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Abstract Absolute integrability and its absolute value inequality for fuzzy-number-valued func-

tions are worth to be considered. In this paper, absolute integrability and its absolute value

inequality for fuzzy-number-valued functions are discussed by means of the characteristic the-

orems of nonabsolute fuzzy integrals and the embedding theorem, i.e., the fuzzy number space

can be embedded into a concrete Banach space. Several necessary and sufficient conditions and

examples are given.
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Since the concept of fuzzy set was originally introduced by Zadeh in 1965, the fuzzy mathe-

matics has developed rapidly as a new mathematic branch. For fuzzy analysis, in order to calcu-

late the expectation of fuzzy random variables and to meet the need of solving fuzzy differential

equations, the continuity, differentiability, integrability of fuzzy-number-valued functions and the

relations between them have been investigated. In 1986, in order to study the expectation of

fuzzy random variables, Puri and Ralescu[1] proposed the integral of fuzzy-number-valued func-

tions as an extension of Aumann integral. In 1987, Kaleva[2] used this integral to discuss Cauchy

problem of fuzzy differential equations and pointed out that a continuous fuzzy-number-valued

function is integrable and its integral primitive is differentiable everywhere. Furthermore the

derivative of the primitives is equal to its integrand function. In 1992, Wu and Ma[3] character-

ized differentiability and integrability of fuzzy-number-valued functions by using both embedding

theorem from fuzzy-number space to concrete Banach space, and Bochner and Pettis integrals of

Banach-valued functions. Subsequently, Wu and Gong[4−8] discussed the nonabsolute integrals

of fuzzy-number-valued functions and found several results different from the traditional real

analysis. For instance, differentiability, absolute integrability, and so on.

For absolute-valued inequality, there are two different forms based on different problems. One

is in the sense of fuzzy absolute-value and another is in the sense of the metric (or the norm) as
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follows.

|

∫ b

a

f̃ | ≤

∫ b

a

|f̃ |,

‖

∫ b

a

f̃‖ ≤

∫ b

a

‖f̃‖.

To make our analysis possible, first we will recall some basic results of fuzzy numbers and

fuzzy calculus. Section 2 is devoted to discussing the absolute integrability and its absolute value

inequality of fuzzy Aumann-Henstock integral. In Sections 3 and 4 we shall focus our attentions

on the absolute integrability and its absolute-value inequality of the fuzzy Henstock integral and

strongly fuzzy Henstock integral, respectively.

1. Preliminaries

Let F (R) be a fuzzy set on R. For Ã ∈ F (R), if Ã is normal, convex, upper semi-continuous

and the support [A]0 = {x ∈ R : A(x) > 0} is compact, then Ã is called a fuzzy number. Denote

E1 as fuzzy number space[3−5].

For Ã, B̃ ∈ E1, k ∈ R, Ã + B̃ = C̃ is defined by Aλ + Bλ = Cλ, λ ∈ [0, 1], i.e., for any

λ ∈ [0, 1], A+
λ + B+

λ = C+
λ , A−

λ + B−

λ = C−

λ . [kA]λ = kAλ, λ ∈ [0, 1], here Aλ = {x|A(x) ≥ λ}.

Aλ is a closed interval[3,4,5], and denoted as [A−

λ , A+
λ ].

Define D(Ã, B̃) = supλ∈[0,1] max(|A−

λ − B−

λ |, |A+
λ − B+

λ |) as the distance[3−5] between fuzzy

numbers Ã and B̃.

Based on the background of various problems, two definitions of integration for the fuzzy-

number-valued functions are proposed as follows: one is an extension of Aumann integral of the

set-valued functions, such as Kaleva integral[2] which was defined firstly by Puri and Ralescu[1] in

1986 to meet the need of calculating the expectations of fuzzy random variables, and successfully

applied to discuss fuzzy differential equations, and fuzzy Henstock integral which as a nonabsolute

integral is an extension of Kaleva integral defined by Wu and Gong[4]. Another integral is

Riemann-type by first taking the sum and then the limit which is known as a constructive

definition, e.g., Riemann type integral[10] which was defined by Goetschel and Voxman in 1986,

and the integral defined by Nanada[11] by means of obtaining its upper and lower sums. However,

these integrals mentioned above are all the special cases of the fuzzy Henstock integral defined

by Wu and Gong[5] in 2001. Therefore, we first introduce these two fuzzy Henstock integrals.

Let δ : [a, b] → R+. A division P = {[xi−1, xi]; ξi} is said to be δ-fine division (δ-fine (M)

division), if the following conditions are satisfied:

(1) a = x0 < x1 < · · · < xn = b;

(2) ξi ∈ [xi−1, xi] ⊂ (ξi − δ(ξi), ξi + δ(ξi)) ([xi−1, xi] ⊂ (ξi − δ(ξi), ξi + δ(ξi))), i = 1, 2, . . . , n.

Definition 1.1[5] Let f̃ : [a, b] → E1 be a fuzzy-valued function. f̃ is said to be fuzzy Henstock

integrable on [a, b] and integral value is Ã ∈ E1 if for every ε > 0, there is a function δ(x) > 0
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such that for any δ-fine division P = {[xi−1, xi]; ξi} , we have

D(
∑

i

f̃(ξi)(xi − xi−1), Ã) < ε.

As usual, we write (FH)
∫ b

a
f̃ = Ã and f̃ ∈ FH [a, b].

Remark 1.1 If the fuzzy-number-valued function f̃ and the fuzzy number Ã in Definition 1.1

are replaced by a real-valued function f and a real number A, respectively, then the real-valued

function f is said to be Henstock integral on [a, b], and we write f ∈ H [a, b].

Henstock integral, as a Riemann-type integral, is a nonabsolute integral which equals to

the Perron and the Denjoy integrals, and includes Riemann, improper Riemann, Lebesgue and

Newton integrals[12].

Remark 1.2 A fuzzy-number-valued function f̃ ∈ FH [a, b] if and only if f−

λ , f+
λ are Henstock

integrable uniformly for λ ∈ [0, 1], i.e., δ is independent of λ ∈ [0, 1][5].

Remark 1.3 If the fuzzy-number-valued function f̃ , the fuzzy number Ã and the δ−fine division

in Definition 1.1 are replaced by a real-valued function f, a real number A and a δ-fine (M)

division respectively, then the real-valued function f is said to be McShane integral on [a, b], and

we write f ∈ M [a, b]. McShane integral is equivalent to Lebesgue integral, but its definition is

Riemann-type[12].

Remark 1.4 If the δ-fine division in Definition 1.1 is replaced by a δ-fine (M) division, then

the fuzzy-number-valued function f is said to be fuzzy McShane integral on [a, b], and we write

f ∈ FM [a, b]. From [13], f̃ ∈ FM [a, b] if and only if f−

λ , f+
λ are McShane integrable uniformly

for λ ∈ [0, 1].

Definition 1.2[4] A fuzzy-number-valued function f̃ : [a, b] → E1 is said to be I-bounded if

there exist two integrable functions h, g ∈ H [a, b], such that for any s(x) ∈ [f̃(x)]0 we have

g(x) ≤ s(x) ≤ h(x).

An I-bounded function f̃ : [a, b] → E1 is said to be Aumann-Henstock integrable over [a, b] if

{(H)
∫ b

a
s, s(x) is a Henstock integrable selection for [f̃(x)]λ }(λ ∈ [0, 1])

determines a unique fuzzy number A, denoted as (FAH)
∫ b

a
f̃ = Ã or f̃ ∈ FAH [a, b].

Remark 1.5[4] A measurable fuzzy-number-valued function f̃ ∈ FAH [a, b] if and only if

f−

λ , f+
λ ∈ H [a, b] for any λ ∈ [0, 1].

Remark 1.6 If the inequality g(x) ≤ s(x) ≤ h(x) and Henstock integrable selection in Def-

inition 1.2 are replaced by s(x) ≤ |h(x)| and Lebesgue integrable selection respectively, then

fuzzy-number-valued function f̃ is said to be Kaleva integrable on [a, b]. We write f̃ ∈ K[a, b].

And f̃ ∈ K[a, b] if and only if f−

λ , f+
λ ∈ L[a, b] for any λ ∈ [0, 1], where L[a, b] denotes the

Lebesgue integrable functions space on [a, b]. From [4], we can also find that the fuzzy Aumann-

Henstock integral is an extension of the Kaleva integral.
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2. The absolute integrability of fuzzy Aumann-Henstock integral

Lemma 2.1[7] If Ã ∈ E1, then the class of closed intervals {{|r| : r ∈ Aλ} : λ ∈ [0, 1]} deter-

mines a unique fuzzy number, and this fuzzy number is called the absolute value of Ã, denoted

as |Ã|. Furthermore, |Ã|λ = [|Ã|−λ , |Ã|+λ ], where

|Ã|−λ =
1

2
max{|A−

λ | + A−

λ , |A+
λ | − A+

λ },

|Ã|+λ = max{|A−

λ |, |A
+
λ |}.

Lemma 2.2[7] Let f̃ : [a, b] → E1 be a fuzzy-number-valued function. Then f̃ ∈ K[a, b] if and

only if |f̃ | ∈ FAH [a, b], and

|(FAH)

∫ b

a

f̃ | ≤ (K)

∫ b

a

|f̃ |.

Theorem 2.1 Let f̃ ∈ FAH [a, b]. Then |f̃ | ∈ FAH [a, b] if and only if

‖f̃‖E1 = D(f̃ , 0̃) = sup
λ∈[0,1]

max{|f−

λ |, |f+
λ |}

is Lebesgue integrable on [a, b] (here ‖ · ‖E1 = D(·, 0̃) does not stand for the norm of E1. For

brevity, we denote it as ‖ · ‖) and

‖(FAH)

∫ b

a

f̃‖ ≤ (L)

∫ b

a

‖f̃‖.

Proof Since |f̃ | ∈ FAH [a, b], by Lemma 2.2, f̃ ∈ K[a, b], i.e., f−

λ , f+
λ ∈ L[a, b] for any λ ∈ [0, 1].

Notice that

‖f̃‖E1 = sup
λ∈[0,1]

max{|f−

λ |, |f+
λ |} = sup

λn∈[0,1]

max{|f−

λn

|, |f+
λn

|}

≤ h(x),

where {λn} is the set of all rational numbers on [0, 1]. From the measurability of ‖f̃‖E1 , we have

‖f̃‖E1 ∈ L[a, b].

Conversely, if ‖f̃‖E1 ∈ L[a, b], then |f−

λ |, |f+
λ | ∈ L[a, b] for any λ ∈ [0, 1]. Thus |f̃ |−λ , |f̃ |+λ ∈

L[a, b], i.e., |f̃ | ∈ K[a, b] ⊂ FAH [a, b], and

‖(FAH)

∫ b

a

f̃‖ = D((FAH)

∫ b

a

f̃ , 0̃)

= sup
λ∈[0,1]

max{|(H)

∫ b

a

f−

λ |, |(H)

∫ b

a

f+
λ |}

≤ sup
λ∈[0,1]

max{(L)

∫ b

a

|f−

λ |, (L)

∫ b

a

|f+
λ |}

≤ (L)

∫ b

a

D(f̃ , 0̃) = (L)

∫ b

a

‖f̃‖.

We can find that Theorem 2.1 is easier to apply compared with Lemma 2.2.

3. Absolute integrability of the fuzzy Henstock integral
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Let f : [a, b] → X be a Banach-valued function, X a Banach space, and X∗ the conjugate

space of X . Then f is called Henstock integrable on [a, b][14] (McShane integrable[15]) and its

integral value is A ∈ X if for every ε > 0, there exists a function δ(x) > 0 such that for any

δ-fine division (δ-fine (M)division) P = {[xi−1, xi]; ξi}, we have

‖
∑

i

f(ξi)(xi − xi−1) − A‖ < ε.

We write (V H)
∫ b

a
f = A((V M)

∫ b

a
f = A) or f ∈ V H [a, b](f ∈ V M [a, b]).

f is said to be Pettis integrable on [a, b] and integral value is A if x∗f is Lebesgue integrable

for any x∗ ∈ X∗ and there is an A ∈ X such that (L)
∫

E
x∗f = x∗A for any measurable set

E ∈ [a, b]. We write (P )
∫ b

a
f = A.

Lamma 3.1[16] Let f : [a, b] → X be a Banach-valued function. Then f is McShane integrable

on [a, b] if and only if f is Henstock and Pettis integrable on [a, b].

Lemma 3.2[3] Let Ã ∈ E1 and define j(Ã) = (A−, A+). Then j(E1) is a closed convex cone

with vertex θ in C[0, 1] × C[0, 1] (Here C[0, 1] stands for the class of all real-valued bounded

functions f on [0, 1] such that f is left continuous for any x ∈ (0, 1] and f has a right limit for any

x ∈ [0, 1), especially f is right continuous at x = 0, and with the norm ‖f‖ = supx∈[a,b] |f(x)|,

C[0, 1] is a Banach space. C[0, 1] × C[0, 1] with the norm ‖(·, ·)‖ = max(‖ · ‖, ‖ · ‖ is a Banach

space), and j(E1) → C[0, 1]× C[0, 1] satisfies

(1) j(sÃ + tB̃) = sj(Ã) + tj(B̃) for all Ã, B̃ ∈ E1, s ≥ 0, t ≥ 0.

(2) D(Ã, B̃) = ‖j(Ã) − j(B̃)‖ for all Ã, B̃ ∈ E1,

i.e., j embeds E1 into C[0, 1]× C[0, 1] isometrically and isomorphically.

Lemma 3.3[5] Let f̃ be fuzzy-number-valued function. Then f̃ ∈ FH [a, b] (f̃ ∈ FM [a, b]) if

and only if j(f̃) = (f−, f+) ∈ V H [a, b] (j(f̃) = (f−, f+) ∈ V M [a, b]), and

j((FH)

∫ b

a

f̃) = (V H)

∫ b

a

j(f̃),

(j((FM)

∫ b

a

f̃) = (V M)

∫ b

a

j(f̃).

Theorem 3.1 Let f̃ : [a, b] → E1 be a fuzzy-number-valued function, and f̃ ∈ FH [a, b]. Then

f̃ ∈ FM [a, b] if and only if ‖f̃‖E1 is Lebesgue integrable, and

‖(FH)

∫ b

a

f̃‖ ≤ (L)

∫ b

a

‖f̃‖.

Proof Only if: For f̃ ∈ FM [a, b], by Remark 1.4, we infer that f−

λ and f+
λ are McShane

integrable uniformly for λ ∈ [0, 1]. On the other hand, since

f−

0 (x) ≤ f−

λ (x) ≤ f+
λ (x) ≤ f+

0 (x),

we have

‖f̃‖E1 = sup
λ∈[0,1]

max{|f−

λ |, |f+
λ |} = sup

λn∈[0,1]

max{|f−

λn

|, |f+
λn

|}
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≤ max{|f−

0 (x)|, |f+
0 (x)|},

where {λn} is the set of all rational numbers on [0, 1]. By the measurability of ‖f̃‖E1 , we can

obtain the Lebesgue integrability of |f−

0 |, |f+
0 |. So ‖f̃‖E1 is Lebesgue integrable on [a, b].

If: Since f̃ ∈ FH [a, b], we denote j(f̃) = (f−, f+), by Lemma 3.3, we can infer that j(f̃) ∈

V H [a, b]. Here we only discuss the case of f−. For any x∗ ∈ B(X ∗), real-valued function x∗f−

is measurable. Since ‖f̃‖E1 is Lebesgue integrable, and note that x∗ ∈ B(X ∗), we have
∫

E

|x∗f−| ≤

∫

E

‖f−‖ ≤

∫

E

‖f̃‖E1 < ∞,

for every measurable set E. Thus, f− is Dunford integrable.

Let v(E) be Dunford integral value. For any subinterval [c, d] ⊂ [a, b], by the Henstock

integrability of f−, we have v([c, d]) ∈ X. Besides, we can prove that v(E) ∈ X for any measurable

set E. In fact, given ε > 0, by the Lebesgue integrability of ‖f−‖ and ‖f̃‖E1 , there exists a η > 0,

such that
∫

E
‖f−‖ ≤

∫

E
‖f̃‖E1 < ε when µ(E) < η. Hence,

‖v(E)‖ = sup
x∗∈B(X∗)

|(L)

∫

E

x∗f−| ≤ sup
x∗∈B(X∗)

(L)

∫

E

|x∗f−| ≤ (L)

∫

E

‖f−‖ ≤ (L)

∫

E

‖f̃‖E1 < ε,

when µ(E) < η. Furthermore, by the Proposition 2B in [17], we have v(E) ∈ X. Therefore, f−

is Pettis integrable. Finally, by Lemma 3.1, we prove that f− is McShane integrable on [a, b].

Similarly, f+ is McShane integrable on [a, b]. By Lemma 3.3, f̃ ∈ FM [a, b]. Similar to the

proof of Theorem 2.1, we have

‖(FH)

∫ b

a

f̃‖ ≤ (L)

∫ b

a

‖f̃‖.

Theorem 3.2 Let f̃ : [a, b] → E1 be a fuzzy-number-valued function, and f̃ ∈ FH [a, b]. Then

f̃ is absolute Henstock integrable (i.e., |f̃ | ∈ FH [a, b]) if and only if f̃ ∈ FM [a, b], and

|(FH)

∫ b

a

f̃ | ≤ (M)

∫ b

a

|f̃ |.

Proof Sufficiency. Since f̃ ∈ FM [a, b], ‖f̃‖E1 is Lebesgue integrable. For any x∗ ∈ B(X∗),

real-valued function x∗j(|f̃ |) is measurable. Define

j(|f̃ |) = (|f̃ |−, |f̃ |+) = (
1

2
max{|f−| + f−, |f+| − f+}, max{|f−

λ |, |f+
λ |}).

Since ‖f̃‖E1 is Lebesgue integrable, and note that for any x∗ ∈ B(X∗), we have
∫

E

|x∗|f̃ |+| ≤

∫

E

‖|f̃ |+‖ ≤

∫

E

‖f̃‖E1 < ∞,

∫

E

|x∗|f̃ |−| ≤

∫

E

‖|f̃ |−‖ ≤

∫

E

‖f̃‖E1 < ∞,

for any measurable set E.

Similar to the sufficiency proof of Theorem 3.1, we can obtain that |f̃ |− and |f̃ |+ are McShane

integrable on [a, b]. Hence, |f̃ |− and |f̃ |+ are Henstock integrable on [a, b]. Then, by Lemma 3.3,

we prove that f̃ is absolute Henstock integrable.
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Necessity. Since |f̃ | ∈ FH [a, b], |f̃ |+λ = max{|f−

λ |, |f+
λ |} is Henstock integrable on [a, b]

uniformly for λ ∈ [0, 1]. In addition,

‖f̃‖E1 = sup
λ∈[0,1]

max{|f−

λ |, |f+
λ |} = sup

λn∈[0,1]

max{|f−

λn

|, |f+
λn

|} ≤ max{|f−

0 |, |f+
0 |},

where {λn} is the set of all rational numbers on [0, 1]. By the Henstock integrability of max{|f−

0 |, |f+
0 |}

(it is equivalent to Lebesgue integrability when it is nonnegative) and the measurability of ‖f̃‖E1 ,

we prove that ‖f̃‖E1 is Lebesgue integrable. By Theorem 3.1, f̃ ∈ FM [a, b].

By Theorem 2.1, absolute value inequality holds.

By the necessity of the proof of Theorem 2.1, we can obtain the following corollary.

Corollary 3.1 Let f̃ : [a, b] → E1 be a fuzzy -number-valued function. Then |f̃ | ∈ FM [a, b] if

and only if f̃ ∈ FM [a, b].

4. Absolute integrability of the fuzzy strong Henstock integral

The fuzzy Henstock integral is introduced based on solving the non-continuous fuzzy system

and completing the theory of fuzzy calculus. For fuzzy Henstock integral, however the integral

primitive is not differentiable almost everywhere[8] no matter whether the definition is given by

means of Aumann’s method or Riemann-type definition by first taking the sum and then the

limit, and even for Kaleva integral. Therefore, in order to complete the theory of fuzzy calculus

and to meet the solving need of transferring a fuzzy differential equation into a fuzzy integral

equation, we have defined strong fuzzy Henstock integral[8]. For a real function, strong Henstock

integral and Henstock integral are equivalent in real analysis, but as far as fuzzy-number-valued

function is concerned, they are not equivalent[8]. In this section, we shall discuss the absolute

integrability of the fuzzy strong Henstock integral.

Let f̃ : [a, b] → E1 be a fuzzy-number-valued function. Then f̃ is said to be strongly Henstock

integrable on [a, b] if there exists interval additive fuzzy-number-valued function and for every

ε > 0, there is a δ(x) > 0 such that for any δ−fine division P = {[xi−1, xi]; ξi}, we have
∑

i

D(f̃(ξi)(xi − xi−1), F̃ ([xi−1, xi])) < ε,

where F̃ ([s, t]) = F̃ (t)−F̃ (s) is H-difference. The integral is written as (SFH)
∫ b

a
f̃ = F̃ (b)−F̃ (a)

or f̃ ∈ SFH [a, b].[8]

Remark 4.1 If the δ-fine division in above definition is replaced by δ-fine (M) division, then f̃

is called fuzzy strongly McShane integrable on [a, b], and we write f̃ ∈ SFM [a, b].

Remark 4.2[15] If in Remark 4.1, the fuzzy-number-valued function f̃ and F̃ are replaced by

Banach-valued function f and F respectively, and the distance D is replaced by the norm of

difference, then function f is said to be strongly McShane integrable on [a, b].

Lemma 4.1[15] Let f : [a, b] → X be a Banach-valued function. Then f is strongly McShane

integrable on [a, b] if and only if f is Bochner integrable on [a, b] , i.e., f is strongly measurable
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on [a, b] and
∫ b

a

‖f‖ < ∞.

Lemma 4.2 Let f̃ : [a, b] → E1 be a fuzzy-number-valued function. Then f̃ is strongly fuzzy

McShane integrable on [a, b] if and only if j(f̃) is strongly McShane integrable.

By Lemma 3.2, the proof is the same as [5].

Theorem 4.1 Let f̃ : [a, b] → E1 be a fuzzy-numbed-valued function, and f̃ ∈ SFH [a, b]. Then

f̃ ∈ SFM [a, b] if and only if ‖f̃‖E1 is Lebesgue integrable, and

‖(SFH)

∫ b

a

f̃‖ ≤ (L)

∫ b

a

‖f̃‖.

Proof Since f̃ ∈ SFM [a, b] ⊂ FM [a, b], by Theorem 3.1, ‖f̃‖E1 is Lebesgue integrable.

Conversely, notice that
∫ b

a

‖j(f̃)‖ =

∫ b

a

‖f̃‖E1 < ∞,

by the strong measurability of j(f̃), we have j(f̃) is Bochner integrable. In addition, by Lemma

4.1, j(f̃) is strongly McShane integrable.

Hence, f̃ is fuzzy strongly McShane integrable, i.e., f̃ ∈ SFM [a, b].

Corollary 4.1 Let f̃ : [a, b] → E1 be a fuzzy-number-valued function. Then f̃ ∈ SFM [a, b] if

and only if f̃ ∈ FM [a, b].

As is well known, for a real-valued function, the Henstock integral is equivalent to the strong

Henstock integral and the McShane integral is equivalent to the strong McShane integral. How-

ever, they are not equivalent for Banach-valued functions. For the fuzzy-number-valued function,

by the example in [4], we have found that the fuzzy Henstock integral is unequal to the fuzzy

strong Henstock integral. However, by Corollary 4.1, we can find that the fuzzy McShane integral

is equal to the fuzzy strong McShane integral. Furthermore, the following example shows that

the fuzzy strong Henstock integral is unequal to the fuzzy strong McShane integral.

Example 4.1 Let {Ãn}, n = 1, 2, 3, . . . , be a series of fuzzy numbers, ‖
∑∞

n=1 Ãn‖ be convergent,

and
∑∞

n=1 ‖Ãn‖ be divergent. Define f̃ : [0, 1] → E1 as follows.

f̃(x) =

{

2nÃn, x ∈ (2−n, 2−n+1), n = 1, 2, 3, . . . ,

0̃, x ∈ [0, 1]\(2−n, 2−n+1).

Obviously,
∫ 1

0
‖f̃‖E1 =

∑∞

n=1 ‖Ãn‖E1 = ∞. By Theorem 4.1, we infer that f̃ is not fuzzy

strongly McShane integrable, but we can prove that f̃(x) is fuzzy strongly Henstock integrable.

In fact, define F̃ : [0, 1] → E1 as follows.

F̃ (x) =

{

2n(x − 2−n)Ãn +
∞
∑

k=n+1

Ak, x ∈ (2−n, 2−n+1], n = 1, 2, 3, . . . ,

0̃, x = 0.
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Given 0 < ε < 1 and N, such that when n > N , ‖
∑∞

k=n Ãn‖ < ε
5 , ‖Ãn‖ < ε

5 , and there exists

M > 1, such that ‖Ãn‖ < ε
5 , for any n.

Define δ : [0, 1] → R+ as follows

δ(x) =



















min(x − 2−n, x − 2−n+1), x ∈ (2−n, 2−n+1), n = 1, 2, 3, . . . ,
ε

5M4n
, x = 2−n+1,

1

2N
, x = 0.

For any δ−fine division P = {[xi−1, xi]; ξi}, we suppose that ξ0 = 0. Then there is a β > 0, such

that ([0, β]; 0) ∈ P.

(1) When ξi ∈ (2−n, 2−n+1), since ξi ∈ [xi−1, xi] ⊂ (ξi − δ(ξi), ξi + δ(ξi)) ⊂ (2−n, 2−n+1), we

have

D(f̃(ξi)(xi − xi−1), F ([xi−1, xi])) = D(2nÃn(xi − xi−1), 2
nÃn(xi − xi−1)) = 0.

(2) When ξi = 2−n+1 �
D(f̃(ξi)(xi − xi−1), F ([xi−1, xi]))

= D(2n(xi −
1

2n
)Ãn +

∞
∑

k=n+1

Ãk, 2n+1(xi−1 −
1

2n+1
)Ãn+1 +

∞
∑

k=n+2

Ãk)

= D(2n(xi −
1

2n
)Ãn, 2n+1(xi−1 −

1

2n
)Ãn+1)

≤ D(2n(xi −
1

2n
)Ãn, 0̃) + D(2n+1(xi−1 −

1

2n
)Ãn+1, 0̃)

≤ 2n‖Ãn‖
ε

5M4n
+ 2n+1‖Ãn+1‖

ε

5M4n

≤
ε

5 · 2n
+

ε

5 · 2n−1
=

3ε

5 · 2n
.

(3) When ξi = 0, let m > N, such that β ∈ (2−m, 2−m+1]. Then

D(f̃(0)β, F ([0, β])) = D(0̃, 2m(β −
1

2m
)Ãm +

∞
∑

k=m+1

Ãk)

≤ 2m‖Ãm‖(β −
1

2m
+ ‖

∞
∑

k=m+1

Ãk‖ ≤ ‖Ãm‖ +
ε

5
=

2ε

5
.

Thus, we have

p
∑

i=1

D(f̃(ξi)(xi − xi−1), F ([xi−1, xi]))

= D(f̃(0)β, F ([0, β])) +

p
∑

i=2

D(f̃(ξi)(xi − xi−1), F ([xi−1, xi]))

=
2ε

5
+

∞
∑

n=1

3ε

5 · 2n
= ε.

Hence f̃ is fuzzy strongly Henstock integrable on [0, 1].



488 GONG Z T

References

[1] PURI M L, RALESCU D A. Fuzzy random variables [J]. J. Math. Anal. Appl., 1986, 114(2): 409–422.
[2] KALEVA O. Fuzzy differential equations [J]. Fuzzy Sets and Systems, 1987, 24(3): 301–317.

[3] WU Congxin, MA Ming. Embedding problem of fuzzy number space. II [J]. Fuzzy Sets and Systems, 1992,

45(2): 189–202.
[4] WU Congxin, GONG Zengtai. On Henstock integrals of interval-valued functions and fuzzy-valued functions

[J]. Fuzzy Sets and Systems, 2000, 115(3): 377–391.
[5] WU Congxin, GONG Zengtai. On Henstock integral of fuzzy-number-valued functions. I [J]. Fuzzy Sets and

Systems, 2001, 120(3): 523–532.

[6] GONG Zengtai, WU Congxin, LI Baolin. On the problem of characterizing derivatives for the fuzzy-valued

functions [J]. Fuzzy Sets and Systems, 2002, 127(3): 315–322.

[7] GONG Zengtai, WU Congxin. Bounded variation, absolute continuity and absolute integrability for fuzzy-

number-valued functions [J]. Fuzzy Sets and Systems, 2002, 129(1): 83–94.

[8] GONG Zengtai. On the problem of characterizing derivatives for the fuzzy-valued functions. II [J]. Fuzzy

Sets and Systems, 2004, 145(3): 381–393.
[9] AUMANN R J. Integrals of set-valued functions [J]. J. Math. Anal. Appl., 1965, 12: 1–12.

[10] GOETSCHEL R J, VOXMAN W. Elementary fuzzy calculus [J]. Fuzzy Sets and Systems, 1986, 18(1): 31–43.
[11] NANADA S. On integration of mappings [J]. Fuzzy Sets and Systems, 1989, 32(1): 95–101.

[12] LEE P Y. Lanzhou lectures on Henstock integration [M]. World Scientific Publishing Co., Inc., Teaneck, NJ,

1989.
[13] GONG Zengtai, WU Congxin. The Mcshane integral of fuzzy-valued functions [J]. Southeast Asian Bull.

Math., 2000, 24(3): 365–373.
[14] WU Congxin, YAO Xiaobo, CAO S S. The Vector-valued integrals of Henstock and Denjoy [J]. Sains

Malaysiana, 1995, 24(4): 13–22.

[15] WU Congxin, YAO Xiaobo. A Riemann-type definition of the Bochner integral [J]. J. Math. Study, 1994,
27(1): 32–36.

[16] FREMLIN D H. The Henstock and McShane integrals of vector-valued functions [J]. Illinois J. Math., 1994,
38(3): 471–479.

[17] FREMLIN D H, MENDOZA J. On the integration of vector-valued functions [J]. Illinois J. Math., 1994,

38(1): 127–147.


