor \varphi(B)$ by Step 3.

Case 4 $A \in \mathcal{J}, B \in \mathcal{J}'$, and $A \cup B \in \mathcal{J}$. By Case 1 of Step 7 and the fact that φ preserves the order-reversing involution, we have $\varphi(A \cup B) = \varphi(A) \lor \varphi(B)$. This completes the proof of Theorem 2.

Let $A \in \delta$. As $R_a([\lambda]) \wedge L_b([\lambda]) = 0$ for all $[\lambda] \in I(L)$ and all $a, b \in [0, 1]$ with $a \ge b$, we can write $A = \bigvee \{R_{a_s} \wedge L_{b_s} \mid s \in S_A\}$, where $a_s < b_s$ for all $s \in S_A$. The set $G_A = \{(a_s, b_s) \mid s \in S_A\}$ is called a collection of open intervals of $A^{[2]}$. Hence, for every $B \in \delta'$, B can be denoted by $B = \bigvee \{R_{a_t} \wedge L_{b_t} \mid t \in T_B\}' = \bigwedge \{R'_{a_t} \vee L'_{b_t} \mid t \in T_B\}$, where $a_t < b_t, a_t \le 1, b_t \ge 0$. Define a mapping $\psi : \delta \cup \delta' \to \mathcal{J} \cup \mathcal{J}'$ as follows:

$$\psi(A) = \begin{cases} \bigcup_{s \in S_A} (a_s, b_s), & \text{if } A = \bigvee \{R_{a_s} \wedge L_{b_s} \mid s \in S_A\} \in \delta, \\ \bigcap_{t \in T_A} \left[[0, 1] - (a_t, b_t) \right], & \text{if } A = \bigwedge \{R'_{a_t} \vee L'_{b_t} \mid t \in T_A\} \in \delta'. \end{cases}$$

Then we have the following

Proposition 1 $\psi: \delta \cup \delta' \to \mathcal{J} \cup \mathcal{J}'$ is the inverse mapping of $\varphi: \mathcal{J} \cup \mathcal{J}' \to \delta \cup \delta'$.

 $\begin{array}{l} \mathbf{Proof} \ \text{Firstly}, \psi \circ \varphi(W) = \psi(\varphi(W)) = \psi(\bigvee_i(R_{a_i} \wedge L_{b_i})) = \bigcup_i(a_i, b_i) = W \ \text{if} \ W = \bigsqcup_i(a_i, b_i) \in \mathcal{J}, \\ \text{and} \ \psi \circ \varphi(W) = \psi(\varphi(W)) = \psi(\bigwedge_i(R'_{a_i} \vee L'_{b_i})) = \bigcap_i[[0, 1] - (a_i, b_i)] = W \ \text{if} \ W = [0, 1] - \bigsqcup_i(a_i, b_i) \in \mathcal{J}'. \\ \text{Secondly}, \ \varphi \circ \psi(A) = \varphi(\psi(A)) = \varphi(\bigcup_{s \in S_A}(a_s, b_s)) = \bigvee_{s \in S_A}(R_{a_s} \wedge L_{b_s}) = A \ \text{if} \\ A = \bigvee\{R_{a_s} \wedge L_{b_s} \mid t \in S_A\} \in \delta \ \text{by Step 3 in the proof of Theorem 2, and} \ \varphi \circ \psi(B) = \varphi(\psi(B)) = \\ \varphi(\bigcap_{t \in T_B}([0, 1] - (a_t, b_t))) = \varphi([0, 1] - \bigcup_{t \in T_B}(a_t, b_t)) = \varphi(\bigcup_{t \in T_B}(a_t, b_t))' = [\bigvee_{t \in T_B}(R_{a_t} \wedge L_{b_t})]' = \\ B \ \text{if} \ B = \bigwedge\{R'_{a_t} \vee L'_{b_t} \mid t \in T_B\} \in \delta'. \ \text{Therefore,} \ \varphi^{-1} = \psi. \end{array}$

The mapping $\varphi^{-1} = \psi : \delta \cup \delta' \to \mathcal{J} \cup \mathcal{J}'$ has the following properties:

Theorem 3 (1) φ^{-1} preserves the order-reversing involution.

- (2) Both $\varphi^{-1}|\delta$ and $\varphi^{-1}|\delta'$ preserve the partial order.
- (3) $\varphi^{-1}|\delta$ preserves arbitrary joins, and $\varphi^{-1}|\delta'$ preserves arbitrary meets.
- (4) $\varphi^{-1}|\delta$ preserves finite meets, and $\varphi^{-1}|\delta'$ preserves finite joins.

Proof (1) Take an $A \in \delta \cup \delta'$. If $A = \bigvee \{R_{a_s} \land L_{b_s} \mid s \in S_A\} \in \delta$ (where $a_s < b_s, a_s \leq 1$,

and $b_s \ge 0$), then $\varphi^{-1}(A) = \bigcup_{s \in S_A} (a_s, b_s)$, and thus $\varphi^{-1}(A') = \varphi^{-1}([\bigvee_{s \in S_A} (R_{a_s} \land L_{b_s})]') = \varphi^{-1}(\bigwedge_{s \in S_A} (R'_{a_s} \lor L'_{b_s})) = [0, 1] - \bigsqcup_{s \in S_A} (a_s, b_s) = [\varphi^{-1}(A)]'$. Similarly, $\varphi^{-1}(A') = [\varphi^{-1}(A)]'$ if $A \in \mathcal{J}'$.

(2) Firstly, for every $A = \bigvee_{i \in S_A} (R_{a_i} \wedge L_{b_i}) \in \delta$ and $B = \bigvee_{j \in S_B} (R_{c_j} \wedge L_{d_j}) \in \delta$ with $A \leq B$, we have $\varphi^{-1}(B) = \varphi^{-1}(A \vee B) = \varphi^{-1}([\bigvee_{i \in S_A} (R_{a_i} \wedge L_{b_i})] \vee [\bigvee_{j \in S_B} (R_{c_j} \wedge L_{d_j})]) = [\bigcup_{i \in S_A} (a_i, b_i)] \cup [\bigcup_{j \in S_B} (c_j, d_j)] = \varphi^{-1}(A) \vee \varphi^{-1}(B)$. Thus $\varphi^{-1}(A) \leq \varphi^{-1}(B)$. Secondly, for $A, B \in \delta'$ with $A \leq B$, since φ^{-1} preserves the order-reversing involution, we have $A', B' \in \delta$ and $B' \leq A'$. Thus $\varphi^{-1}(B)' = \varphi^{-1}(B') \leq \varphi^{-1}(A') = \varphi^{-1}(A)'$, i.e., $\varphi^{-1}(A) \leq \varphi^{-1}(B)$.

(3) Suppose that $\mathcal{A} = \{A_i \mid i \in I\} = \{\bigvee_{j \in S_{A_i}} (R_{a_j^{(i)}} \wedge L_{b_j^{(i)}}) \mid i \in I\} \subset \delta$, where $0 \leq a_j^{(i)} < b_j^{(i)} \leq 1 \quad (\forall i \in I, \forall j \in S_{A_i})$. By definition of $\varphi^{-1}, \varphi^{-1}(\bigvee \mathcal{A}) = \varphi^{-1}(\bigvee_{i \in I} \bigvee_{j \in S_{A_i}} (R_{a_j^{(i)}} \wedge L_{b_j^{(i)}})) = \bigcup_{i \in I} \bigcup_{j \in S_{A_i}} (a_j^{(i)}, b_j^{(i)}) = \bigcup_i \varphi^{-1}(A_i)$. Since φ^{-1} preserves the order-reversing involution, $\varphi^{-1} | \delta'$ preserves arbitrary meets.

(4) Suppose that $A = \bigvee_{i \in S_A} (R_{a_i} \wedge L_{b_i}) \in \delta$ and $B = \bigvee_{j \in S_B} (R_{c_j} \wedge L_{d_j}) \in \delta$. By the join infinite distributive law,

$$\begin{split} \varphi^{-1}(A \wedge B) &= \varphi^{-1}([\bigvee_{i \in S_A} (R_{a_i} \wedge L_{b_i})] \wedge [\bigvee_{j \in S_B} (R_{c_j} \wedge L_{d_j})]) \\ &= \varphi^{-1}(\bigvee_{i \in S_A, j} (R_{a_i} \wedge L_{b_i} \wedge R_{c_j} \wedge L_{d_j})) \\ &= \varphi^{-1}(\bigvee_{i \in S_A, j \in S_B} (R_{\max\{a_i, c_j\}} \wedge L_{\min\{b_i, d_j\}}) \\ &= \varphi^{-1}(\bigvee \{R_{\max\{a_i, c_j\}} \wedge L_{\min\{b_i, d_j\}}\} \mid \max\{a_i, c_j\} < \min\{b_i, d_j\}, i \in S_A, j \in S_B\})) \\ &= \bigcup \{(\max\{a_i, c_j\}, \min\{b_i, d_j\}) \mid \max\{a_i, c_j\} < \min\{b_i, d_j\}, i \in S_A, j \in S_B\}) \\ &= \bigcup \{(a_i, b_i) \cap (c_j, d_j) \mid (a_i, b_i) \cap (c_j, d_j) \neq \emptyset, i \in S_A, j \in S_B\} \\ &= [\bigcup_{i \in S_A} (a_i, b_i)] \cap [\bigcup_{j \in S_B} (c_j, d_j)] = \varphi^{-1}(A) \cap \varphi^{-1}(B). \end{split}$$

Since φ^{-1} preserves the order-reversing involution, $\varphi^{-1}|\delta'$ preserves finite joins.

Proposition 2 Mappings φ and φ^{-1} preserve existent joins and meets.

Proof Suppose that $\{A_i\}_{i \in I} \subset \mathcal{J} \cup \mathcal{J}'$, and $\bigcup_{i \in I} A_i \in \mathcal{J} \cup \mathcal{J}'$. Since φ preserves the partial order, $\varphi(\bigcup_{i \in I} A_i) \ge \bigvee_{i \in I} \varphi(A_i)$. Next we prove $\varphi(\bigcup_{i \in I} A_i) \le \bigvee_{i \in I} \varphi(A_i)$. For every $A \ge \bigvee_{i \in I} \varphi(A_i)$, we have $A \ge \varphi(A_i)$ ($\forall i \in I$), since φ^{-1} preserves the partial order, then for every $i \in I$, $\varphi^{-1}(A) \ge \varphi^{-1} \circ \varphi(A_i) = A_i$. So $\varphi^{-1}(A) \ge \bigcup_{i \in I} A_i$. Since φ preserves the partial order, A = $\varphi \circ \varphi^{-1}(A) \ge \varphi(\bigcup_{i \in I} A_i)$. Therefore, $\varphi(\bigcup_{i \in I} A_i) \le \bigvee_{i \in I} \varphi(A_i)$. So, $\varphi(\bigcup_{i \in I} A_i) = \bigvee_{i \in I} \varphi(A_i)$. Similarly, φ preserves existent meets, φ^{-1} preserves existent joins and meets.

References

- [1] HUTTON B. Normality in fuzzy topological spaces [J]. J. Math. Anal. Appl., 1975, 50: 74–79.
- [2] Xu Luoshan. On ultra-F-compactness, crispness and connectedness of LF-unit interval [J]. J. Yangzhou Teachers' College, 1992, 12(4): 10–17. (in Chinese)