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Abstract Let V = {a1, a2, . . . , an} be a finite set with n ≥ 2 and Pn(V ) the set of all primitive

binary relations on V . For Q ∈ Pn(V ), denote by G(Q) the directed graph corresponding to Q.

For positive integer d ≤ n, let Pn(V, d) = {Q : Q ∈ Pn(V ) and G(Q) contains exactly d loops}. In

this paper, it is proved that the set of common consequent indices of binary relations in Pn(V, d)

is {1, 2, . . . , n − ⌈ d

2
⌉}. Furthermore, the minimal extremal binary relations are described.
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1. Introduction

Let V = {a1, a2, . . . , an} be a finite set with n ≥ 2. A binary relation Q on V is a subset of

V ×V . Denote by Bn(V ) the set of all binary relations on V . Then under the usual multiplication

of binary relations Bn(V ) becomes a semigroup.

Let Mn denote the set of all n × n Boolean matrices. Then Mn is a semigroup under the

Boolean matrix multiplication. The map

Q → M(Q) = (mij),

where mij = 1 if (ai, aj) ∈ Q and mij = 0 otherwise, is an isomorphism of Bn(V ) onto Mn. If

Q1, Q2 ∈ Bn(V ), then

Q1 · Q2 → M(Q1) · M(Q2) = M(Q1 · Q2),

Q1 ∪ Q2 → M(Q1) + M(Q2) = M(Q1 ∪ Q2).

Let Gn(V ) be the set of all directed graphs on n vertices a1, a2, . . . , an with allowable loops

and no multiple arcs.

It is well known that there is a naturally one-to-one correspondence between Bn(V ), Mn

and Gn(V ). So, for a given Q ∈ Bn(V ), there exists only one M ∈ Mn and G ∈ Gn(V )
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corresponding to Q. Denote M and G by M(Q) and G(Q), respectively. Similarly, for a given

M ∈ Mn (G ∈ Gn(V ), resp.), we have Q(M) and G(M) (Q(G) and M(G), resp.).

If Q ∈ Bn(V ), ai ∈ V and K is a non-empty subset of V , we define aiQ = {x ∈ V : (ai, x) ∈

Q} and KQ =
⋃

ai∈K aiQ.

Definition 1[1] Let Q ∈ Bn(V ). We say that a pair of vertices (ai, aj), ai 6= aj , has a common

consequent if there is an integer s > 0 such that

aiQ
s ∩ ajQ

s 6= ∅. (1)

The least integer s satisfying (1) is denoted by LQ(ai, aj).

To shorten the terminology, if ai, aj has a common consequent, we also say that LQ(ai, aj)

exists.

Definition 2[1] If there is at least one couple (ai, aj) for which LQ(ai, aj) exists, we define

L(Q) = maxLQ(ai, aj), where (ai, aj) runs through all couples for which LQ(ai, aj) exists. If

there is no one couple (ai, aj) for which LQ(ai, aj) exists, we define L(Q) = 0. L(Q) is called the

common consequent index of Q.

A relation Q ∈ Bn(V ) is called primitive if there is an integer t ≥ 1 such that Qt = V × V .

It is well known that Q is primitive if and only if G(Q) is strongly connected and the greatest

common divisor of all the cycle lengths of G(Q) is 1. Denote by Pn(V ) the set of all primitive

relations in Bn(V ). Clearly, if Q ∈ Pn(V ), then LQ(ai, aj) exists for any pair (ai, aj) where

ai 6= aj .

Let ⌈x⌉ and ⌊x⌋ denote the smallest integer ≥ x and the greatest integer ≤ x, respectively,

and |K| denote the cardinality of a set K.

It is known to Paz[2] that L(Q) ≤ n(n−1)
2 for Q ∈ Bn(V ). In 1985, Schwarz[1] proved that for

any Q ∈ Bn(V ) (or Q ∈ Pn(V )), L(Q) ≤ ⌊ (n−1)2

2 ⌋ + 1, and the upper bound is sharp.

Let En = {L(Q) : Q ∈ Bn(V )}. En is called the set of common consequent indices of binary

relations on V . In 2000, Zhou and Liu[3] disclosed the existence of gaps in En.

The index set problem and the upper bound problem are the two main problems in the study

of common consequent index. There also have been some results about the two problems for

special classes of binary relations on V (for example, reducible, nearly reducible or symmetric

binary relations[3,4].)

In this paper, we consider a special class of primitive binary relations on V . In 1985,

Schwarz[1] proved that max{L(Q) : Q ∈ Pn(V ) and G(Q) contains a loop} ≤ n − 1. For

positive integer d ≤ n, let Pn(V, d) = {Q : Q ∈ Pn(V ) and G(Q) contains exactly d loops} and

En(V, d) = {L(Q) : Q ∈ Pn(V, d)}. It is proved that En(V, d) = {1, 2, . . . , n−⌈d
2⌉}. Furthermore,

the minimal extremal binary relations are described.

2. Some preliminary lemmas

It is easy to see that the following Lemma 1 holds.
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Lemma 1 Let Q ∈ Pn(V ) and K be a non-empty proper subset of V . Then KQ contains at

least one element of V which is not contained in K.

Lemma 2 Let Q ∈ Pn(V ) and a ∈ V . If a ∈ aQ, then |aQt| ≥ t + 1 for any positive integer

t ≤ n − 1.

Proof We apply induction on t. For t = 1, by Lemma 1, there exists x1 ∈ V such that x1 ∈ aQ

and x1 6= a. Since a ∈ aQ, we have |aQ| ≥ 2. Suppose |aQl−1| ≥ l for any positive integer

l ≤ n − 2. Put Vl = aQl−1. If we apply Lemma 1 to Vl, then there exists xl ∈ V such that

xl ∈ VlQ and xl /∈ Vl. Also, because a ∈ aQ, {xl} ∪ Vl ⊂ aQl, it follows that |aQl| ≥ l + 1.

Since there is a walk from b to a of length s in G(Q) if and only if a ∈ bQs, we have the

following.

Corollary 1 Let Q ∈ Pn(V ) and a, b ∈ V . If a ∈ aQ∩ bQl, then |bQl+t| ≥ t+1 for any positive

integer t ≤ n − 1.

3. Maximum index and minimal extremal binary relations

Theorem 1 For any Q ∈ Pn(V, d), we have

L(Q) ≤ n − ⌈
d

2
⌉.

Proof Let Q ∈ Pn(V, d). Put V1 = {a ∈ V : a ∈ aQ} and V2 = V \V1. For any a, b ∈ V, a 6= b,

we consider the following cases.

Case 1 a, b ∈ V1. By Lemma 2, we have |aQn−⌈ d

2
⌉| ≥ n−⌈d

2⌉+ 1 and |bQn−⌈d

2
⌉| ≥ n−⌈d

2⌉+ 1.

Since |aQn−⌈ d

2
⌉ ∪ bQn−⌈ d

2
⌉| ≤ n, we get

|aQn−⌈ d

2
⌉ ∩ bQn−⌈ d

2
⌉| ≥ 2(n − ⌈

d

2
⌉ + 1) − n = n − 2⌈

d

2
⌉ + 2 > 0.

Hence LQ(a, b) ≤ n − ⌈d
2⌉.

Case 2 a, b ∈ V2. Let x1, x2 ∈ V1 such that d(a, x1) = d(a, V1) = k1, d(b, x2) = d(b, V1) =

k2 (where d(a, x) (d(a, V1), resp.) denotes the length of a shortest path from a to x (some x ∈ V1,

resp.) in G(Q)), and P1 (P2, resp.) be a shortest path from a (b, resp.) to x1 (x2, resp.). Clearly,

k1 ≤ n − d, k2 ≤ n − d. If x1 = x2, since n − d ≤ n − ⌈d
2⌉, then x1 ∈ aQn−⌈ d

2
⌉ ∩ bQn−⌈d

2
⌉.

If P1 ∩ P2 6= ∅, assume v ∈ P1 ∩ P2 (v 6= x1, x2), then d(v, x1) = d(v, x2) by the definition of

x1 and x2, and we can choose x1 = x2. So in the following we can assume P1 ∩ P2 = ∅. Thus

|V (P1)|+ |V (P2)| ≤ n− d + 2, and k1 + k2 ≤ n− d. On the other hand, by Corollary 1, we have

|aQn−⌈ d

2
⌉| ≥ n−⌈d

2⌉−k1 +1 and |bQn−⌈d

2
⌉| ≥ n−⌈d

2⌉−k2 +1. Since |aQn−⌈d

2
⌉∪ bQn−⌈ d

2
⌉| ≤ n,

we get

|aQn−⌈ d

2
⌉ ∩ bQn−⌈d

2
⌉| ≥ (n − ⌈

d

2
⌉ − k1 + 1) + (n − ⌈

d

2
⌉ − k2 + 1) − n

= n − 2⌈
d

2
⌉ − k1 − k2 + 2 ≥ n − 2⌈

d

2
⌉ − (n − d) + 2
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= d − 2⌈
d

2
⌉ + 2 > 0.

Hence LQ(a, b) ≤ n − ⌈d
2⌉.

Case 3 a ∈ V1, b ∈ V2. Since G(Q) is strongly connected, there is a walk of length n−d in G(Q)

from b to some vertex ai ∈ V1. By Lemma 2 and Corollary 1, we have |aQn−⌈ d

2
⌉| ≥ n − ⌈d

2⌉ + 1

and |bQn−⌈ d

2
⌉| ≥ d − ⌈d

2⌉ + 1. Since |aQn−⌈ d

2
⌉ ∪ bQn−⌈ d

2
⌉| ≤ n, we get

|aQn−⌈ d

2
⌉ ∩ bQn−⌈ d

2
⌉| ≥ (n − ⌈

d

2
⌉ + 1) + (d − ⌈

d

2
⌉ + 1) − n = d − 2⌈

d

2
⌉ + 2 > 0.

Hence LQ(a, b) ≤ n − ⌈d
2⌉.

Combining the above three cases, it is proved that L(Q) ≤ n − ⌈d
2⌉.

For positive integer d ≤ n, let Gn be the directed graph with vertex set V and arc set

E = {(ai, ai+1) : 1 ≤ i ≤ n − 1} ∪ {(an, a1)} ∪ {(ai, ai) : 1 ≤ i ≤ d}.

For positive integer d ≤ n−2, integer k with ⌈d
2⌉ ≤ k ≤ n−⌈d

2⌉ and integer l with 1 ≤ l ≤ ⌈d
2⌉,

let Hn(k, l) be the directed graph with vertex set V and arc set

E = {(ai, ai+1) : 1 ≤ i ≤ n − 1} ∪ {(an, a1)} ∪ (ai, ai) : 1 ≤ i ≤ ⌈
d

2
⌉}

∪ {(ai, ai) : i = k + 1, . . . , k + l − 1, k + l + 1, . . . , k + ⌈
d

2
⌉}

and Tn(k) the directed graph with vertex set V and arc set

E = {(ai, ai+1) : 1 ≤ i ≤ n − 1} ∪ {(an, a1)} ∪ {(ai, ai) : 1 ≤ i ≤ ⌈
d

2
⌉}

∪ {(ai, ai) : k + 1 ≤ i ≤ k + ⌈
d

2
⌉}.

It is obvious that Q(Gn) ∈ Pn(V, d), Q(Hn(k, l)) ∈ Pn(V, d) when d is odd and Q(Tn(k)) ∈

Pn(V, d) when d is even.

Theorem 2 For Q ∈ Pn(V, d) with G(Q) = Gn or Hn(k, l) or Tn(k), we have

L(Q) = n − ⌈
d

2
⌉.

Proof 1) G(Q) = Gn.

If d = n, then it is easy to check that LQ(a1, a⌈ d+1

2
⌉) = n − ⌈d

2⌉. If d < n, then we have

d(ad+1, a⌈ d+1

2
⌉) = n − ⌊d+1

2 ⌋ = n − ⌈d
2⌉ and d(a⌈ d+1

2
⌉, a1) = n − ⌈d−1

2 ⌉. So LQ(ad+1, a⌈ d+1

2
⌉) =

min{d(ad+1, a⌈ d+1

2
⌉), d(a⌈ d+1

2
⌉, a1)} = n − ⌈d

2⌉. By Theorem 1, we get L(Q) = n − ⌈d
2⌉.

2) G(Q) = Hn(k, l). Now d is odd.

Case 1 k + ⌈d
2⌉ < n. Let x = a⌈ d

2
⌉+1, y = ak+⌈ d

2
⌉+1. Then it follows that y /∈ yQ. If x /∈ xQ,

let

t =

{

k + 1, if ak+1 ∈ ak+1Q;

k + 2, otherwise.

Then at ∈ atQ. It is easy to see that d(y, at) = n−(k+⌈d
2⌉+1−t) ≥ n−⌈d

2⌉ and d(x, a1) = n−⌈d
2⌉.

Therefore LQ(x, y) = min{d(y, at), d(x, a1)} = n − ⌈d
2⌉. If x ∈ xQ, then k = ⌈d

2⌉. It is obvious
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that d(y, x) = n − k = n − ⌈d
2⌉. So LQ(x, y) = min{d(y, x), d(x, a1)} = n − ⌈d

2⌉. By Theorem 1,

we get L(Q) = n − ⌈d
2⌉.

Case 2 k + ⌈d
2⌉ = n. Let x = a⌈ d

2
⌉+1. Since d ≤ n− 2, we have x /∈ xQ. If ak+1 /∈ ak+1Q, then

l = 1, and it is easy to see that Hn(k, l) ∼= Gn. If an /∈ anQ, then ak+1 ∈ ak+1Q. It is not difficult

to check that LQ(an, x) = min{d(an, ak+1), d(x, a1)} = min{n− ⌈d
2⌉ + 1, n− ⌈d

2⌉} = n− ⌈d
2⌉. If

ak+1 ∈ ak+1Q and an ∈ anQ, then we have LQ(a1, x) = min{d(x, a1), d(a1, ak+1)} = n − ⌈d
2⌉.

By Theorem 1, we get L(Q) = n − ⌈d
2⌉.

3) G(Q) = Tn(k). Now d is even.

If k = ⌈d
2⌉ or k = n − ⌈d

2⌉, then Tn(k) ∼= Gn. So we can assume that ⌈d
2⌉ < k < n − ⌈d

2⌉.

Let x = a⌈ d

2
⌉+1 and y = ak+⌈ d

2
⌉+1. Then x /∈ xQ and y /∈ yQ. It is easy to check that

LQ(x, y) = min{d(x, a1), d(y, ak+1)} = n − ⌈d
2⌉. By Theorem 1, we get L(Q) = n − ⌈d

2⌉.

Theorem 2 shows that the upper bound of the index in Theorem 1 is sharp, i.e., max{L(Q) :

Q ∈ Pn(V, d)} = n − ⌈d
2⌉.

Clearly, |Q| ≥ n+d for any Q ∈ Pn(V, d). Also by Theorem 2, there exists Q ∈ Pn(V, d) such

that L(Q) = n − ⌈d
2⌉ and |Q| = n + d. Such Q is called the minimal extremal binary relation.

In the following, we describe the characterization of the minimal extremal binary relations.

Theorem 3 Let Q ∈ Pn(V, d). If L(Q) = n−⌈d
2⌉ and |Q| = n+ d, then G(Q) ∼= Gn or Hn(k, l)

when d is odd and G(Q) ∼= Gn or Tn(k) when d is even.

Proof Since Q ∈ Pn(V, d) and |Q| = n+d, G(Q) = (V, E) is strongly connected and |E| = n+d.

Also it is easy to see that |E| = n + d if and only if G consists of a Hamilton cycle Cn and d

loops. Let Cn = (a1, a2, . . . , an, a1).

It is obvious that G ∼= Gn when d = 1 or d ≥ n − 1. So in the following we assume that

2 ≤ d ≤ n − 2. For convenience, let an+k = ak.

Put V1 = {ai ∈ V : (ai, ai) ∈ E} and V2 = V \V1. Let ai, aj ∈ V such that LQ(ai, aj) =

n − ⌈d
2⌉. We claim that ai ∈ V2 or aj ∈ V2. In fact, if ai, aj ∈ V1, it is easy to check that

d(ai, aj) ≤ n− ⌈n
2 ⌉ or d(aj , ai) ≤ n−⌈n

2 ⌉. So LQ(ai, aj) = min{d(ai, aj), d(aj , ai)} ≤ n− ⌈n
2 ⌉ <

n − ⌈d
2⌉, a contradiction. Without loss of generality, let ai ∈ V2.

1) aj ∈ V1. Let at ∈ V1 be the first vertex in the path (ai+1, ai+2, . . . , aj). It is obvious that

LQ(ai, aj) = min{d(ai, aj), d(aj , at)} = n − ⌈
d

2
⌉.

If d(ai, aj) 6= d(aj , at), then we have d ≤ d(at, ai) = d(at, aj) + d(aj , ai) ≤ 2⌈d
2⌉ − 1 ≤ d. So d is

odd and at, at+1, . . . , ai−1 ∈ V1. Hence G ∼= Gn. If d(ai, aj) = d(aj , at), then we have

d(at, ai) = d(at, aj) + d(aj , ai) = 2⌈
d

2
⌉ =

{

d, when d is even;

d + 1, when d is odd.

Therefore it is not difficult to check that G ∼= Gn when d is even and G ∼= Hn(k, l) when d is

odd.

2) aj ∈ V2. Let at ∈ V1 (as ∈ V1, resp.) be the first vertex in the path (ai+1, ai+2, . . . , ai−1)

((aj+1, aj+2, . . . , aj−1), resp.). Then we claim that t ∈ {i + 1, i + 2, . . . , j − 1} and s ∈ {j +
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1, j + 2, . . . , i − 1}. Otherwise, by symmetry, we assume that t ∈ {j + 1, j + 2, . . . , i − 1}. Then

s = t by the choice of s. So n − ⌈d
2⌉ = LQ(ai, aj) = d(ai, at), and it follows that d(at, ai) =

⌈d
2⌉ < d (d ≥ 2), which is a contradiction with G(Q) containing d loops. Hence LQ(ai, aj) =

min{d(ai, as), d(aj , at)}. If d(ai, as) 6= d(aj , at), then we have d ≤ d(at, aj) + d(as, ai) ≤ 2⌈d
2⌉ −

1 ≤ d. So d is odd and at, at+1, . . . , aj−1, as, as+1, . . . , ai−1 ∈ V1. Hence G ∼= Hn(k, l). If

d(ai, as) = d(aj , at), then d(at, aj) = d(as, ai) = ⌈d
2⌉. So it is easy to check that G ∼= Hn(k, l)

when d is odd and G ∼= Tn(k) when d is even.

4. The index set

In this section, we determine the set of common consequent indices of binary relations in

Pn(V, d).

Theorem 4 En(V, d) = {L(Q) : Q ∈ Pn(V, d)} = {1, 2, . . . , n − ⌈d
2⌉}.

Proof For any integer r ∈ {1, 2, . . . , n − ⌈d
2⌉}, we want to construct a directed graph G such

that Q(G) ∈ Pn(V, d) and L(Q(G)) = r.

Case 1 r = 1. Let G be the directed graph with vertex set V and arc set

E = {(a1, ai) : 2 ≤ i ≤ n} ∪ {(ai, a1) : 2 ≤ i ≤ n} ∪ {(ai, ai) : 1 ≤ i ≤ d}.

Then it is easy to check that Q(G) ∈ Pn(V, d) and L(Q(G)) = 1.

Case 2 ⌊d
2⌋ < r ≤ n − ⌈d

2⌉. Let m = r + ⌈d
2⌉. Then d < m ≤ n. Let G be the directed graph

with vertex set V and arc set

É = {(ai, ai+1) : 1 ≤ i ≤ m − 2} ∪ {(am−1, aj) : m ≤ j ≤ n}

∪ {(aj , a1) : m ≤ j ≤ n} ∪ {(ai, ai) : 1 ≤ i ≤ d}.

Clearly, Q(G) ∈ Pn(V, d). Put V1 = {a1, a2, . . . , am} and V2 = V \V1. Then for any x ∈ V2,

x is a copy of am with respect to adjacency. By the proof of Theorem 2, we have

(i) for any ai, aj ∈ V1, ai 6= aj , LQ(ai, aj) ≤ LQ(ad+1, a⌈ d+1

2
⌉) = m − ⌈d

2⌉ = r;

(ii) for any ai ∈ V1, aj ∈ V2, LQ(ai, aj) = LQ(ai, am) ≤ r;

(iii) for any ai, aj ∈ V2, ai 6= aj , LQ(ai, aj) = 1.

Hence L(Q) = r.

Case 3 2 ≤ r ≤ ⌊d
2⌋. Let m = 2r and G be the directed graph with vertex set V and arc

set É (the same as of Case 2). It is obvious that Q(G) ∈ Pn(V, d) . Put V1 = {a1, a2, . . . , am},

V2 = {am+1, am+2, . . . , ad} and V3 = {ad+1,ad+2, . . . , an}. Then for any x ∈ V2, x is a copy of

am.

For any ai, aj ∈ V , ai 6= aj , it follows that

(i) If ai, aj ∈ V \V1, then LQ(ai, aj) = 1.

(ii) If ai, aj ∈ V1, then LQ(ai, aj) ≤ LQ(a1, a⌈m+1

2
⌉) = m − ⌈m

2 ⌉ = r.

(iii) If ai ∈ V2, aj ∈ V1, then LQ(ai, aj) = LQ(am, aj) ≤ r.
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(iv) If ai ∈ V3, aj ∈ V1, then it is not difficult to check that

LQ(ai, aj) ≤

{

d(ai, aj) ≤ d(ai, ar) = r, for 1 ≤ j ≤ r;

d(aj , a1) ≤ d(ar+1, a1) = r, for r + 1 ≤ j ≤ m.

Hence L(Q) = r. 2
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