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Abstract By connecting the 5 vertices of K5 to other n vertices, we obtain a special family of

graph denoted by Hn. This paper proves that the crossing number of Hn is Z(5, n)+2n+⌊n

2
⌋+1,

and the crossing number of Cartesian products of K5 with star Sn is Z(5, n) + 5n + ⌊n

2
⌋ + 1.

Keywords graph; drawing; crossing number; star; Cartesian products.

Document code A

MR(2000) Subject Classification 05C10

Chinese Library Classification O157.5

1. Introduction

For graph theory terminology not defined here we direct the reader to [1] and all the graphs

are connected simple graphs. Let G be a graph with vertex set VG and edge set EG. For

convenience, let Ev be the set of all the edges incident to v (v ∈ V ) and for any edge set E′ ⊆ E,

let 〈E′〉 denote the edge-induced subgraph of G, and G\{E′} the subgraph of G obtained by

deleting the edges of edge set E′. Specially, G\{e} denotes the subgraph of G obtained by

deleting the edge e. If a vertex of graph G has degree k, then we call it a k − vertex. Formally,

the Cartesian product G×H of two graphs G and H has vertex set V (G×H) = V (G)× V (H)

and edge set

E(G×H) = {(ui, vj)(uh, vk) : ui = uh and vjvk ∈ E(H)

or vj = vk and uiuh ∈ E(G);ui, uh ∈ V (G), vj , vk ∈ V (H)}.

If one of the graphs is Sn, the star K1,n, a less formal description is helpful: G× Sn is obtained

by n+ 1 copies G0, G1, . . . , Gn of G and by joining the vertices of the copies Gi, i = 1, 2, . . . , n,

to G0 correspondingly.

A drawing is called good, if for all arcs in A, no two with a common endpoint meet, no two

meet in more than one point, and no three have a common point. A crossing in a good drawing

is a point of intersection of two arcs in A. A good drawing is said to be optimal if it minimizes

the number of crossings. The crossing number cr(G) of a graph G is the number of crossings in
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any optimal drawing of G in the plane. Let φ be a good drawing of graph G. We denote by

crφ(G) the number of crossings in φ.

Gray and Johnson have proved that in general the problem to determine the crossing numbers

of graphs is NP-complete[2]. At present only a few families of graphs with arbitrarily large

crossing numbers for the plane are known. Guy and Zarankiewicz presented two important

conjectures on the determination of the crossing numbers of graphs.

On the crossing numbers of complete graphs Kn, Guy conjectured:

cr(Kn) =
1

4
⌊
n

2
⌋⌊
n− 1

2
⌋⌊
n− 2

2
⌋⌊
n− 3

2
⌋,

where ⌊x⌋ denotes the maximum integer not greater than x. In 1993, Woodall proved that Guy’s

conjecture is correct when n ≤ 10 in [3], but when n ≥ 11, Guy’s conjecture is undetermined.

On the crossing numbers of complete bipartite graphs Km,n, Zarankiewicz conjectured:

cr(Km,n) = Z(m,n) = ⌊
m

2
⌋⌊
m− 1

2
⌋⌊
n

2
⌋⌊
n− 1

2
⌋.

In 1970, Kleitman proved that when min (m,n) ≤ 6, Zarankiewicz’s conjecture is true[4]; In [4],

Kleitman proved that Zarankiewicz’s conjecture is also true for K7,7 and K7,9. But for other

m,n, Zarankiewicz’s conjecture is only an upper bound.

On the crossing numbers of complete tripartite graphs, Kouhei Asano determined the crossing

numbers of K1,3,n and K2,3,n
[5].

On the crossing numbers of Cartesian product graphs, most are the Cartesian product of

low order graphs with paths, cycles and stars[6−13]. Among them, Klešč determined the crossing

numbers of K4 × pn, K4 × Sn
[8] and K5 × pn

[9]; Beineke and Ringeisen determined the crossing

numbers of K4 × Cn
[10]. But the crossing numbers of K5 × Cn and K5 × Sn are undetermined.

In this paper, for the convenience of determining the crossing numbers of K5 × Sn, we first

construct the following graph Hn:

Hn

Ti

t3 t4 ti

Figure 1 A good drawing of Hn Figure 2 Ti

t1 t2

In the bipartite graph K5,n with bipartition {t1, t2, . . . , tn} and {v1, v2, v3, v4, v5}, connecting

the edges incident with any two vertices of set {v1, v2, v3, v4, v5} yields a new graph, denoted by

Hn. Furthermore, Hn can also be obtained by joining all the 5 vertices {v1, v2, v3, v4, v5} of K5

to n vertices ti (i = 1, 2, . . . , n) (Figure 1). Let Ti (i = 1, 2, . . . , n) be the set of edges incident

with vertex ti (i = 1, 2, . . . , n) (Figure 2) and let E0 be the set of edges of K5. It is easy to
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obtain

E(Hn) = E0 ∪ (

n⋃

i=1

Ti).

The following theorems are our two main results:

Theorem 1 cr(Hn) = Z(5, n) + 2n+ ⌊n2 ⌋ + 1, n ≥ 1.

Theorem 2 cr(K5 × Sn) = Z(5, n) + 5n+ ⌊n2 ⌋ + 1, n ≥ 1.

2. The proofs of Theorems

In order to prove the Theorems, first we introduce some lemmas.

Lemma 1 If φ is a good drawing of a graph G, and E1, E2 and E3 are three mutually disjoint

edge subsets of G, then we have

1) crφ(E1 ∪ E2) = crφ(E1) + crφ(E1, E2) + crφ(E2);

2) crφ(E1 ∪ E2, E3) = crφ(E1, E3) + crφ(E2, E3).

Proof It is direct from the definitions. 2

Lemma 2 If φ is a good drawing of H2 such that crφ(T1, T2) = 0, then crφ(E0, T1 ∪ T2) ≥ 5.

v2

v1

v3

v5

t1 v4

Figure 3 A good drawing φ
′

of Hwhen crφ(T1, T2) = 0

t2

Proof Let H = 〈{T 1 ∪ T 2}〉 be the edge induced subgraph of H2. Clearly, H is isomorphic to

the complete bipartite graph K2,5 with vertex partition {t1, t2} and V (K5) := {v1, v2, v3, v4, v5}.

Since crφ(T
1, T 2) = 0, the subdrawing φ

′

of H induced by φ must be isomorphic to Figure 3.

From Figure 3, each edge of E′

0 := {v1v3, v1v4, v2v4, v2v5, v3v5} has at least one crossing with the

edge set T1 ∪ T2, then crφ(E0, T1 ∪ T2) ≥ 5. 2

Lemma 3 cr(K7\{e}) = 6, e ∈ E(K7).

Proof See the [9]. 2

Lemma 4 cr(H1) = 3, cr(H2) = 6.

Proof Since H1 is isomorphic to K6 and H2 isomorphic to K7\{e}, e ∈ E(K7), we have
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cr(H1) = cr(K6) = 3; cr(H2) = cr(K7\{e}) = 6. 2

Theorem 1 cr(Hn) = Z(5, n) + 2n+ ⌊n2 ⌋ + 1, n ≥ 1.

Proof First construct a good drawing θ of Hn as Figure 1. Clearly, in Figure 1, Hn\E0

is isomorphic to K5,n and the induced subdrawing by θ is an optimal drawing of K5,n, so

crθ(Hn\E0) = cr(K5,n) = Z(5, n); crθ(E0, Ti) = 2 (when i is odd), crθ(E0, Ti) = 3 (when i

is even); crθ(E0) = 1. Combining (1) and Lemma 1, we have

crθ(Hn) = crθ(Hn\E0) + crθ(E0,

n⋃

i=1

Ti) + crθ(E0)

= Z(5, n) +

n∑

i=1

crθ(E0, T
i) + crθ(E0)

= Z(5, n) + 2n+ ⌊
n

2
⌋ + 1.

By the definition of crossing numbers, it is easy to know that cr(Hn) ≤ crθ(Hn) = Z(5, n)+2n+

⌊n2 ⌋ + 1, n ≥ 1. In the following, we will prove that the theorem holds true by induction on n.

By Lemma 4, cr(H1) = Z(5, 1)+2×1+⌊ 1
2⌋+1 = 3 and cr(H2) = Z(5, 2)+2×2+⌊ 2

2⌋+1 = 6.

So the Theorem holds when n = 1, 2. Now assume that n ≥ 3 and when ℓ < n, cr(Hℓ) =

Z(5, ℓ) + 2ℓ + ⌊ ℓ2⌋ + 1. Let φ be a good drawing of Hn. Then we only need to prove that

crφ(Hn) ≥ Z(5, n) + 2n+ ⌊n2 ⌋ + 1. We divide the problem into the following different cases:

Case 1 There exist two vertices ti and tj (1 ≤ i, j ≤ n; i 6= j) such that crφ(Ti, Tj) = 0.

Without loss of generality, assume that crφ(Tn, Tn−1) = 0. When 1 ≤ i ≤ n − 2, as 〈Tn ∪

Tn−1 ∪ Ti〉 is isomorphic to complete bipartite graph K3,5 with crφ(Tn, Tn−1) = 0, we have

crφ(Tn ∪ Tn−1, Ti) = crφ(K3,5) − crφ(Tn ∪ Tn−1) − crφ(Ti) ≥ 4 − 0 − 0 = 4. (2)

Furthermore, as 〈E0 ∪ (
⋃n−2
i=1 Ti)〉 is isomorphic to Hn−2, combining Lemmas 1, 2 and Equations

(1), (2), we have

crφ(Hn) = crφ(E0 ∪ Tn ∪ Tn−1 ∪

n−2⋃

i=1

Ti)

= crφ(Tn ∪ Tn−1,

n−2⋃

i=1

Ti) + crφ(Tn ∪ Tn−1, E0) + crφ(E0 ∪

n−2⋃

i=1

Ti)

=

n−2∑

i=1

crφ(Tn ∪ Tn−1, Ti) + crφ(Tn ∪ Tn−1, E0) + crφ(E0 ∪

n−2⋃

i=1

Ti)

≥ 4(n− 2) + 5 + Z(5, n− 2) + 2(n− 2) + ⌊
n− 2

2
⌋ + 1

= Z(5, n) + 2n+ ⌊
n

2
⌋ + 1.

Case 2 For every 1 ≤ i < j ≤ n, there holds crφ(Ti, Tj) ≥ 1.

Subcase 2.1 There exists a vertex ti (1 ≤ i ≤ n) such that crφ(Ti, E0) = 0.
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1

1

1

1

tn

1

22 3

2

2 3
3

3
4 3

Figure 4 A good drawing of 〈Tn ∪ E0〉 when crφ(Tn, E0) = 0

Suppose crφ(Hn) < Z(5, n) + 2n+ ⌊n2 ⌋ + 1. Without loss of generality, let crφ(Tn, E0) = 0.

Then consider the subdrawing φ1 of 〈Tn ∪ E0〉 induced by φ: as crφ(Tn, E0) = 0, there is a disk

C such that the vertices of K5 are all located on the boundary of C, and the edges of K5 are

all located in the inner of C. Furthermore, as φ is a good drawing and the edges of K5 can be

presented by straight lines, vertex t1 and the edges incident with t1 are all located on the outside

of C, see Figure 4. In Figure 4, we divide the regions of φ1 into 2 classes:

1) On φ, when vertices ti (1 ≤ i ≤ n − 1) are located in the region marked with 1, then

crφ(Ti, E0 ∪ Tn) ≥ 4, and we can find that only if crφ(Ti, E0) = 0, there is crφ(Ti, E0 ∪ Tn) = 4;

if crφ(Ti, E0) > 0, then crφ(Ti, E0 ∪ Tn) ≥ 5.

2) On φ, when vertices ti (1 ≤ i ≤ n− 1) are located in the region marked with 2, 3, 4, then

crφ(Ti, E0 ∪ Tn) ≥ 5.

Let A1 := {ti|crφ(Ti, E0) = 0, 1 ≤ i ≤ n− 1};

Let A2 := {ti|crφ(Ti, E0) > 0, 1 ≤ i ≤ n− 1}.

So A1 presents set of some of the vertices located in region 1, and for any ti ∈ A1, crφ(Ti, Tn) ≥ 4;

also, A1 ∪ A2 = {ti, 1 ≤ i ≤ n − 1}. As 〈E0 ∪ (
⋃n−1
i=1 Ti)〉 is isomorphic to Hn−1, by Lemma 1,

we get

crφ(Hn) = crφ(E0 ∪ Tn ∪

n−1⋃

i=1

Ti)

= crφ(Tn,

n−1⋃

i=1

Ti) + crφ(Tn, E0) + crφ(E0 ∪

n−1⋃

i=1

Ti)

= crφ(Tn,
⋃

ti∈A1

Ti) + crφ(Tn,
⋃

ti∈A2

Ti) + crφ(Tn, E0) + crφ(E0 ∪

n−1⋃

i=1

Ti)

=
∑

ti∈A1

crφ(Tn, Ti) +
∑

ti∈A2

crφ(Tn, Ti) + crφ(Tn, E0) + crφ(E0 ∪
n−1⋃

i=1

Ti)

≥ 4|A1| + |A2| + 0 + Z(5, n− 1) + 2(n− 1) + ⌊
n− 1

2
⌋ + 1
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= Z(5, n− 1) + 2(n− 1) + ⌊
n− 1

2
⌋ + 1 + (n− 1) + 3|A1|

= Z(5, n− 1) + 3(n− 1) + ⌊
n− 1

2
⌋ + 1 + 3|A1|.

But at the beginning, we assume that crφ(Hn) < Z(5, n)+2n+⌊n2 ⌋+1. By a simple calculation,

we have

|A1| <
1

3
{Z(5, n) + 2n+ ⌊

n

2
⌋ + 1 − (Z(5, n− 1) + 3(n− 1) + ⌊

n− 1

2
⌋ + 1)} ≤

n+ 1

3
. (3)

Also 〈
⋃n−1
i=1 Ti〉 is isomorphic to K5,n−1. By Lemma 1 and Equations (1) and (3), we get

crφ(Hn) =crφ(E0 ∪ Tn ∪

n−1⋃

i=1

Ti)

=crφ(Tn ∪E0,

n−1⋃

i=1

Ti) + crφ(E0 ∪ Tn) + crφ(

n−1⋃

i=1

Ti)

=crφ(Tn ∪E0,
⋃

ti∈A1

Ti) + crφ(Tn ∪ E0,
⋃

ti∈A2

Ti)+

crφ(E0 ∪ Tn) + crφ(

n−1⋃

i=1

Ti)

=
∑

ti∈A1

crφ(Tn ∪ E0, Ti) +
∑

ti∈A2

crφ(Tn ∪ E0, Ti)+

crφ(E0 ∪ Tn) + crφ(

n−1⋃

i=1

Ti)

≥4|A1| + 5|A2| + 5 + Z(5, n− 1)

=Z(5, n− 1) + 4|A1| + 5(n− 1 − |A1|) + 5

=Z(5, n− 1) + 5(n− 1) − |A1| + 5

>Z(5, n− 1) + 5n−
n+ 1

3

≥Z(5, n) + 2n+ ⌊
n

2
⌋ + 1.

Subcase 2.2 For any ti (1 ≤ i ≤ n), crφ(Ti, E0) ≥ 1, and there exists a vertex ti (1 ≤ i ≤ n)

such that crφ(Ti, E0) = 1.

Without loss of generality, suppose crφ(Tn, E0) = 1. Let φ2 be the subdrawing of 〈Tn ∪ E0〉

induced by φ. Now we will explain there is only one good drawing φ2 of 〈Tn ∪ E0〉: First, sup-

pose the edge tnv1 of Tn and the edge v3v4 of K5 cross each other. We can suppose the vertices

tn, v1, v3, v4 are located on the plane R2 as in Figure 5(a), and the other three vertices of K5 can

be located arbitrarily around the vertices tn, v1, v3, v4. But as there is no crossing on the other

4 edges which are incident with vertex tn, and the edges incident with v1 of K5 cannot cross

the edges of T n, these edges can be drawn as shown in Figure 5(a) and the edge v2v3 cannot be

drawn as the dotted line as shown in the Figure 5(a) or crφ(Tn, E0) ≥ 2 does not hold. As for

the other edges we can draw them analogously, and the only difference is that they are connected

by straight lines or by arcs, but they are isomorphic to each other. So the subdrawing φ2 of
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〈Tn ∪ E0〉 must be isomorphic to Figure 5(b).

tn

v2

v1

v5

(a) (b)

........................................

1

Figure 5 A good drawing φ2 of 〈Tn ∪ E0〉 when crφ(Tn, E0) = 1

.. -

tn

v3
v3v4

v2 v5

v4

v1

In Figure 5(b), if ti (1 ≤ i ≤ n−1) is located in the region marked with 1, then crφ(Ti, E0) ≥ 4,

and with hypothesis crφ(Ti, Tj) ≥ 1 (1 ≤ i < j ≤ n), crφ(Ti, E0 ∪ Tn) ≥ 5; if ti (1 ≤ i ≤ n− 1)

is located in the other region, then crφ(Ti, E0 ∪ Tn) ≥ 5. So no matter which region the vertex

ti (1 ≤ i ≤ n− 1) is located in, we always have crφ(Ti, E0 ∪ Tn) ≥ 5. Also, crφ(E0 ∪ Tn) = 4 and
⋃n−1
i=1 Ti is isomorphic to K5,n−1. By Lemma 1, we get

crφ(Hn) = crφ(E0 ∪ Tn ∪

n−1⋃

i=1

Ti)

= crφ(E0 ∪ Tn,

n−1⋃

i=1

Ti) + crφ(E0 ∪ Tn) + crφ(

n−1⋃

i=1

Ti)

=

n−1∑

i=1

crφ(E0 ∪ Tn, Ti) + crφ(E0 ∪ Tn) + crφ(

n−1⋃

i=1

Ti)

≥ 5(n− 1) + 4 + Z(5, n− 1)

≥ Z(5, n) + 2n+ ⌊
n

2
⌋ + 1.

Subcase 2.3 For any ti (1 ≤ i ≤ n), crφ(Ti, E0) ≥ 2, and there exists a vertex ti (1 ≤ i ≤ n)

such that crφ(Ti, E0) = 2.

Without loss of generality, suppose crφ(Tn, E0) = 2. Let φ3 of 〈Tn ∪ E0〉 be induced by φ.

By using the same method as in Subcase 2.2, we divide the subdrawing φ3 of 〈Tn ∪ E0〉 into 3

different cases:

1) Two edges of Tn cross with one edge of E0. In this case, there is only one drawing of φ3,

see Figure 6;

2) One edge of Tn crosses with two edges of E0. In this case, there are three different

drawings of φ3, see Figure 7, Figure 8 and Figure 9; Figure 7 presents the case that one edge of

Tn crosses with two adjacent edges of E0; Figure 8 presents the case that one edge of Tn crosses

with two unadjacent edges e1 and e2 of E0, where e1 and e2 do not cross each other; Figure 9
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presents the case that one edge of Tn crosses with two unadjacent edges e1 and e2 of E0, where

e1 and e2 cross each other.

1

tn

Figure 7

tn

3

............

....
....

.................

.................................

...................................
1

t1

Figure 8

........

................

.......................

..
..
..
..
...
..
..
..
....
....

....
....

..
..
..
..
..
...
..
...

..
....

......
........

1

t1

tn

Figure 9

tn

Figure 10

tn

2

3

41

4

5

4

4

4

5

3

3

...
...

..

......
......

......
.....

................................................... ..
..
..
..
..
..
..
..
..
....

...
...

...
..

Figure 6

2

1

5

Five cases of good drawing φ3 of 〈Tn ∪ E0〉 when crφ(Tn, E0) = 2

3) Two edges of Tn cross with two edges of E0. In this case, there is only one drawing of φ3,

see Figure 10.

In the following we will discuss the different drawings of φ3.

1) The subdrawing φ3 of 〈Tn ∪ E0〉 is isomorphic to Figure 6. By Figure 6, we know, if

ti (1 ≤ i ≤ n−1) is located in the region marked with 1, then crφ(Ti, E0) ≥ 4, and by hypothesis

that crφ(Ti, Tj) ≥ 1 (1 ≤ i < j ≤ n), crφ(Ti, E0 ∪ Tn) ≥ 5; Also if ti (1 ≤ i ≤ n − 1) is located

in the other regions, it is easy to obtain that crφ(Ti, E0 ∪ Tn) ≥ 5. So no matter which region

of Figure 6 the vertex ti (1 ≤ i ≤ n − 1) is located in, there always holds crφ(Ti, E0 ∪ Tn) ≥ 5.

As crφ(E0 ∪ Tn) = 5 and
⋃n−1
i=1 Ti is isomorphic to complete bipartite graph K5,n−1, we have by

Lemma 1

crφ(Hn) = crφ(E0 ∪ Tn ∪

n−1⋃

i=1

Ti)
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= crφ(E0 ∪ Tn,

n−1⋃

i=1

Ti) + crφ(E0 ∪ Tn) + crφ(

n−1⋃

i=1

Ti)

=

n−1∑

i=1

crφ(E0 ∪ Tn, Ti) + crφ(E0 ∪ Tn) + crφ(

n−1⋃

i=1

Ti)

≥ 5(n− 1) + 5 + Z(5, n− 1)

≥ Z(5, n) + 2n+ ⌊
n

2
⌋ + 1.

2) The subdrawing φ3 of 〈Tn ∪E0〉 is isomorphic to Figure 7. First assume that crφ(Hn) <

Z(5, n) + 2n + ⌊n2 ⌋ + 1. By Figure 7, if ti (1 ≤ i ≤ n − 1) is located in the region marked

with 1, then we can also prove crφ(Ti, E0 ∪ Tn) ≥ 5 with the hypothesis that crφ(Ti, E0) ≥ 2; if

ti (1 ≤ i ≤ n − 1) is located in the region marked with 2, then crφ(Ti, E0 ∪ Tn) ≥ 4, and only

if crφ(Ti, E0) = 2 and crφ(Ti, Tn) = 2, there holds crφ(Ti, E0 ∪ Tn) = 4, see t1 in Figure 7; if

ti (1 ≤ i ≤ n−1) is located in the region marked with 3, then crφ(Ti, E0) ≥ 4. By the hypothesis

that crφ(Ti, Tj) ≥ 1 (1 ≤ i, j ≤ n; i 6= j), we have crφ(Ti, E0 ∪ Tn) ≥ 5; if ti (1 ≤ i ≤ n − 1) is

located in the other regions, it is easy to know that crφ(Ti, E0 ∪ Tn) ≥ 5.

Let B1 := {ti|crφ(Ti, E0 ∪Tn) = 4, 1 ≤ i ≤ n− 1} and B2 := {ti|crφ(Ti, E0 ∪Tn) ≥ 5, 1 ≤ i ≤

n− 1}. From the definition above, we know that if ti ∈ B1, then crφ(Ti, E0) = 2, crφ(Ti, Tn) = 2

and B1 ∪ B2 = {ti, 1 ≤ i ≤ n − 1}. Also crφ(E0 ∪ Tn) = 5, and (
⋃n−1
i=1 Ti) is isomorphic to

complete bipartite graph K5,n−1. So by Lemma 1, we have

crφ(Hn) =crφ(E0 ∪ Tn ∪

n−1⋃

i=1

Ti)

=crφ(E0 ∪ Tn,
⋃

ti∈B1

Ti) + crφ(E0 ∪ Tn,
⋃

ti∈B2

Ti)+

crφ(E0 ∪ Tn) + crφ(

n−1⋃

i=1

Ti)

≥4|B1| + 5|B2| + 5 + Z(5, n− 1)

=5(n− 1) − |B1| + 5 + Z(5, n− 1).

By the assumption at the beginning crφ(Hn) < Z(5, n)+2n+⌊n2 ⌋+1 and by a simple calculation,

we have

|B1| > Z(5, n− 1) + 5(n− 1) + 5 − (Z(5, n) + 2n+ ⌊
n

2
⌋ + 1) ≥ ⌊

n

2
⌋ + 2. (4)

So |B1| 6= Ø. Let t1 ∈ B1. By the analogous discussion, for any ti (2 ≤ i ≤ n), crφ(Ti, E0∪T1) ≥

4. If ti ∈ B1 (2 ≤ i ≤ n− 1), then we have by observation, crφ(Ti, E0 ∪ T1) ≥ 6.

Let B3 := {ti|crφ(Ti, E0 ∪ T1) = 4, 2 ≤ i ≤ n}.

Let B4 := {ti|crφ(Ti, E0 ∪ T1) ≥ 5, 2 ≤ i ≤ n, }.

Obviously, B1 ∩B3 = Ø, B3 ∪B4 = {ti, 2 ≤ i ≤ n} and (B1 ∪B3) ⊆ {ti, 1 ≤ i ≤ n}, so

|B1 ∪B3| ≤ n. (5)
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By discussing analogously to Equation (4), we also have

|B3| ≥ ⌊
n

2
⌋ + 2. (6)

Combining (4) and (6), we get

|B1 ∪B3| = |B1| + |B3| ≥ n+ 3. (7)

This contradicts with Equation (5). So crφ(Hn) ≥ Z(5, n) + 2n+ ⌊n2 ⌋ + 1.

3) The subdrawing φ3 of 〈Tn∪E0〉 is isomorphic to Figure 8. By Figure 8, if ti (1 ≤ i ≤ n−1)

is located in the region marked with 1, then crφ(Ti, E0 ∪ Tn) ≥ 4, and only if crφ(Ti, E0) = 2

and crφ(Ti, Tn) = 2, the equation crφ(Ti, E0 ∪ Tn) = 4 holds, just like the t1 in Figure 8; if

ti (1 ≤ i ≤ n − 1) is located in the other regions, then crφ(Ti, E0 ∪ Tn) ≥ 5. So by using an

analogous method as in Figure 7, one can also obtain that crφ(Hn) ≥ Z(5, n)+2n+ ⌊n2 ⌋+1. As

for Figure 9, the discussion is the same as Figure 8.

4) The subdrawing φ3 of 〈Tn ∪ E0〉 is isomorphic to Figure 10. First assume that

crφ(Hn) < Z(5, n) + 2n+ ⌊
n

2
⌋ + 1. (8)

In Figure 10, if ti (1 ≤ i ≤ n−1) is located in the region marked with 5, then crφ(Ti, E0∪Tn) ≥ 5;

if ti (1 ≤ i ≤ n − 1) is located in the region marked with 4, then crφ(Ti, E0 ∪ Tn) ≥ 6; if

ti (1 ≤ i ≤ n − 1) is located in the region marked with 3, then crφ(Ti, E0 ∪ Tn) ≥ 4 and

crφ(Ti, E0) ≥ 3; if ti (1 ≤ i ≤ n−1) is located in the region marked with 2, then crφ(Ti, E0) ≥ 3,

and with the hypothesis crφ(Ti, Tn) ≥ 1, then crφ(Ti, E0∪Tn) ≥ 4; if ti (1 ≤ i ≤ n−1) is located

in the region marked with 1, then crφ(Ti, E0 ∪ Tn) ≥ 4, and if crφ(Ti, E0) = 2, we must have

crφ(Ti, Tn) = 2 and crφ(Ti, E0 ∪ Tn) = 4.

Let Ω := {ti, 1 ≤ i ≤ n− 1}.

Let C1 and C2 denote the sets of the vertices ti, 1 ≤ i ≤ n − 1, located in region 4 and in

region 5, respectively.

Let D = Ω\(C1 ∪ C2).

Let C3 := {ti|crφ(Ti, E0∪Tn) = 4, crφ(Ti, Tn) = 2, crφ(Ti, E0) = 2, 1 ≤ i ≤ n−1}. Obviously,

C3 denotes the set of the vertices located in region 1 and has exact two crossings with edge set

E0 and Tn respectively, and the lines connecting the vertices of C3 and the 5 vertices of K5 are

all like the dotted line as shown in Figure 10. But the vertex which is located in region 1 and

does not belong to C3 has at least 3 crossings with the edges set E0.

By the observation, if ti ∈ C1, tj ∈ C2, tk, tl ∈ C3, then

crφ(Ti, E0 ∪ Tk) ≥ 4, (9)

crφ(Tj , E0 ∪ Tk) ≥ 5, (10)

crφ(Tl, E0 ∪ Tk) ≥ 6. (11)

First we assume that C3 = Ø. As C1 ∩ C2 = Ø, (
⋃n−1
i=1 Ti) is isomorphic to complete bipartite
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graph K5,n−1 and crφ(E0 ∪ Tn) = 3. So by Equation (1) and Lemma 1, we obtain

crφ(Hn) =crφ(E0 ∪ Tn ∪

n−1⋃

i=1

Ti)

=crφ(E0 ∪ Tn,
⋃

ti∈(C1∪C2)

Ti) + crφ(E0 ∪ Tn,
⋃

ti∈D

Ti)+

crφ(E0 ∪ Tn) + crφ(
n−1⋃

i=1

Ti)

=
∑

ti∈(C1∪C2)

crφ(E0 ∪ Tn, Ti) +
∑

ti∈D

crφ(E0 ∪ Tn, Ti)+

crφ(E0 ∪ Tn) + crφ(

n−1⋃

i=1

Ti)

≥5|C1 ∪ C2| + 4|D| + 3 + Z(5, n− 1)

=5(|C1| + |C2|) + 4(n− 1 − |C1| − |C2) + 3 + Z(5, n− 1)

=4(n− 1) + (|C1| + |C2|) + 3 + Z(5, n− 1).

Also with the hypothesis that crφ(Hn) < Z(5, n) + 2n+ ⌊n2 ⌋ + 1, we have

|C1| + |C2| ≤ Z(5, n) + 2n+ ⌊
n

2
⌋ + 1 − (Z(5, n− 1) + 4(n− 1) + 3) − 1 ≤ ⌊

n

2
⌋ − 1. (12)

Under the assumption C3 = Ø, if ti ∈ D, then crφ(Ti, E0) ≥ 3. Combining (1), (12) and Lemma

1, we get

crφ(Hn) =crφ(E0 ∪
n⋃

i=1

Ti)

=crφ(E0,
⋃

ti∈(C1∪C2)

Ti) + crφ(E0,
⋃

ti∈D

Ti)+

crφ(E0, Tn) + crφ(E0) + crφ(

n⋃

i=1

Ti)

≥2(|C1| + |C2|) + 3(n− 1 − |C1| − |C2|) + 2 + 1 + Z(5, n)

=3(n− 1) − (|C1| + |C2|) + 3 + Z(5, n)

≥3(n− 1) − (⌊
n

2
⌋ − 1) + 3 + Z(5, n)

=Z(5, n) + 2n+ ⌈
n

2
⌉ + 1

≥Z(5, n) + 2n+ ⌊
n

2
⌋ + 1.

It is a contradiction with Equation (8). Then C3 6= Ø.

Let t1 ∈ C3, C
′

3 := C3\{t1}, Ω′ := {ti, 2 ≤ i ≤ n} and D′ = Ω′\(C′

3 ∪ C2). By the definition

of sets C1, C2, D, we have the following inequality:

crφ(Hn) =crφ(E0 ∪ Tn ∪

n−1⋃

i=1

Ti)
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=crφ(E0 ∪ Tn,
⋃

ti∈C1

Ti) + crφ(E0 ∪ Tn,
⋃

ti∈C2

T i)+

crφ(E0 ∪ Tn,
⋃

ti∈D

Ti) + crφ(E0 ∪ Tn) + crφ(

n−1⋃

i=1

Ti)

≥6|C1| + 5|C2| + 4|D| + 3 + Z(5, n− 1)

=6|C1| + 5|C2| + 4(n− 1 − |C1| − |C2|) + 3 + Z(5, n− 1)

=4(n− 1) + 2|C1| + |C2| + 3 + Z(5, n− 1).

By the assumption (8), we get:

When n is odd

2|C1| + |C2| < Z(5, n) + 2n+ ⌊
n

2
⌋ + 1 − (Z(5, n− 1) + 4(n− 1) + 3) = ⌊

n

2
⌋. (13)

When n is even

2|C1| + |C2| < Z(5, n) + 2n+ ⌊
n

2
⌋ + 1 − (Z(5, n− 1) + 4(n− 1) + 3) = ⌊

n

2
⌋ − 2. (14)

Furthermore, by the definition of set C2, C
′

3, D
′ and Equations (9), (10) and (11), we also have

crφ(Hn) =crφ(E0 ∪ T1 ∪

n⋃

i=2

Ti)

=crφ(E0 ∪ T1,
⋃

ti∈C
′

3

Ti) + crφ(E0 ∪ T1,
⋃

ti∈C2

Ti)+

crφ(E0 ∪ T1,
⋃

ti∈D′

Ti) + crφ(E0 ∪ T1) + crφ(

n⋃

i=2

Ti)

≥6|C′

3| + 5|C2| + 4|D′| + 3 + Z(5, n− 1)

=6|C′

3| + 5|C2| + 4(n− 1 − |C′

3| − |C2|) + 3 + Z(5, n− 1)

=4(n− 1) + 2|C′

3| + |C2| + 3 + Z(5, n− 1).

By the assumption (8), there also holds the following:

When n is odd

2|C′

3| + |C2| < Z(5, n) + 2n+ ⌊
n

2
⌋ + 1 − (Z(5, n− 1) + 4(n− 1) + 3) = ⌊

n

2
⌋. (15)

When n is even

2|C′

3| + |C2| < Z(5, n) + 2n+ ⌊
n

2
⌋ + 1 − (Z(5, n− 1) + 4(n− 1) + 3) = ⌊

n

2
⌋ − 2. (16)

So when n is odd, by adding (13) to (15), and then dividing 2, we get

|C1| + |C2| + |C′

3| ≤ ⌊
n

2
⌋ − 1 = ⌈

n

2
⌉ − 2. (17)

When n is even, by adding (14) to (16) and then dividing 2, we get

|C1| + |C2| + |C′

3| ≤ ⌊
n

2
⌋ − 3 = ⌈

n

2
⌉ − 3. (18)

Let Λ = (C1∪C2∪C
′

3 ∪{t1, tn}) and Γ = Ω\(C1∪C2∪C3}). By the definition of the sets above,

it is easy to know: if ti ∈ Λ, then crφ(E0, ti) ≥ 2; if ti ∈ Γ, then crφ(E0, ti) ≥ 3. So by Lemma
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1, we get

crφ(Hn) =crφ(E0 ∪

n⋃

i=1

Ti)

=crφ(E0,
⋃

ti∈Λ

Ti) + crφ(E0,
⋃

ti∈Γ

Ti) + crφ(E0) + crφ(

n⋃

i=1

Ti)

≥2(|C1| + |C2| + |C′

3| + 2) + 3(n− 2 − |C1| − |C2| − |C′

3|) + 1 + Z(5, n)

=3n− (|C1| + |C2| + |C′

3|) + Z(5, n) − 1.

Combining the assumption (8), we also have

|C1| + |C2| + |C′

3| > Z(5, n) + 3n− 1 − (Z(5, n) + 2n+ ⌊
n

2
⌋ + 1) = ⌈

n

2
⌉ − 2. (19)

But they are contradicting with Equations (17) and (18). So we have crφ(Hn) ≥ Z(5, n) + 2n+

⌊n2 ⌋ + 1.

Subcase 2.4 For any ti (1 ≤ i ≤ n), crφ(Ti, E0) ≥ 3.

By Lemma 1 and Equation (1), it is easy to get

crφ(Hn) = crφ(E0 ∪

n⋃

i=1

Ti) = crφ(E0,

n⋃

i=1

Ti) + crφ(E0) + crφ(

n⋃

i=1

Ti)

≥ 3n+ 1 + Z(5, n).

Now the proof is completed. 2

Let H be a graph isomorphic to K5. Consider a graph GH obtained by joining all vertices

of H to five vertices of a 3-edge connected graph G such that every vertex of H will only be

adjacent to exactly one vertex of G. Let G∗

H be the graph obtained by contracting all the edges

of H to a vertex h.

Lemma 5 cr(G∗

H) ≤ cr(GH) − 3.

Proof Let ψ be the optimal drawing of GH . By joining all the 5 vertices of H to a vertex z, we

will obtain a graph isomorphic to K6. As cr(K6) ≥ 3, in ψ there are at least 3 crossings on the

edges of H . Let edge set E2 := {v2v3, v2v4, v2v5, v3v4, v3v5, v4v5}, see Figure 11 and Figure 12.

Then we divide into 2 cases by number of crossings on the edge set E2:

Case 1 On ψ, there are at least 3 crossings on E2. As H includes a subgraph S4 with the vertex

v1 as a 4-vertex, GH\E2 is isomorphic to G∗

H , and cr(G∗

H) = cr(GH\E2) ≤ crψ(GH\E2) ≤

crψ(GH) − 3 = cr(GH) − 3, see Figure 11.

Case 2 On ψ, there are at most 2 crossings on E2. Then by the parity of crossing numbers[14],

crψ(H) = 1, and there is only one subdrawing of graph H under ψ (see Figure 12). So there

are at most one crossing on the edge set {v2v3, v3v4, v4v5, v5v2} (see Figure 12), say, on the edge

v4v5. On the edges incident with vertex v1, contracting along the edge, which has the minimum

crossings, to the vertex h as shown in Figure 12 will also decrease at least 3 crossings. In Figure
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12, we assume the edge v1v3 has the minimum crossing. 2

Figure 11 GH\E2 isomorphic to G∗

H when there are at least 3 crossings on E2
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.......
.........

h

v2

Figure 12 The contraction when here are at most 2 crossings on E2

Figure 13 An optimal drawing of K5 × Sn

Theorem 2 cr(K5 × Sn) = Z(5, n) + 5n+ ⌊n2 ⌋ + 1, n ≥ 1.

Proof In Figure 13, by contracting each copy Ki
5 (i = 1, 2 . . . , n) to a vertex ti, we will obtain

a graph which is isomorphic to Hn, and the drawing is just an optimal drawing of Hn. Through

the contracting, each copy Ki
5 (i = 1, 2, . . . , n) decreases exactly 3 crossings, so cr(K5 × Sn) ≤

Z(5, n) + 5n+ ⌊n2 ⌋ + 1. In the following, we will prove the opposite inequality holds. Let ϕ be
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the optimal drawing of K5 × Sn. On ϕ, contracting each Ki
5 to a vertex ti (i = 1, 2 . . . , n) yields

a graph isomorphic to Hn. According to Theorem 1 and by using Lemma 5 repeatedly, we have

cr(K5 × Sn) = crϕ(K5 × Sn) ≥ cr(Hn) + 3n

= Z(5, n) + 2n+ ⌊
n

2
⌋ + 1 + 3n = Z(5, n) + 5n+ ⌊

n

2
⌋ + 1.

The proof is completed. 2
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