A Note to Hutton's Theorem

FU Wen Qing, LI Sheng Gang
(College of Mathematics and Information Science, Shaanxi Normal University, Shaanxi 710062, China)
(E-mail: palace_2000@163.com; shenggangli@yahoo.com.cn)

Abstract

It is proved in this paper that there is a bijection φ from $\mathcal{J} \cup \mathcal{J}^{\prime}$ to $\delta \cup \delta^{\prime}$ which satisfies: (1) $\varphi \mid \mathcal{J}:(\mathcal{J}, \subset) \longrightarrow(\delta, \leq)$ is a frame isomorphism; (2) $\varphi \mid \mathcal{J}^{\prime}:\left(\mathcal{J}^{\prime}, \subset\right) \longrightarrow\left(\delta^{\prime}, \leq\right)$ is a coframe isomorphism, where \mathcal{J} is the ordinary topology on $[0,1], \delta$ is the ordinary L-topology on L-unit interval $I(L)$, and L is a frame with an order-reversing involution. This result improves Theorem 3 in Hutton's paper.

Keywords L-unit interval; ordinary topology; meet-preserving mapping; join-preserving mapping.

Document code A
MR(2000) Subject Classification 54A40
Chinese Library Classification O177.2; O189.1

1. Introduction and preliminaries

In this paper, L is supposed to be a frame with the least element 0 and the greatest element 1 , and equipped with an order-reversing involution $/$ satisfying $a \vee a^{\prime}=1$ for every $a \in L$. Again let L^{X} be the set of all mappings (called L-subsets) from a set X to L, R the real line, $I=[0,1]$ the ordinary unit interval, \mathcal{J} the ordinary topology on $[0,1], H(I)$ the set of all monotonic decreasing mappings $\lambda: R \longrightarrow L$ satisfying $\lambda(t)=1$ for $t \in(-\infty, 0)$ and $\lambda(t)=0$ for $t \in[1,+\infty)$. For any two elements λ_{1} and λ_{2} in $H(I)$, define $\lambda_{1} \sim \lambda_{2} \Longleftrightarrow \lambda_{1}(t+)=\lambda_{2}(t+)$ and $\lambda_{1}(t-)=\lambda_{2}(t-)(\forall t \in R)$, where $\lambda(t+)=\bigvee_{s>t} \lambda(s)$ and $\lambda(t-)=\bigwedge_{s<t} \lambda(s)(\lambda \in H(I), t \in R)$. It can be verified that \sim is an equivalence relationship on $H(I)$. The equivalence class containing element λ is written as $[\lambda]$, and the ordinary L-topology δ on $I(L)=H(I) / \sim$ is generated by the subbase $\left\{R_{t}, L_{t} \mid t \in R\right\}$, where $R_{t}([\lambda])=\lambda(t+)$ and $L_{t}([\lambda])=(\lambda(t-))^{\prime}(\forall[\lambda] \in I(L))$. The L-topological space $(I(L), \delta)$ is called L-unit interval which was first defined by B. Hutton ${ }^{[1]}$. Hutton also proved the following:

Theorem $1^{[1]}$ If L is a completely distributive complete lattice with an order-reversing involution I satisfying $a \vee a^{\prime}=1(\forall a \in L)$, then there exists a frame isomorphism (i.e. a bijection or oneone correspondence which preserves both arbitrary joins and finite meets) $\varphi:(\mathcal{J}, \subset) \longrightarrow(\delta, \leq)$.

In this paper we will generalize the above theorem.

2. Main results and their proofs

Received date: 2006-06-20; Accepted date: 2007-07-13
Foundation item: the National Natural Science Foundation of China (No. 10271069).

For each $W \in \mathcal{J}, W$ is the union of a family $\left\{\left(a_{i}, b_{i}\right)\right\}_{i<\alpha}$ of disjoint nonempty intervals (called constitution intervals of W), where α is a cardinal number not more than \aleph_{0} (the cardinal number of the set of all natural numbers), $a_{i} \in\{-\infty\} \cup[0,1), b_{i} \in\{+\infty\} \cup(0,1]$, and we make the convention that $(-\infty, b)=(x, b)=[0, b)(x<0),(a,+\infty)=(a, y)=(a, 1](y>1)$. We use the equality $W=\bigsqcup_{i<\alpha}\left(a_{i}, b_{i}\right)$ to denote this fact, and define a mapping $\varphi: \mathcal{J} \cup \mathcal{J}^{\prime} \longrightarrow \delta \cup \delta^{\prime}$ as follows (where $\mathcal{J}^{\prime}=\{[0,1]-V \mid V \in \mathcal{J}\}$, and $\delta^{\prime}=\left\{A^{\prime} \mid A \in \delta\right\}$):

$$
\forall[\lambda] \in I(L), \quad \varphi(W)([\lambda])= \begin{cases}\bigvee_{i}\left(\lambda\left(a_{i}+\right) \wedge \lambda\left(b_{i}-\right)^{\prime}\right), & \text { if } W=\bigsqcup_{i}\left(a_{i}, b_{i}\right) \in \mathcal{J}, \\ \bigwedge_{i}\left(\lambda\left(a_{i}+\right)^{\prime} \vee \lambda\left(b_{i}-\right)\right), & \text { if } W=[0,1]-\bigsqcup_{i}\left(a_{i}, b_{i}\right) \in \mathcal{J}^{\prime}\end{cases}
$$

that is,

$$
\forall[\lambda] \in I(L), \quad \varphi(W)= \begin{cases}\bigvee_{i}\left(R_{a_{i}} \wedge L_{b_{i}}\right), & \text { if } W=\bigsqcup_{i}\left(a_{i}, b_{i}\right) \in \mathcal{J} \\ \bigwedge_{i}\left(R_{a_{i}}^{\prime} \vee L_{b_{i}}^{\prime}\right), & \text { if } W=[0,1]-\bigsqcup_{i}\left(a_{i}, b_{i}\right) \in \mathcal{J}^{\prime}\end{cases}
$$

This mapping has the following properties:
Theorem 2 (1) φ is a bijection which preserves the order-reversing involution.
(2) φ preserves the partial order.
(3) If $\mathcal{A} \subset \mathcal{J}$, then $\varphi(\bigcup \mathcal{A})=\bigvee_{A \in \mathcal{A}} \varphi(A)$.
(4) If $\mathcal{A} \subset \mathcal{J}^{\prime}$ then $\varphi(\bigcap \mathcal{A})=\bigwedge_{A \in \mathcal{A}} \varphi(A)$.
(5) If $A, B \in \mathcal{J} \cup \mathcal{J}^{\prime}$ and $A \cap B \in \mathcal{J} \cup \mathcal{J}^{\prime}$, then $\varphi(A \cap B)=\varphi(A) \wedge \varphi(B)$.
(6) If $A, B \in \mathcal{J} \cup \mathcal{J}^{\prime}$ and $A \cup B \in \mathcal{J} \cup \mathcal{J}^{\prime}$, then $\varphi(A \cup B)=\varphi(A) \vee \varphi(B)$.

Proof Step 1. φ preserves the order-reversing involution. For any $W \in \mathcal{J}^{\prime} \cup \mathcal{J}$, if $W \in \mathcal{J}$, say $W=\bigsqcup_{i}\left(a_{i}, b_{i}\right)$, then $\varphi(W)=\bigvee_{i}\left(R_{a_{i}} \wedge L_{b_{i}}\right)$, and thus $\varphi\left(W^{\prime}\right)=\varphi\left([0,1]-\bigsqcup_{i}\left(a_{i}, b_{i}\right)\right)=$ $\bigwedge_{i}\left(R_{a_{i}}^{\prime} \vee L_{b_{i}}^{\prime}\right)=\left[\bigvee_{i}\left(R_{a_{i}} \wedge L_{b_{i}}\right)\right]^{\prime}=[\varphi(W)]^{\prime}$. Similarly, $\varphi\left(W^{\prime}\right)=[\varphi(W)]^{\prime}$ if $W \in \mathcal{J}^{\prime}$.

Step 2. For any $A, B \in \mathcal{J}, \varphi(A \cap B)=\varphi(A) \wedge \varphi(B)$. Suppose $A, B \in \mathcal{J}$, say $A=\bigsqcup_{i}\left(a_{i}, b_{i}\right)$ and $B=\bigsqcup_{j}\left(c_{j}, d_{j}\right)$. Then

$$
A \cap B=\left[\bigsqcup_{i}\left(a_{i}, b_{i}\right)\right] \cap\left[\bigsqcup_{j}\left(c_{j}, d_{j}\right)\right]=\bigcup_{i, j}\left[\left(a_{i}, b_{i}\right) \cap\left(c_{j}, d_{j}\right)\right] .
$$

By the join infinite distributive law, for every $[\lambda] \in I(L)$, we have

$$
\begin{aligned}
& {[\varphi(A) \wedge \varphi(B)]([\lambda])=\varphi(A)([\lambda]) \wedge \varphi(B)([\lambda])} \\
& \quad=\left[\bigvee_{i}\left(\lambda\left(a_{i}+\right) \wedge \lambda\left(b_{i}-\right)^{\prime}\right)\right] \wedge\left[\bigvee_{j}\left(\lambda\left(c_{j}+\right) \wedge \lambda\left(d_{j}-\right)^{\prime}\right)\right] \\
& \quad=\bigvee_{i, j}\left[\lambda\left(\max \left\{a_{i}, c_{j}\right\}+\right) \wedge \lambda\left(\min \left\{b_{i}, d_{j}\right\}-\right)^{\prime}\right]
\end{aligned}
$$

Notice that if $(a, b) \cap(c, d)=\emptyset$, then $\min \{b, d\} \leq \max \{a, c\}, \lambda(\min \{b, d\}-)^{\prime} \leq \lambda(\max \{a, c\}+)^{\prime}$, $\lambda(\max \{a, c\}+) \wedge \lambda(\min \{b, d\}-)^{\prime}=0$, and thus

$$
[\varphi(A) \wedge \varphi(B)]([\lambda])=\underset{i, j ;\left(a_{i}, b_{i}\right) \cap\left(c_{j}, d_{j}\right) \neq \emptyset}{\bigvee}\left(\lambda\left(\max \left\{a_{i}, c_{j}\right\}+\right) \wedge \lambda\left(\min \left\{b_{i}, d_{j}\right\}-\right)^{\prime}\right) \quad(\forall[\lambda] \in I(L))
$$

Furthermore, if $\left(a_{i}, b_{i}\right) \cap\left(c_{j}, d_{j}\right) \neq \emptyset$, then $\left(a_{i}, b_{i}\right) \cap\left(c_{j}, d_{j}\right)=\left(\max \left\{a_{i}, c_{j}\right\}, \min \left\{b_{i}, d_{j}\right\}\right)$, and

$$
A \cap B=\bigcup_{i, j}\left[\left(a_{i}, b_{i}\right) \cap\left(c_{j}, d_{j}\right)\right]=\bigcup_{i, j ;\left(a_{i}, b_{i}\right) \cap\left(c_{j}, d_{j}\right) \neq \emptyset}\left(\max \left\{a_{i}, c_{j}\right\}, \min \left\{b_{i}, d_{j}\right\}\right) .
$$

As $\left(\max \left\{a_{i_{1}}, c_{j_{1}}\right\}, \min \left\{b_{i_{1}}, d_{j_{1}}\right\}\right) \cap\left(\max \left\{a_{i_{2}}, c_{j_{2}}\right\}, \min \left\{b_{i_{2}}, d_{j_{2}}\right\}\right) \subset\left[\left(a_{i_{1}}, b_{i_{1}}\right) \cap\left(a_{i_{2}}, b_{i_{2}}\right)\right] \cap\left[\left(c_{j_{1}}, d_{j_{1}}\right) \cap\right.$ $\left.\left(c_{j_{2}}, d_{j_{2}}\right)\right]=\emptyset$ if $\left(i_{1}, j_{1}\right) \neq\left(i_{2}, j_{2}\right),\left\{\left(\max \left\{a_{i}, c_{j}\right\}, \min \left(b_{i}, d_{j}\right) \mid\left(a_{i}, b_{i}\right) \cap\left(c_{j}, d_{j}\right) \neq \emptyset\right\}\right.$ are the constitution intervals of $A \cap B$. Thus $A \cap B=\bigsqcup\left\{\left(\max \left\{a_{i}, c_{j}\right\}, \min \left\{b_{i}, d_{j}\right\}\right) \mid i, j,\left(a_{i}, b_{i}\right) \cap\left(c_{j}, d_{j}\right) \neq \emptyset\right\}$. By definition of φ we have

$$
\varphi(A \cap B)([\lambda])=\bigvee_{i, j ;\left(a_{i}, b_{i}\right) \cap\left(c_{j}, d_{j}\right) \neq \emptyset}\left(\lambda\left(\max \left\{a_{i}, c_{j}\right\}+\right) \wedge \lambda\left(\min \left\{b_{i}, d_{j}\right\}-\right)^{\prime}\right)(\forall[\lambda] \in I(L)) .
$$

Therefore, $\varphi(A) \wedge \varphi(B)=\varphi(A \cap B)$.
Step 3. (proof of (3)) As $\varphi(\bigvee \mathcal{A})=\varphi(\emptyset)=0_{I(L)}=\bigvee_{A \in \emptyset} \varphi(A)$ for $\mathcal{A}=\emptyset$, we only need to show the case $\mathcal{A} \neq \emptyset$.

First we consider the special case $W=(a, b)$ and $V=(c, d)$. By definition of φ, when $W \cap V=\emptyset, \varphi(W \cup V)=\varphi(W) \vee \varphi(V)$, thus we only need to show the case $a<c<b<d$. Take an $e \in(c, b)$, then by the distributive law and the property of the order-reversing involution of L, we have

$$
\begin{aligned}
{[\varphi(W) \vee \varphi(V)]([\lambda]) } & =[\varphi(W)([\lambda])] \vee[\varphi(V)([\lambda])]=\left[\lambda(a+) \wedge \lambda(b-)^{\prime}\right] \vee\left[\lambda(c+) \wedge \lambda(d-)^{\prime}\right] \\
& \geq\left[\lambda(a+) \wedge \lambda(e)^{\prime}\right] \vee\left[\lambda(e) \wedge(\lambda(d-))^{\prime}\right] \\
& =\lambda(a+) \wedge \lambda(d-)^{\prime}=\varphi((a, d))([\lambda])=\varphi(W \cup V)([\lambda]) \quad(\forall \lambda \in I(L)),
\end{aligned}
$$

i.e., $\varphi(W \cup V) \leq \varphi(W) \vee \varphi(V)$. By Step 3, for any $A, B \in \mathcal{J}$ with $A \subset B$, we have $\varphi(A) \leq$ $\varphi(B)$. It follows that $\varphi(W) \leq \varphi(W \cup V), \varphi(V) \leq \varphi(W \cup V), \varphi(W) \vee \varphi(V) \leq \varphi(W \cup V)$, and $\varphi(W \cup V)=\varphi(W) \vee \varphi(V)$. This implies that $\varphi\left(\bigcup_{i=1}^{n}\left(a_{i}, b_{i}\right)\right)=\bigvee_{i=1}^{n} \varphi\left(\left(a_{i}, b_{i}\right)\right)$.

Now we consider the general case. Let $\mathcal{A}=\left\{A_{i}\right\}_{i \in I} \subset \mathcal{J}, A_{i}=\bigcup_{j \in J_{i}}\left(a_{j}^{i}, b_{j}^{i}\right), \bigcup_{i \in I} A_{i}=$ $A=\bigsqcup \mathcal{B}$, where \mathcal{B} is a collection of disjoint nonempty open intervals. Take $(a, b) \in \mathcal{B}$ and $[c, d] \subset(a, b)$, then $[c, d] \subset \bigcup_{i, j}\left(a_{j}^{i}, b_{j}^{i}\right)$. As $[c, d]$ is compact, there exists a finite subcollection $\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)\right\}(n \in N)$ of $\left\{\left(a_{j}^{i}, b_{j}^{i}\right)\right\}_{i, j}$ such that $[c, d] \subset \bigcup_{k=1}^{n}\left(a_{k}, b_{k}\right)$. We have

$$
\varphi((c, d)) \leq \varphi\left(\bigcup_{k=1}^{n}\left(a_{k}, b_{k}\right)\right)=\bigvee_{k=1}^{n} \varphi\left(\left(a_{k}, b_{k}\right)\right) \leq \bigvee_{k=1}^{n} \varphi\left(A_{i_{k}}\right) \leq \bigvee_{i \in I} \varphi\left(A_{i}\right)
$$

By the join infinite distributive law, we have

$$
\begin{aligned}
\lim _{c \rightarrow a+} \varphi((c, d))([\lambda]) & =\bigvee_{c, d} \varphi((c, d))([\lambda])=\bigvee_{c>a}\left(\lambda(c+) \wedge \lambda(d-)^{\prime}\right) \\
& =\left(\bigvee_{c>a} \lambda(c+)\right) \wedge \lambda(d-)^{\prime}=\lambda(a+) \wedge \lambda(d-)^{\prime}=\varphi((a, d))([\lambda]) .
\end{aligned}
$$

Furthermore, let $c \longrightarrow a+$, and $d \longrightarrow b-$. Then we have

$$
\varphi((c, d))([\lambda])=\lambda(c+) \wedge \lambda(d-)^{\prime} \longrightarrow \lambda(a+) \wedge \lambda(b-)^{\prime}=\varphi((a, b))([\lambda])(\forall[\lambda] \in I(L)) .
$$

This means that $\varphi((a, b)) \leq \bigvee_{i \in I} \varphi\left(A_{i}\right)$. Therefore, $\varphi\left(\bigcup A_{i}\right)=\varphi(\bigsqcup \mathcal{B})=\bigvee_{(a, b) \in \mathcal{B}} \varphi((a, b)) \leq$
$\bigvee_{i \in I} \varphi\left(A_{i}\right)$. By Step 3, we have $\varphi(A) \geq \bigvee_{i \in I} \varphi\left(A_{i}\right)$, hence $\varphi\left(\bigcup_{i \in I} A_{i}\right)=\bigvee_{i \in I} \varphi\left(A_{i}\right)$.
Step 4. (proof of (4)) Let $\mathcal{A} \subset \mathcal{J}^{\prime}$. By (1) and (3), $\varphi(\bigcap \mathcal{A})=\varphi\left([0,1]-\bigcup_{(a, b) \in \emptyset}(a, b)\right)=$ $\bigwedge_{(a, b) \in \emptyset}\left(R_{a_{i}}^{\prime} \vee L_{b_{i}}^{\prime}\right)=1_{I(L)}=\bigwedge_{A \in \mathcal{A}} \varphi(A)$ if $\mathcal{A}=\emptyset$. If $\mathcal{A} \neq \emptyset$, then $\varphi(\bigcap \mathcal{A})=\varphi\left(\left(\bigcup_{A \in \mathcal{A}} A^{\prime}\right)^{\prime}\right)=$ $\left[\bigvee_{A \in \mathcal{A}}\left(\varphi\left(A^{\prime}\right)\right)\right]^{\prime}=\bigwedge_{A \in \mathcal{A}} \varphi(A)^{\prime \prime}=\bigwedge_{A \in \mathcal{A}} \varphi(A)$.

Step 5. φ is a bijection. Firstly, for any $W, V \in \mathcal{J}$ with $W-V \neq \emptyset$, let $x \in W-V$ and $[\lambda]=\chi_{(-\infty, x]}$. Then $[\lambda] \in I(L)$ and $\varphi(W)([\lambda])=1 \neq 0=\varphi(V)([\lambda])$ by definition of φ. By Step $1, \varphi$ is an injection. Secondly, as L is a frame with an order-reversing involution and $\{(a, b) \mid a, b \in[0,1] \cup\{-\infty,+\infty\}, a<b\}$ is a base of $\mathcal{J},\{\varphi((a, b)) \mid a, b \in[0,1] \cup\{-\infty,+\infty\}$ and $a<b\}$ is a base of δ by Step 1 and Step 3, which means φ is a surjection.

Step 6. (proof of (2)) Suppose $A, B \in \mathcal{J} \cup \mathcal{J}^{\prime}$ with $A \subset B$. We consider the following four cases:

Case $1 A, B \in \mathcal{J}$. By Step $3, \varphi(A) \leq \varphi(B)$.
Case $2 A, B \in \mathcal{J}^{\prime}$. By (1) and the result of Case 1, we have $\varphi(B)^{\prime} \leq \varphi(A)^{\prime}$, i.e., $\varphi(A) \leq \varphi(B)$.
Case $3 A \in \mathcal{J}$ and $B \in \mathcal{J}^{\prime}$. As φ is a bijection, both $\varphi \mid \mathcal{J}^{\prime}$ and $\varphi^{-1} \mid \mathcal{J}^{\prime}$ are order-preserving, and $\varphi \mid \mathcal{J}^{\prime}$ is meet-preserves, we have $\varphi\left(A_{0}^{-}\right)=\varphi\left(\bigcap\left\{B_{0} \mid B_{0} \in \mathcal{J}^{\prime}, A_{0} \subset B_{0}\right\}\right)=\bigwedge\left\{\varphi\left(B_{0}\right) \mid B_{0} \in\right.$ $\left.\mathcal{J}^{\prime}, A_{0} \subset B_{0}\right\}=\bigwedge\left\{D \mid D \in \delta^{\prime}, \varphi\left(A_{0}\right) \leq D\right\}=\varphi\left(A_{0}\right)^{-}$for every $A_{0} \in \mathcal{J} \cup \mathcal{J}^{\prime}$. Since $B \in \mathcal{J}^{\prime}$, $A^{-} \subset B$, by the proof of Case 2 , we have $\varphi(A) \leq \varphi(A)^{-}=\varphi\left(A^{-}\right) \leq \varphi(B)$.

Case $4 A \in \mathcal{J}^{\prime}$ and $B \in \mathcal{J}$. As $A \subset B$, we have $A \cap B^{\prime}=\emptyset$, and thus $\varphi\left(A \cap B^{\prime}\right)=\varphi(A) \wedge \varphi\left(B^{\prime}\right)=$ $\varphi(A) \wedge \varphi(B)^{\prime}=0_{X}$, i.e., $\varphi(A)(x) \wedge \varphi(B)(x)^{\prime}=0 \quad(\forall x \in I(L))$. Since $a \vee a^{\prime}=1 \quad(\forall a \in L)$, $\varphi(A)(x)=\varphi(A)(x) \wedge 1=\varphi(A)(x) \wedge\left[\varphi(B)(x) \vee \varphi(B)(x)^{\prime}\right]=[\varphi(A)(x) \wedge \varphi(B)(x)] \vee[\varphi(A)(x) \wedge$ $\left.\varphi(B)(x)^{\prime}\right]=[\varphi(A)(x) \wedge \varphi(B)(x)] \vee 0=\varphi(A)(x) \wedge \varphi(B)(x), \varphi(A)(x) \leq \varphi(B)(x)(\forall x \in I(L))$, i.e., $\varphi(A) \leq \varphi(B)$.

Step 7 (proof of (5))
Case $1 A, B \in \mathcal{J} \cup \mathcal{J}^{\prime}, A \cap B \in \mathcal{J}$. If $A, B \in \mathcal{J}^{\prime}$, then $\varphi(A \cap B)=\varphi(A) \wedge \varphi(B)$ by (4). If $A, B \in \mathcal{J}$, then $\varphi(A \cap B)=\varphi(A) \wedge \varphi(B)$ by Step 2. If $A \in \mathcal{J}$ and $B \in \mathcal{J}^{\prime}$, then $(A \cap B)^{o}=$ $A^{o} \cap B^{o}=A \cap B^{o}=A \cap B$ because $A \cap B \in \mathcal{J}$, and thus $A \subset B^{\prime} \cup B^{o}$. Since $B \in \mathcal{J}^{\prime}$, $B^{\prime}, B^{o} \in \mathcal{J}$, by Step $4, \varphi(A) \leq \varphi\left(B^{\prime} \cup B^{o}\right)=\varphi\left(B^{\prime}\right) \vee \varphi\left(B^{o}\right)$. It follows that $\varphi(A) \wedge \varphi(B) \leq$ $\left(\varphi\left(B^{\prime}\right) \vee \varphi\left(B^{o}\right)\right) \wedge \varphi(B)=\left(\varphi\left(B^{\prime}\right) \wedge \varphi(B)\right) \vee\left(\varphi\left(B^{o}\right) \wedge \varphi(B)\right)=\left(\varphi(B)^{\prime} \wedge \varphi(B)\right) \vee\left(\varphi\left(B^{o}\right) \wedge\right.$ $\varphi(B))=\varphi\left(B^{o}\right)$, and that $\varphi(A) \wedge \varphi(B) \leq \varphi(A) \wedge \varphi\left(B^{o}\right)=\varphi\left(A \cap B^{o}\right)=\varphi(A \cap B)$. By Step 2, $\varphi(A \cap B)=\varphi\left(A \cap B^{o}\right) \leq \varphi(A) \wedge \varphi\left(B^{o}\right) \leq \varphi(A) \wedge \varphi(B)$. Therefore, $\varphi(A \cap B)=\varphi(A) \wedge \varphi(B)$. Similarly, $\varphi(A \cap B)=\varphi(A) \wedge \varphi(B)$ if $A \in \mathcal{J}^{\prime}$ and $B \in \mathcal{J}$.

Case $2 A, B \in \mathcal{J} \cup \mathcal{J}^{\prime}, A \cap B \in \mathcal{J}^{\prime}$. By Step 4, it suffices to show the case that $A \in \mathcal{J}, B \in \mathcal{J}^{\prime}$ and $A \cap B \in \mathcal{J}^{\prime}$. As φ preserves the partial order, $\varphi(A \cap B) \leq \varphi(A) \wedge \varphi(B)$. Thus we only need to show $\varphi(A \cap B) \geq \varphi(A) \wedge \varphi(B)$. Firstly, since $A \in \mathcal{J}$ and $A \cap B \in \mathcal{J}^{\prime}$, we have $\varphi(A \cap B) \geq \varphi((A \cap$
$\left.B)^{o-}\right)=\varphi\left(\left(A \cap B^{o}\right)^{-}\right)=\left[\varphi\left(A \cap B^{o}\right)\right]^{-}=\left[\varphi(A) \wedge \varphi\left(B^{o}\right)\right]^{-}=\wedge\left\{C \in \delta^{\prime} \mid \varphi(A) \wedge \varphi\left(B^{o}\right) \leq C\right\}$. Secondly, for every $C \in \delta$ satisfying $\varphi(A) \wedge \varphi\left(B^{\circ}\right) \leq C$ and every $D \leq \varphi(A) \wedge \varphi(B)$, we have $D^{o} \leq[\varphi(A) \wedge \varphi(B)]^{o}=\varphi(A) \wedge \varphi\left(B^{o}\right), D^{o} \leq C$, and $D \leq D^{-} \leq C$ since C is closed. Therefore, $\varphi(A) \wedge \varphi(B) \leq C$. Since C is arbitrary, $\varphi(A) \wedge \varphi(B) \leq \bigwedge\left\{C \in \delta^{\prime} \mid \varphi(A) \wedge \varphi\left(B^{o}\right) \leq C\right\}=\varphi(A \cap B)$.

Step 8 (proof of (6)) We only need to consider the following four cases:
Case $1 A, B \in \mathcal{J}^{\prime}$. By Step 2 and the fact that φ preserves the order-reversing involution, we have $\varphi(A \cup B)=\varphi(A) \vee \varphi(B)$.

Case $2 A \in \mathcal{J}, B \in \mathcal{J}^{\prime}$, and $A \cup B \in \mathcal{J}^{\prime}$. By Case 1 of Step 7 and the fact that φ preserves the order-reversing involution, we have $\varphi(A \cup B)=\varphi(A) \vee \varphi(B)$.

Case $3 A, B \in \mathcal{J}$. Then $\varphi(A \cup B)=\varphi(A) \vee \varphi(B)$ by Step 3 .
Case $4 A \in \mathcal{J}, B \in \mathcal{J}^{\prime}$, and $A \cup B \in \mathcal{J}$. By Case 1 of Step 7 and the fact that φ preserves the order-reversing involution, we have $\varphi(A \cup B)=\varphi(A) \vee \varphi(B)$. This completes the proof of Theorem 2.

Let $A \in \delta$. As $R_{a}([\lambda]) \wedge L_{b}([\lambda])=0$ for all $[\lambda] \in I(L)$ and all $a, b \in[0,1]$ with $a \geq b$, we can write $A=\bigvee\left\{R_{a_{s}} \wedge L_{b_{s}} \mid s \in S_{A}\right\}$, where $a_{s}<b_{s}$ for all $s \in S_{A}$. The set $G_{A}=\left\{\left(a_{s}, b_{s}\right) \mid s \in S_{A}\right\}$ is called a collection of open intervals of $A^{[2]}$. Hence, for every $B \in \delta^{\prime}, B$ can be denoted by $B=\bigvee\left\{R_{a_{t}} \wedge L_{b_{t}} \mid t \in T_{B}\right\}^{\prime}=\bigwedge\left\{R_{a_{t}}^{\prime} \vee L_{b_{t}}^{\prime} \mid t \in T_{B}\right\}$, where $a_{t}<b_{t}, a_{t} \leq 1, b_{t} \geq 0$. Define a mapping $\psi: \delta \cup \delta^{\prime} \rightarrow \mathcal{J} \cup \mathcal{J}^{\prime}$ as follows:

$$
\psi(A)= \begin{cases}\bigcup_{s \in S_{A}}\left(a_{s}, b_{s}\right), & \text { if } A=\bigvee\left\{R_{a_{s}} \wedge L_{b_{s}} \mid s \in S_{A}\right\} \in \delta, \\ \bigcap_{t \in T_{A}}\left[[0,1]-\left(a_{t}, b_{t}\right)\right], & \text { if } A=\bigwedge\left\{R_{a_{t}}^{\prime} \vee L_{b_{t}}^{\prime} \mid t \in T_{A}\right\} \in \delta^{\prime} .\end{cases}
$$

Then we have the following
Proposition $1 \psi: \delta \cup \delta^{\prime} \rightarrow \mathcal{J} \cup \mathcal{J}^{\prime}$ is the inverse mapping of $\varphi: \mathcal{J} \cup \mathcal{J}^{\prime} \rightarrow \delta \cup \delta^{\prime}$.
Proof Firstly, $\psi \circ \varphi(W)=\psi(\varphi(W))=\psi\left(\bigvee_{i}\left(R_{a_{i}} \wedge L_{b_{i}}\right)\right)=\bigcup_{i}\left(a_{i}, b_{i}\right)=W$ if $W=\bigsqcup_{i}\left(a_{i}, b_{i}\right) \in \mathcal{J}$, and $\psi \circ \varphi(W)=\psi(\varphi(W))=\psi\left(\bigwedge_{i}\left(R_{a_{i}}^{\prime} \vee L_{b_{i}}^{\prime}\right)\right)=\bigcap_{i}\left[[0,1]-\left(a_{i}, b_{i}\right)\right]=W$ if $W=[0,1]-$ $\bigsqcup_{i}\left(a_{i}, b_{i}\right) \in \mathcal{J}^{\prime}$. Secondly, $\varphi \circ \psi(A)=\varphi(\psi(A))=\varphi\left(\bigcup_{s \in S_{A}}\left(a_{s}, b_{s}\right)\right)=\bigvee_{s \in S_{A}}\left(R_{a_{s}} \wedge L_{b_{s}}\right)=A$ if $A=\bigvee\left\{R_{a_{s}} \wedge L_{b_{s}} \mid t \in S_{A}\right\} \in \delta$ by Step 3 in the proof of Theorem 2, and $\varphi \circ \psi(B)=\varphi(\psi(B))=$ $\varphi\left(\bigcap_{t \in T_{B}}\left([0,1]-\left(a_{t}, b_{t}\right)\right)\right)=\varphi\left([0,1]-\bigcup_{t \in T_{B}}\left(a_{t}, b_{t}\right)\right)=\varphi\left(\bigcup_{t \in T_{B}}\left(a_{t}, b_{t}\right)\right)^{\prime}=\left[\bigvee_{t \in T_{B}}\left(R_{a_{t}} \wedge L_{b_{t}}\right)\right]^{\prime}=$ B if $B=\bigwedge\left\{R_{a_{t}}^{\prime} \vee L_{b_{t}}^{\prime} \mid t \in T_{B}\right\} \in \delta^{\prime}$. Therefore, $\varphi^{-1}=\psi$.

The mapping $\varphi^{-1}=\psi: \delta \cup \delta^{\prime} \rightarrow \mathcal{J} \cup \mathcal{J}^{\prime}$ has the following properties:
Theorem 3 (1) φ^{-1} preserves the order-reversing involution.
(2) Both $\varphi^{-1} \mid \delta$ and $\varphi^{-1} \mid \delta^{\prime}$ preserve the partial order.
(3) $\varphi^{-1} \mid \delta$ preserves arbitrary joins, and $\varphi^{-1} \mid \delta^{\prime}$ preserves arbitrary meets.
(4) $\varphi^{-1} \mid \delta$ preserves finite meets, and $\varphi^{-1} \mid \delta^{\prime}$ preserves finite joins.

Proof (1) Take an $A \in \delta \cup \delta^{\prime}$. If $A=\bigvee\left\{R_{a_{s}} \wedge L_{b_{s}} \mid s \in S_{A}\right\} \in \delta$ (where $a_{s}<b_{s}, a_{s} \leq 1$,
and $\left.b_{s} \geq 0\right)$, then $\varphi^{-1}(A)=\bigcup_{s \in S_{A}}\left(a_{s}, b_{s}\right)$, and thus $\varphi^{-1}\left(A^{\prime}\right)=\varphi^{-1}\left(\left[\bigvee_{s \in S_{A}}\left(R_{a_{s}} \wedge L_{b_{s}}\right)\right]^{\prime}\right)=$ $\varphi^{-1}\left(\bigwedge_{s \in S_{A}}\left(R_{a_{s}}^{\prime} \vee L_{b_{s}}^{\prime}\right)\right)=[0,1]-\bigsqcup_{s \in S_{A}}\left(a_{s}, b_{s}\right)=\left[\varphi^{-1}(A)\right]^{\prime}$. Similarly, $\varphi^{-1}\left(A^{\prime}\right)=\left[\varphi^{-1}(A)\right]^{\prime}$ if $A \in \mathcal{J}^{\prime}$.
(2) Firstly, for every $A=\bigvee_{i \in S_{A}}\left(R_{a_{i}} \wedge L_{b_{i}}\right) \in \delta$ and $B=\bigvee_{j \in S_{B}}\left(R_{c_{j}} \wedge L_{d_{j}}\right) \in \delta$ with $A \leq B$, we have $\varphi^{-1}(B)=\varphi^{-1}(A \vee B)=\varphi^{-1}\left(\left[\bigvee_{i \in S_{A}}\left(R_{a_{i}} \wedge L_{b_{i}}\right)\right] \vee\left[\bigvee_{j \in S_{B}}\left(R_{c_{j}} \wedge L_{d_{j}}\right)\right]\right)=$ $\left[\bigcup_{i \in S_{A}}\left(a_{i}, b_{i}\right)\right] \cup\left[\bigcup_{j \in S_{B}}\left(c_{j}, d_{j}\right)\right]=\varphi^{-1}(A) \vee \varphi^{-1}(B)$. Thus $\varphi^{-1}(A) \leq \varphi^{-1}(B)$. Secondly, for $A, B \in \delta^{\prime}$ with $A \leq B$, since φ^{-1} preserves the order-reversing involution, we have $A^{\prime}, B^{\prime} \in \delta$ and $B^{\prime} \leq A^{\prime}$. Thus $\varphi^{-1}(B)^{\prime}=\varphi^{-1}\left(B^{\prime}\right) \leq \varphi^{-1}\left(A^{\prime}\right)=\varphi^{-1}(A)^{\prime}$, i.e., $\varphi^{-1}(A) \leq \varphi^{-1}(B)$.
(3) Suppose that $\mathcal{A}=\left\{A_{i} \mid i \in I\right\}=\left\{\bigvee_{j \in S_{A_{i}}}\left(R_{a_{j}^{(i)}} \wedge L_{b_{j}^{(i)}}\right) \mid i \in I\right\} \subset \delta$, where $0 \leq a_{j}^{(i)}<$ $b_{j}^{(i)} \leq 1\left(\forall i \in I, \forall j \in S_{A_{i}}\right)$. By definition of $\varphi^{-1}, \varphi^{-1}(\bigvee \mathcal{A})=\varphi^{-1}\left(\bigvee_{i \in I} \bigvee_{j \in S_{A_{i}}}\left(R_{a_{j}^{(i)}} \wedge L_{b_{j}^{(i)}}\right)\right)=$ $\bigcup_{i \in I} \bigcup_{j \in S_{A_{i}}}\left(a_{j}^{(i)}, b_{j}^{(i)}\right)=\bigcup_{i} \varphi^{-1}\left(A_{i}\right)$. Since φ^{-1} preserves the order-reversing involution, $\varphi^{-1} \mid \delta^{\prime}$ preserves arbitrary meets.
(4) Suppose that $A=\bigvee_{i \in S_{A}}\left(R_{a_{i}} \wedge L_{b_{i}}\right) \in \delta$ and $B=\bigvee_{j \in S_{B}}\left(R_{c_{j}} \wedge L_{d_{j}}\right) \in \delta$. By the join infinite distributive law,

$$
\begin{aligned}
& \varphi^{-1}(A \wedge B)=\varphi^{-1}\left(\left[\bigvee_{i \in S_{A}}\left(R_{a_{i}} \wedge L_{b_{i}}\right)\right] \wedge\left[\bigvee_{j \in S_{B}}\left(R_{c_{j}} \wedge L_{d_{j}}\right)\right]\right) \\
&=\varphi^{-1}\left(\bigvee_{i \in S_{A}, j}\left(R_{a_{i}} \wedge L_{b_{i}} \wedge R_{c_{j}} \wedge L_{d_{j}}\right)\right) \\
&= \varphi^{-1}\left(\bigvee_{i \in S_{A}, j \in S_{B}}\left(R_{\max \left\{a_{i}, c_{j}\right\}} \wedge L_{\min \left\{b_{i}, d_{j}\right\}}\right)\right. \\
&\left.=\varphi^{-1}\left(\bigvee\left\{R_{\max \left\{a_{i}, c_{j}\right\}} \wedge L_{\min \left\{b_{i}, d_{j}\right.}\right\} \mid \max \left\{a_{i}, c_{j}\right\}<\min \left\{b_{i}, d_{j}\right\}, i \in S_{A}, j \in S_{B}\right\}\right) \\
&= \bigcup\left\{\left(\max \left\{a_{i}, c_{j}\right\}, \min \left\{b_{i}, d_{j}\right\}\right) \mid \max \left\{a_{i}, c_{j}\right\}<\min \left\{b_{i}, d_{j}\right\}, i \in S_{A}, j \in S_{B}\right\} \\
&= \bigcup^{\{ }\left\{\left(a_{i}, b_{i}\right) \cap\left(c_{j}, d_{j}\right) \mid\left(a_{i}, b_{i}\right) \cap\left(c_{j}, d_{j}\right) \neq \emptyset, i \in S_{A}, j \in S_{B}\right\} \\
&= {\left[\bigcup_{i \in S_{A}}\left(a_{i}, b_{i}\right)\right] \cap\left[\bigcup_{j \in S_{B}}\left(c_{j}, d_{j}\right)\right]=\varphi^{-1}(A) \cap \varphi^{-1}(B) . }
\end{aligned}
$$

Since φ^{-1} preserves the order-reversing involution, $\varphi^{-1} \mid \delta^{\prime}$ preserves finite joins.
Proposition 2 Mappings φ and φ^{-1} preserve existent joins and meets.
Proof Suppose that $\left\{A_{i}\right\}_{i \in I} \subset \mathcal{J} \cup \mathcal{J}^{\prime}$, and $\bigcup_{i \in I} A_{i} \in \mathcal{J} \cup \mathcal{J}^{\prime}$. Since φ preserves the partial order, $\varphi\left(\bigcup_{i \in I} A_{i}\right) \geq \bigvee_{i \in I} \varphi\left(A_{i}\right)$. Next we prove $\varphi\left(\bigcup_{i \in I} A_{i}\right) \leq \bigvee_{i \in I} \varphi\left(A_{i}\right)$. For every $A \geq \bigvee_{i \in I} \varphi\left(A_{i}\right)$, we have $A \geq \varphi\left(A_{i}\right)(\forall i \in I)$, since φ^{-1} preserves the partial order, then for every $i \in I$, $\varphi^{-1}(A) \geq \varphi^{-1} \circ \varphi\left(A_{i}\right)=A_{i}$. So $\varphi^{-1}(A) \geq \bigcup_{i \in I} A_{i}$. Since φ preserves the partial order, $A=$ $\varphi \circ \varphi^{-1}(A) \geq \varphi\left(\bigcup_{i \in I} A_{i}\right)$. Therefore, $\varphi\left(\bigcup_{i \in I} A_{i}\right) \leq \bigvee_{i \in I} \varphi\left(A_{i}\right)$. So, $\varphi\left(\bigcup_{i \in I} A_{i}\right)=\bigvee_{i \in I} \varphi\left(A_{i}\right)$.

Similarly, φ preserves existent meets, φ^{-1} preserves existent joins and meets.

References

[1] HUTTON B. Normality in fuzzy topological spaces [J]. J. Math. Anal. Appl., 1975, 50: 74-79.
[2] Xu Luoshan. On ultra-F-compactness, crispness and connectedness of LF-unit interval [J]. J. Yangzhou Teachers' College, 1992, 12(4): 10-17. (in Chinese)

