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Abstract It is proved in this paper that there is a bijection ϕ from J ∪ J ′ to δ ∪ δ′ which

satisfies: (1) ϕ|J : (J ,⊂) −→ (δ,≤) is a frame isomorphism; (2) ϕ|J ′ : (J ′,⊂) −→ (δ′,≤) is a

coframe isomorphism, where J is the ordinary topology on [0, 1], δ is the ordinary L-topology on

L-unit interval I(L), and L is a frame with an order-reversing involution. This result improves
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1. Introduction and preliminaries

In this paper, L is supposed to be a frame with the least element 0 and the greatest ele-

ment 1, and equipped with an order-reversing involution ′ satisfying a ∨ a′ = 1 for every a ∈ L.

Again let LX be the set of all mappings (called L-subsets) from a set X to L, R the real line,

I = [0, 1] the ordinary unit interval, J the ordinary topology on [0, 1], H(I) the set of all mono-

tonic decreasing mappings λ : R −→ L satisfying λ(t) = 1 for t ∈ (−∞, 0) and λ(t) = 0 for

t ∈ [1,+∞). For any two elements λ1 and λ2 in H(I), define λ1 ∼ λ2 ⇐⇒ λ1(t+) = λ2(t+) and

λ1(t−) = λ2(t−) (∀t ∈ R), where λ(t+) =
∨

s>t λ(s) and λ(t−) =
∧

s<t λ(s) (λ ∈ H(I), t ∈ R).

It can be verified that ∼ is an equivalence relationship on H(I). The equivalence class containing

element λ is written as [λ], and the ordinary L-topology δ on I(L) = H(I)/∼ is generated by

the subbase {Rt, Lt | t ∈ R}, where Rt([λ]) = λ(t+) and Lt([λ]) = (λ(t−))′ (∀[λ] ∈ I(L)). The

L-topological space (I(L), δ) is called L-unit interval which was first defined by B. Hutton[1].

Hutton also proved the following:

Theorem 1[1] If L is a completely distributive complete lattice with an order-reversing involu-

tion ′ satisfying a∨a′ = 1 (∀a ∈ L), then there exists a frame isomorphism (i.e. a bijection or one-

one correspondence which preserves both arbitrary joins and finite meets) ϕ : (J ,⊂) −→ (δ,≤).

In this paper we will generalize the above theorem.

2. Main results and their proofs
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For each W ∈ J , W is the union of a family {(ai, bi)}i<α of disjoint nonempty intervals

(called constitution intervals of W ), where α is a cardinal number not more than ℵ0 (the cardinal

number of the set of all natural numbers), ai ∈ {−∞} ∪ [0, 1), bi ∈ {+∞} ∪ (0, 1], and we make

the convention that (−∞, b) = (x, b) = [0, b) (x < 0), (a,+∞) = (a, y) = (a, 1] (y > 1). We use

the equality W =
⊔

i<α(ai, bi) to denote this fact, and define a mapping ϕ : J ∪J ′ −→ δ ∪ δ′ as

follows (where J ′ = {[0, 1]− V | V ∈ J }, and δ′ = {A′ | A ∈ δ}):

∀[λ] ∈ I(L), ϕ(W )([λ]) =

{

∨

i(λ(ai+) ∧ λ(bi−)′), if W =
⊔

i(ai, bi) ∈ J ,
∧

i(λ(ai+)′ ∨ λ(bi−)), if W = [0, 1] −
⊔

i(ai, bi) ∈ J ′,

that is,

∀[λ] ∈ I(L), ϕ(W ) =

{

∨

i(Rai
∧ Lbi

), if W =
⊔

i(ai, bi) ∈ J ,
∧

i(R
′
ai

∨ L′
bi

), if W = [0, 1]−
⊔

i(ai, bi) ∈ J ′.

This mapping has the following properties:

Theorem 2 (1) ϕ is a bijection which preserves the order-reversing involution.

(2) ϕ preserves the partial order.

(3) If A ⊂ J , then ϕ(
⋃

A) =
∨

A∈A ϕ(A).

(4) If A ⊂ J ′ then ϕ(
⋂

A) =
∧

A∈A ϕ(A).

(5) If A,B ∈ J ∪ J ′ and A ∩B ∈ J ∪ J ′, then ϕ(A ∩B) = ϕ(A) ∧ ϕ(B).

(6) If A,B ∈ J ∪ J ′ and A ∪B ∈ J ∪ J ′, then ϕ(A ∪B) = ϕ(A) ∨ ϕ(B).

Proof Step 1. ϕ preserves the order-reversing involution. For any W ∈ J ′ ∪ J , if W ∈ J ,

say W =
⊔

i(ai, bi), then ϕ(W ) =
∨

i(Rai
∧ Lbi

), and thus ϕ(W ′) = ϕ([0, 1] −
⊔

i(ai, bi)) =
∧

i(R
′
ai

∨ L′
bi

) = [
∨

i(Rai
∧ Lbi

)]′ = [ϕ(W )]′. Similarly, ϕ(W ′) = [ϕ(W )]′ if W ∈ J ′.

Step 2. For any A,B ∈ J , ϕ(A ∩ B) = ϕ(A) ∧ ϕ(B). Suppose A,B ∈ J , say A =
⊔

i(ai, bi)

and B =
⊔

j(cj , dj). Then

A ∩B = [
⊔

i

(ai, bi)] ∩ [
⊔

j

(cj , dj)] =
⋃

i,j

[(ai, bi) ∩ (cj , dj)].

By the join infinite distributive law, for every [λ] ∈ I(L), we have

[ϕ(A) ∧ ϕ(B)]([λ]) = ϕ(A)([λ]) ∧ ϕ(B)([λ])

= [
∨

i

(λ(ai+) ∧ λ(bi−)′)] ∧ [
∨

j

(λ(cj+) ∧ λ(dj−)′)]

=
∨

i,j

[λ(max{ai, cj}+) ∧ λ(min{bi, dj}−)′].

Notice that if (a, b) ∩ (c, d) = ∅, then min{b, d} ≤ max{a, c}, λ(min{b, d}−)′ ≤ λ(max{a, c}+)′,

λ(max{a, c}+) ∧ λ(min{b, d}−)′ = 0, and thus

[ϕ(A) ∧ ϕ(B)]([λ]) =
∨

i,j;(ai,bi)∩(cj,dj) 6=∅

(λ(max{ai, cj}+) ∧ λ(min{bi, dj}−)′) (∀[λ] ∈ I(L)).
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Furthermore, if (ai, bi) ∩ (cj , dj) 6= ∅, then (ai, bi) ∩ (cj , dj) = (max{ai, cj},min{bi, dj}), and

A ∩B =
⋃

i,j

[(ai, bi) ∩ (cj , dj)] =
⋃

i,j;(ai,bi)∩(cj ,dj) 6=∅

(max{ai, cj},min{bi, dj}).

As (max{ai1 , cj1},min{bi1 , dj1})∩(max{ai2 , cj2},min{bi2 , dj2}) ⊂ [(ai1 , bi1)∩(ai2 , bi2)]∩[(cj1 , dj1)∩

(cj2 , dj2)] = ∅ if (i1, j1) 6= (i2, j2), {(max{ai, cj},min(bi, dj) | (ai, bi)∩(cj , dj) 6= ∅} are the consti-

tution intervals of A∩B. Thus A∩B =
⊔

{(max{ai, cj},min{bi, dj}) | i, j, (ai, bi) ∩ (cj , dj) 6= ∅}.

By definition of ϕ we have

ϕ(A ∩B)([λ]) =
∨

i,j;(ai,bi)∩(cj ,dj) 6=∅

(λ(max{ai, cj}+) ∧ λ(min{bi, dj}−)′) (∀[λ] ∈ I(L)).

Therefore, ϕ(A) ∧ ϕ(B) = ϕ(A ∩B).

Step 3. (proof of (3)) As ϕ(
∨

A) = ϕ(∅) = 0I(L) =
∨

A∈∅ ϕ(A) for A = ∅, we only need to

show the case A 6= ∅.

First we consider the special case W = (a, b) and V = (c, d). By definition of ϕ, when

W ∩ V = ∅, ϕ(W ∪ V ) = ϕ(W ) ∨ϕ(V ), thus we only need to show the case a < c < b < d. Take

an e ∈ (c, b), then by the distributive law and the property of the order-reversing involution of

L, we have

[ϕ(W ) ∨ ϕ(V )]([λ]) = [ϕ(W )([λ])] ∨ [ϕ(V )([λ])] = [λ(a+) ∧ λ(b−)′] ∨ [λ(c+) ∧ λ(d−)′]

≥ [λ(a+) ∧ λ(e)′] ∨ [λ(e) ∧ (λ(d−))′]

= λ(a+) ∧ λ(d−)′ = ϕ((a, d))([λ]) = ϕ(W ∪ V )([λ]) (∀λ ∈ I(L)),

i.e., ϕ(W ∪ V ) ≤ ϕ(W ) ∨ ϕ(V ). By Step 3, for any A,B ∈ J with A ⊂ B, we have ϕ(A) ≤

ϕ(B). It follows that ϕ(W ) ≤ ϕ(W ∪ V ), ϕ(V ) ≤ ϕ(W ∪ V ), ϕ(W ) ∨ ϕ(V ) ≤ ϕ(W ∪ V ), and

ϕ(W ∪ V ) = ϕ(W ) ∨ ϕ(V ). This implies that ϕ(
⋃n

i=1(ai, bi)) =
∨n

i=1 ϕ((ai, bi)).

Now we consider the general case. Let A = {Ai}i∈I ⊂ J , Ai =
⋃

j∈Ji
(ai

j , b
i
j),

⋃

i∈I Ai =

A =
⊔

B, where B is a collection of disjoint nonempty open intervals. Take (a, b) ∈ B and

[c, d] ⊂ (a, b), then [c, d] ⊂
⋃

i,j(a
i
j , b

i
j). As [c, d] is compact, there exists a finite subcollection

{(a1, b1), (a2, b2), . . . , (an, bn)}(n ∈ N) of {(ai
j, b

i
j)}i,j such that [c, d] ⊂

⋃n

k=1(ak, bk). We have

ϕ((c, d)) ≤ ϕ(
n
⋃

k=1

(ak, bk)) =
n
∨

k=1

ϕ((ak, bk)) ≤
n
∨

k=1

ϕ(Aik
) ≤

∨

i∈I

ϕ(Ai).

By the join infinite distributive law, we have

lim
c→a+

ϕ((c, d))([λ]) =
∨

c,d

ϕ((c, d))([λ]) =
∨

c>a

(λ(c+) ∧ λ(d−)′)

= (
∨

c>a

λ(c+)) ∧ λ(d−)′ = λ(a+) ∧ λ(d−)′ = ϕ((a, d))([λ]).

Furthermore, let c −→ a+, and d −→ b−. Then we have

ϕ((c, d))([λ]) = λ(c+) ∧ λ(d−)′ −→ λ(a+) ∧ λ(b−)′ = ϕ((a, b))([λ])(∀[λ] ∈ I(L)).

This means that ϕ((a, b)) ≤
∨

i∈I ϕ(Ai). Therefore, ϕ(
⋃

Ai) = ϕ(
⊔

B) =
∨

(a,b)∈B ϕ((a, b)) ≤
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∨

i∈I ϕ(Ai). By Step 3, we have ϕ(A) ≥
∨

i∈I ϕ(Ai), hence ϕ(
⋃

i∈I Ai) =
∨

i∈I ϕ(Ai).

Step 4. (proof of (4)) Let A ⊂ J ′. By (1) and (3), ϕ(
⋂

A) = ϕ([0, 1] −
⋃

(a,b)∈∅(a, b)) =
∧

(a,b)∈∅(R
′
ai

∨ L′
bi

) = 1I(L) =
∧

A∈A ϕ(A) if A = ∅. If A 6= ∅, then ϕ(
⋂

A) = ϕ((
⋃

A∈AA
′)′) =

[
∨

A∈A(ϕ(A′))]′ =
∧

A∈A ϕ(A)′′ =
∧

A∈A ϕ(A).

Step 5. ϕ is a bijection. Firstly, for any W,V ∈ J with W − V 6= ∅, let x ∈ W − V and

[λ] = χ(−∞,x]. Then [λ] ∈ I(L) and ϕ(W )([λ]) = 1 6= 0 = ϕ(V )([λ]) by definition of ϕ. By

Step 1, ϕ is an injection. Secondly, as L is a frame with an order-reversing involution and

{(a, b) | a, b ∈ [0, 1]∪ {−∞,+∞}, a < b} is a base of J , {ϕ((a, b)) | a, b ∈ [0, 1]∪ {−∞,+∞} and

a < b} is a base of δ by Step 1 and Step 3, which means ϕ is a surjection.

Step 6. (proof of (2)) Suppose A,B ∈ J ∪ J ′ with A ⊂ B. We consider the following four

cases:

Case 1 A,B ∈ J . By Step 3, ϕ(A) ≤ ϕ(B).

Case 2 A,B ∈ J ′. By (1) and the result of Case 1, we have ϕ(B)′ ≤ ϕ(A)′, i.e., ϕ(A) ≤ ϕ(B).

Case 3 A ∈ J and B ∈ J ′. As ϕ is a bijection, both ϕ|J ′ and ϕ−1|J ′ are order-preserving,

and ϕ|J ′ is meet-preserves, we have ϕ(A−
0 ) = ϕ(

⋂

{B0 | B0 ∈ J ′, A0 ⊂ B0}) =
∧

{ϕ(B0) | B0 ∈

J ′, A0 ⊂ B0} =
∧

{D | D ∈ δ′, ϕ(A0) ≤ D} = ϕ(A0)
− for every A0 ∈ J ∪ J ′. Since B ∈ J ′,

A− ⊂ B, by the proof of Case 2, we have ϕ(A) ≤ ϕ(A)− = ϕ(A−) ≤ ϕ(B).

Case 4 A ∈ J ′ and B ∈ J . As A ⊂ B, we have A∩B′ = ∅, and thus ϕ(A∩B′) = ϕ(A)∧ϕ(B′) =

ϕ(A) ∧ ϕ(B)′ = 0X , i.e., ϕ(A)(x) ∧ ϕ(B)(x)′ = 0 (∀x ∈ I(L)). Since a ∨ a′ = 1 (∀a ∈ L),

ϕ(A)(x) = ϕ(A)(x) ∧ 1 = ϕ(A)(x) ∧ [ϕ(B)(x) ∨ ϕ(B)(x)′] = [ϕ(A)(x) ∧ ϕ(B)(x)] ∨ [ϕ(A)(x) ∧

ϕ(B)(x)′] = [ϕ(A)(x) ∧ϕ(B)(x)] ∨ 0 = ϕ(A)(x) ∧ϕ(B)(x), ϕ(A)(x) ≤ ϕ(B)(x) (∀x ∈ I(L)), i.e.,

ϕ(A) ≤ ϕ(B).

Step 7 (proof of (5))

Case 1 A,B ∈ J ∪ J ′, A ∩ B ∈ J . If A,B ∈ J ′, then ϕ(A ∩ B) = ϕ(A) ∧ ϕ(B) by (4). If

A,B ∈ J , then ϕ(A ∩ B) = ϕ(A) ∧ ϕ(B) by Step 2. If A ∈ J and B ∈ J ′, then (A ∩ B)o =

Ao ∩ Bo = A ∩ Bo = A ∩ B because A ∩ B ∈ J , and thus A ⊂ B′ ∪ Bo. Since B ∈ J ′,

B′, Bo ∈ J , by Step 4, ϕ(A) ≤ ϕ(B′ ∪ Bo) = ϕ(B′) ∨ ϕ(Bo). It follows that ϕ(A) ∧ ϕ(B) ≤

(ϕ(B′) ∨ ϕ(Bo)) ∧ ϕ(B) = (ϕ(B′) ∧ ϕ(B)) ∨ (ϕ(Bo) ∧ ϕ(B)) = (ϕ(B)′ ∧ ϕ(B)) ∨ (ϕ(Bo) ∧

ϕ(B)) = ϕ(Bo), and that ϕ(A) ∧ ϕ(B) ≤ ϕ(A) ∧ ϕ(Bo) = ϕ(A ∩ Bo) = ϕ(A ∩ B). By Step 2,

ϕ(A ∩ B) = ϕ(A ∩ Bo) ≤ ϕ(A) ∧ ϕ(Bo) ≤ ϕ(A) ∧ ϕ(B). Therefore, ϕ(A ∩ B) = ϕ(A) ∧ ϕ(B).

Similarly, ϕ(A ∩B) = ϕ(A) ∧ ϕ(B) if A ∈ J ′ and B ∈ J .

Case 2 A,B ∈ J ∪J ′, A∩B ∈ J ′. By Step 4, it suffices to show the case that A ∈ J , B ∈ J ′

and A∩B ∈ J ′. As ϕ preserves the partial order, ϕ(A∩B) ≤ ϕ(A)∧ϕ(B). Thus we only need to

show ϕ(A∩B) ≥ ϕ(A)∧ϕ(B). Firstly, since A ∈ J and A∩B ∈ J ′, we have ϕ(A∩B) ≥ ϕ((A∩
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B)o−) = ϕ((A ∩ Bo)−) = [ϕ(A ∩ Bo)]− = [ϕ(A) ∧ ϕ(Bo)]− =
∧

{C ∈ δ′ | ϕ(A) ∧ ϕ(Bo) ≤ C}.

Secondly, for every C ∈ δ satisfying ϕ(A) ∧ ϕ(Bo) ≤ C and every D ≤ ϕ(A) ∧ ϕ(B), we have

Do ≤ [ϕ(A) ∧ ϕ(B)]o = ϕ(A) ∧ ϕ(Bo), Do ≤ C, and D ≤ D− ≤ C since C is closed. Therefore,

ϕ(A)∧ϕ(B) ≤ C. Since C is arbitrary, ϕ(A)∧ϕ(B) ≤
∧

{C ∈ δ′ | ϕ(A)∧ϕ(Bo) ≤ C} = ϕ(A∩B).

Step 8 (proof of (6)) We only need to consider the following four cases:

Case 1 A, B ∈ J ′. By Step 2 and the fact that ϕ preserves the order-reversing involution, we

have ϕ(A ∪B) = ϕ(A) ∨ ϕ(B).

Case 2 A ∈ J , B ∈ J ′, and A∪B ∈ J ′. By Case 1 of Step 7 and the fact that ϕ preserves the

order-reversing involution, we have ϕ(A ∪B) = ϕ(A) ∨ ϕ(B).

Case 3 A, B ∈ J . Then ϕ(A ∪B) = ϕ(A) ∨ ϕ(B) by Step 3.

Case 4 A ∈ J , B ∈ J ′, and A ∪ B ∈ J . By Case 1 of Step 7 and the fact that ϕ preserves

the order-reversing involution, we have ϕ(A ∪ B) = ϕ(A) ∨ ϕ(B). This completes the proof of

Theorem 2. 2

Let A ∈ δ. As Ra([λ]) ∧ Lb([λ]) = 0 for all [λ] ∈ I(L) and all a, b ∈ [0, 1] with a ≥ b, we can

write A =
∨

{Ras
∧Lbs

| s ∈ SA}, where as < bs for all s ∈ SA. The set GA = {(as, bs) | s ∈ SA}

is called a collection of open intervals of A[2]. Hence, for every B ∈ δ′, B can be denoted by

B =
∨

{Rat
∧ Lbt

| t ∈ TB}′ =
∧

{R′
at

∨ L′
bt

| t ∈ TB}, where at < bt, at ≤ 1, bt ≥ 0. Define a

mapping ψ : δ ∪ δ′ → J ∪ J ′ as follows:

ψ(A) =

{

⋃

s∈SA
(as, bs), if A =

∨

{Ras
∧ Lbs

| s ∈ SA} ∈ δ,
⋂

t∈TA
[[0, 1]− (at, bt)] , if A =

∧

{R′
at

∨ L′
bt
| t ∈ TA} ∈ δ′.

Then we have the following

Proposition 1 ψ : δ ∪ δ′ → J ∪ J ′ is the inverse mapping of ϕ : J ∪ J ′ → δ ∪ δ′.

Proof Firstly, ψ◦ϕ(W ) = ψ(ϕ(W )) = ψ(
∨

i(Rai
∧Lbi

)) =
⋃

i(ai, bi) = W if W =
⊔

i(ai, bi) ∈ J ,

and ψ ◦ ϕ(W ) = ψ(ϕ(W )) = ψ(
∧

i(R
′
ai

∨ L′
bi

)) =
⋂

i[[0, 1] − (ai, bi)] = W if W = [0, 1] −
⊔

i(ai, bi) ∈ J ′. Secondly, ϕ ◦ ψ(A) = ϕ(ψ(A)) = ϕ(
⋃

s∈SA
(as, bs)) =

∨

s∈SA
(Ras

∧ Lbs
) = A if

A =
∨

{Ras
∧Lbs

| t ∈ SA} ∈ δ by Step 3 in the proof of Theorem 2, and ϕ ◦ψ(B) = ϕ(ψ(B)) =

ϕ(
⋂

t∈TB
([0, 1]− (at, bt))) = ϕ([0, 1]−

⋃

t∈TB
(at, bt)) = ϕ(

⋃

t∈TB
(at, bt))

′ = [
∨

t∈TB
(Rat

∧Lbt
)]′ =

B if B =
∧

{R′
at

∨ L′
bt

| t ∈ TB} ∈ δ′. Therefore, ϕ−1 = ψ.

The mapping ϕ−1 = ψ : δ ∪ δ′ → J ∪ J ′ has the following properties:

Theorem 3 (1) ϕ−1 preserves the order-reversing involution.

(2) Both ϕ−1|δ and ϕ−1|δ′ preserve the partial order.

(3) ϕ−1|δ preserves arbitrary joins, and ϕ−1|δ′ preserves arbitrary meets.

(4) ϕ−1|δ preserves finite meets, and ϕ−1|δ′ preserves finite joins.

Proof (1) Take an A ∈ δ ∪ δ′. If A =
∨

{Ras
∧ Lbs

| s ∈ SA} ∈ δ (where as < bs, as ≤ 1,
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and bs ≥ 0), then ϕ−1(A) =
⋃

s∈SA
(as, bs), and thus ϕ−1(A′) = ϕ−1([

∨

s∈SA
(Ras

∧ Lbs
)]′) =

ϕ−1(
∧

s∈SA
(R′

as
∨ L′

bs
)) = [0, 1] −

⊔

s∈SA
(as, bs) = [ϕ−1(A)]′. Similarly, ϕ−1(A′) = [ϕ−1(A)]′ if

A ∈ J ′.

(2) Firstly, for every A =
∨

i∈SA
(Rai

∧ Lbi
) ∈ δ and B =

∨

j∈SB
(Rcj

∧ Ldj
) ∈ δ with

A ≤ B, we have ϕ−1(B) = ϕ−1(A ∨ B) = ϕ−1([
∨

i∈SA
(Rai

∧ Lbi
)] ∨ [

∨

j∈SB
(Rcj

∧ Ldj
)]) =

[
⋃

i∈SA
(ai, bi)] ∪ [

⋃

j∈SB
(cj , dj)] = ϕ−1(A) ∨ ϕ−1(B). Thus ϕ−1(A) ≤ ϕ−1(B). Secondly, for

A, B ∈ δ′ with A ≤ B, since ϕ−1 preserves the order-reversing involution, we have A′, B′ ∈ δ

and B′ ≤ A′. Thus ϕ−1(B)′ = ϕ−1(B′) ≤ ϕ−1(A′) = ϕ−1(A)′, i.e., ϕ−1(A) ≤ ϕ−1(B).

(3) Suppose that A = {Ai | i ∈ I} = {
∨

j∈SAi
(R

a
(i)
j

∧ L
b
(i)
j

) | i ∈ I} ⊂ δ, where 0 ≤ a
(i)
j <

b
(i)
j ≤ 1 (∀i ∈ I, ∀j ∈ SAi

). By definition of ϕ−1, ϕ−1(
∨

A) = ϕ−1(
∨

i∈I

∨

j∈SAi
(R

a
(i)
j

∧L
b
(i)
j

)) =
⋃

i∈I

⋃

j∈SAi
(a

(i)
j , b

(i)
j ) =

⋃

i ϕ
−1(Ai). Since ϕ−1 preserves the order-reversing involution, ϕ−1|δ′

preserves arbitrary meets.

(4) Suppose that A =
∨

i∈SA
(Rai

∧ Lbi
) ∈ δ and B =

∨

j∈SB
(Rcj

∧ Ldj
) ∈ δ. By the join

infinite distributive law,

ϕ−1(A ∧B) = ϕ−1([
∨

i∈SA

(Rai
∧ Lbi

)] ∧ [
∨

j∈SB

(Rcj
∧ Ldj

)])

= ϕ−1(
∨

i∈SA,j

(Rai
∧ Lbi

∧Rcj
∧ Ldj

))

= ϕ−1(
∨

i∈SA,j∈SB

(Rmax{ai,cj} ∧ Lmin{bi,dj})

= ϕ−1(
∨

{Rmax{ai,cj} ∧ Lmin{bi,dj
} | max{ai, cj} < min{bi, dj}, i ∈ SA, j ∈ SB})

=
⋃

{(max{ai, cj},min{bi, dj}) | max{ai, cj} < min{bi, dj}, i ∈ SA, j ∈ SB}

=
⋃

{(ai, bi) ∩ (cj , dj) | (ai, bi) ∩ (cj , dj) 6= ∅, i ∈ SA, j ∈ SB}

= [
⋃

i∈SA

(ai, bi)] ∩ [
⋃

j∈SB

(cj , dj)] = ϕ−1(A) ∩ ϕ−1(B).

Since ϕ−1 preserves the order-reversing involution, ϕ−1|δ′ preserves finite joins.

Proposition 2 Mappings ϕ and ϕ−1 preserve existent joins and meets.

Proof Suppose that {Ai}i∈I ⊂ J ∪J ′, and
⋃

i∈I Ai ∈ J ∪J ′. Since ϕ preserves the partial order,

ϕ(
⋃

i∈I Ai) ≥
∨

i∈I ϕ(Ai). Next we prove ϕ(
⋃

i∈I Ai) ≤
∨

i∈I ϕ(Ai). For every A ≥
∨

i∈I ϕ(Ai),

we have A ≥ ϕ(Ai) (∀i ∈ I), since ϕ−1 preserves the partial order, then for every i ∈ I,

ϕ−1(A) ≥ ϕ−1 ◦ ϕ(Ai) = Ai. So ϕ−1(A) ≥
⋃

i∈I Ai. Since ϕ preserves the partial order, A =

ϕ ◦ ϕ−1(A) ≥ ϕ(
⋃

i∈I Ai). Therefore, ϕ(
⋃

i∈I Ai) ≤
∨

i∈I ϕ(Ai). So, ϕ(
⋃

i∈I Ai) =
∨

i∈I ϕ(Ai).

Similarly, ϕ preserves existent meets, ϕ−1 preserves existent joins and meets.
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