The Factorization of Braided Hopf Algebras

ZHANG Shou Chuan ${ }^{1}$, XU Yan Ge ${ }^{1,2}$
(1. Department of Mathematics, Hunan University, Hunan 410082, China;
2. Department of Mathematics, Pingdingshan College, Henan 467000, China)

(E-mail: z9491@yahoo.com.cn)

Abstract

We obtain the double factorization of braided bialgebras or braided Hopf algebras and give the relations among integrals and semisimplicity of braided Hopf algebra and its factors.

Keywords Hopf algebra; factorization.
Document code A
MR(2000) Subject Classification 16W30; 16G10
Chinese Library Classification O153.3

1. Introduction

It is well-known that the factorization of domain plays an important role in ring theory. Majid in [1, Theorem 7.2.3] studied the factorization of Hopf algebra and showed that $H \cong A \bowtie B$ for two sub-bialgebras A and B when multiplication m_{H} is bijective. Zhang, Yang and Ren ${ }^{[2]}$ generalized these results to braided cases.

Braided tensor categories become more and more important. They have been applied to conformal field, vertex operator algebras and isotopy invariants of links ${ }^{[3-8]}$.

In this paper, we obtain the double factorization of braided bialgebras or braided Hopf algebras, i.e., we give the conditions to factorize a braided Hopf algebra into the double cross products of sub-bialgebras or sub-Hopf algebras. We give the relations among integrals and semisimplicity of braided Hopf algebra and its factors.

Throughout this paper, we work in braided tensor category (\mathcal{C}, C), where \mathcal{C} is a concrete category and underlying set of every object in \mathcal{C} is a vector space over a field k. For example, Yetter-Drinfeld category over Hopf algebras with invertible antipode and some important categories in [5] are such categories.

2. Preliminaries

We assume that H and A are two braided bialgebras with morphisms:

$$
\begin{array}{rll}
\alpha: H \otimes A \rightarrow & A & \quad \\
\phi: H \otimes A \rightarrow H \\
\phi: A \rightarrow H \otimes & A, & \psi: H \rightarrow H \otimes A
\end{array}
$$

Received date: 2006-07-28; Accepted date: 2006-12-12
Foundation item: the Foundation of Hunan University (No. 521101365).
such that (A, α) is a left H-module coalgebra, (H, β) is a right A-module coalgebra, (A, ϕ) is a left H-comodule algebra, and (H, ψ) is a right A-comodule algebra.

We define the multiplication m_{D}, unit η_{D}, comultiplication Δ_{D} and counit ϵ_{D} in $A \otimes H$ as follows:

$$
\begin{aligned}
& \Delta_{D}=\left(\mathrm{id}_{A} \otimes m_{H} \otimes m_{A} \otimes \mathrm{id}_{\mathrm{H}}\right)\left(\mathrm{id}_{\mathrm{A}} \otimes \mathrm{id}_{\mathrm{H}} \otimes \mathrm{C}_{\mathrm{A}, \mathrm{H}} \otimes \mathrm{id}_{\mathrm{A}} \otimes \mathrm{id}_{\mathrm{H}}\right)\left(\mathrm{id}_{\mathrm{A}} \otimes \phi \otimes \psi \otimes \mathrm{id}_{\mathrm{H}}\right)\left(\Delta_{\mathrm{A}} \otimes \Delta_{\mathrm{H}}\right), \\
& m_{D}=\left(m_{A} \otimes m_{H}\right)\left(\mathrm{id}_{\mathrm{A}} \otimes \alpha \otimes \beta \otimes \mathrm{id}_{\mathrm{H}}\right)\left(\mathrm{id}_{\mathrm{A}} \otimes \mathrm{id}_{\mathrm{H}} \otimes \mathrm{C}_{\mathrm{H}, \mathrm{~A}} \otimes \mathrm{id}_{\mathrm{A}} \otimes \mathrm{id}_{\mathrm{H}}\right)\left(\mathrm{id}_{\mathrm{A}} \otimes \Delta_{\mathrm{H}} \otimes \Delta_{\mathrm{A}} \otimes \mathrm{id}_{\mathrm{H}}\right)
\end{aligned}
$$

and $\epsilon_{D}=\epsilon_{A} \otimes \epsilon_{H}, \eta_{D}=\eta_{A} \otimes \eta_{H}$. We denote $\left(A \otimes H, m_{D}, \eta_{D}, \Delta_{D}, \epsilon_{D}\right)$ by $A_{\alpha}^{\phi} \bowtie_{\beta}^{\psi} H$, which is called the double bicrossproduct of A and H and denoted by $A \stackrel{b}{\bowtie} H$ or $A \bowtie H$ for short. When ϕ and ψ are trivial, we denote $A_{\alpha}^{\phi} \bowtie_{\beta}^{\psi} H$ by $A_{\alpha} \bowtie_{\beta} H$ or $A \bowtie H$, called a double cross product ${ }^{[9-11]}$.
\mathcal{V} ect (k) denotes the braided tensor category of all vector spaces over field k, equipped with ordinary tensor and unit $I=k$, as well as ordinary twist map as braiding. ${ }_{B}^{B} \mathcal{Y} \mathcal{D}$ denotes YetterDrinfeld category ${ }^{[11, \text { Preliminaries }] .}$

3. The factorization of braided bialgebras or braided Hopf algebras

In this section, we obtain the factorization of braided bialgebras or braided Hopf algebras.
The associative law does not hold for double cross products in general, i.e., the equation

$$
\left(\left(A_{1} \alpha_{1} \bowtie_{\beta_{1}} A_{2}\right)_{\alpha_{2}} \bowtie_{\beta_{2}} A_{3}\right)=\left(A_{1 \alpha_{1}}^{\left.\bowtie_{\beta_{1}}\left(A_{2} \alpha_{2} \bowtie_{\beta_{2}} A_{3}\right)\right)}\right.
$$

does not hold in general. Therefore, we denote a method of adding brackets for n factors by σ. For example, when $n=3$,

$$
\sigma_{1}\left(A_{1} \alpha_{1} \bowtie_{\beta_{1}} A_{2 \alpha_{2}} \bowtie_{\beta_{2}} A_{3}\right)=\left(\left(A_{1} \alpha_{1} \bowtie_{\beta_{1}} A_{2}\right)_{\alpha_{2}} \bowtie_{\beta_{2}} A_{3}\right)
$$

and

$$
\sigma_{2}\left(A_{1} \alpha_{1} \bowtie_{\beta_{1}} A_{2} \alpha_{2} \bowtie_{\beta_{2}} A_{3}\right)=\left(A_{1} \alpha_{1} \bowtie_{\beta_{1}}\left(A_{2} \alpha_{2} \bowtie_{\beta_{2}} A_{3}\right)\right)
$$

Definition 3.1 Let $A_{1}, A_{2}, \ldots, A_{n}$ and H be braided bialgebras or braided Hopf algebras, σ be a method of adding brackets for n factors. If $j_{A_{1}}\left(A_{1}\right) j_{A_{2}}\left(A_{2}\right) \cdots j_{A_{n}}\left(A_{n}\right)=H$, where $j_{A_{i}}: A_{i} \rightarrow H$ is a braided bialgebra or Hopf algebra morphism for $i=1,2, \ldots, n$, and for every pair of brackets of σ :

$$
\left(A_{l} \otimes A_{l+1} \otimes \cdots \otimes A_{l+t}\right)
$$

$j_{A_{l}}\left(A_{l}\right) j_{A_{l+1}}\left(A_{l+1}\right) \cdots j_{A_{l+t}}\left(A_{l+t}\right)$ is a sub-bialgebra or sub-Hopf algebra of H and $m_{H}^{t}\left(j_{A_{l}} \otimes\right.$ $\left.j_{A_{l+1}} \otimes \cdots \otimes j_{A_{l+t}}\right)$ is a bijective map from $A_{l} \otimes A_{l+1} \otimes A_{l+2} \otimes \cdots \otimes A_{l+t}$ onto $j_{A_{l}}\left(A_{l}\right) j_{A_{l+1}}\left(A_{l+1}\right)$ $\cdots j_{A_{l+t}}\left(A_{l+t}\right)$, then $\left\{j_{A_{1}}, j_{A_{2}}, \ldots, j_{A_{n}}\right\}$ is called a double factorization of H with respect to σ. If for every method σ of adding brackets, $\left\{j_{A_{1}}, j_{A_{2}}, \ldots, j_{A_{n}}\right\}$ is a double factorization of H with respect to σ, then $\left\{j_{A_{1}}, j_{A_{2}}, \ldots, j_{A_{n}}\right\}$ is called a double factorization of H. If A_{t} is a sub-bialgebra or sub-Hopf algebra of H and $j_{A_{t}}$ is an inclusion map from A_{t} to H by sending a to a for any $a \in A_{t}, t=1,2, \ldots, n$, then $H=A_{1} A_{2} \cdots A_{n}$ is called an inner double factorization of H.

Theorem 3.2 Let $A_{1}, A_{2}, \ldots, A_{n}$ and H be braided bialgebras or braided Hopf algebras, and let
σ be a method of adding brackets for n factors. Assume that $j_{A_{i}}$ is a bialgebra or Hopf algebra morphism from A_{i} to H for $i=1,2, \ldots, n$. If $\left\{j_{A_{1}}, j_{A_{2}}, \ldots, j_{A_{n}}\right\}$ is a double factorization of H with respect to σ, then in braided tensor category (\mathcal{C}, C), there exists a set $\left\{\alpha_{i}, \beta_{i} \mid i=1,2, \ldots, n\right\}$ of morphisms such that

$$
\sigma\left(A_{1 \alpha_{1}} \bowtie_{\beta_{1}} A_{2 \alpha_{2}} \bowtie_{\beta_{2}} A_{3 \alpha_{3}} \bowtie_{\beta_{3}} \cdots_{\alpha_{n-1}} \bowtie_{\beta_{n-1}} A_{n}\right) \cong H \quad \text { (as bialgebras or Hopf algebras) }
$$

and the isomorphism is $m_{H}^{n-1}\left(j_{A_{1}} \otimes j_{A_{2}} \otimes \cdots \otimes j_{A_{n}}\right)$.
Proof We use induction for n. When $n=2$, we can obtain the proof by [2, Theorem 2.1] (i.e. the factorization theorem). For $n>2$, we can assume that

$$
\sigma\left(A_{1} \otimes A_{2} \otimes A_{3} \cdots \otimes A_{n}\right)=\sigma_{1}\left(A_{1} \otimes A_{2} \otimes \cdots \otimes A_{t}\right) \otimes \sigma_{2}\left(A_{t+1} \otimes \cdots \otimes A_{n}\right)
$$

Next we consider t in following three cases.
(i) If $1<t<n-1$, let $B_{1}=j_{A_{1}}\left(A_{1}\right) j_{A_{2}}\left(A_{2}\right) \cdots j_{A_{t}}\left(A_{t}\right)$ and $B_{2}=j_{A_{t}+1}\left(A_{t+1}\right) j_{A_{t+2}}\left(A_{t+2}\right) \cdots$ $j_{A_{n}}\left(A_{n}\right)$. It follows from the inductive assumption that $\left\{j_{A_{1}}, j_{A_{2}}, \ldots, j_{A_{t}}\right\}$ is a double factorization of B_{1} with respect to σ_{1} and $\left\{j_{A_{t+1}}, j_{A_{t+2}}, \ldots, j_{A_{n}}\right\}$ is a double factorization of B_{2} with respect to σ_{2}. Thus, there exists a set $\left\{\alpha_{i}, \beta_{i} \mid i=1,2, \ldots, n, i \neq t\right\}$ of morphisms such that

$$
\begin{equation*}
\sigma_{1}\left(A_{1} \alpha_{1} \bowtie_{\beta_{1}} A_{2} \alpha_{2} \bowtie_{\beta_{2}} \cdots \alpha_{t-1} \bowtie_{\beta_{t-1}} A_{t}\right) \cong B_{1}(\text { as bialgebras or Hopf algebras }) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{2}\left(A_{t+1} \alpha_{t+1} \bowtie_{\beta_{t+1}} \cdots_{\alpha_{n}} \bowtie_{\beta_{n}} A_{n}\right) \cong B_{2} \text { (as bialgebras or Hopf algebras) } . \tag{3.2}
\end{equation*}
$$

The isomorphisms of (3.1) and (3.2) are $m_{H}^{t-1}\left(j_{A_{1}} \otimes j_{A_{2}} \otimes \cdots \otimes j_{A_{t}}\right)$ and $m_{H}^{n-t}\left(j_{A_{t+1}} \otimes j_{A_{t+2}} \otimes \cdots \otimes\right.$ $j_{A_{n}}$), respectively. Let $j_{B_{1}}$ and $j_{B_{2}}$ denote the contain-map of B_{1} and B_{2} in H, respectively. We can get that $m_{H}\left(j_{B_{1}} \otimes j_{B_{2}}\right)$ is a bijective since $m_{H}^{n-1}\left(j_{A_{1}} \otimes j_{A_{2}} \otimes \cdots \otimes j_{A_{n}}\right)$ is a bijective. In fact, $m_{H}\left(j_{B_{1}} \otimes j_{B_{2}}\right)=m_{H}^{n-1}\left(j_{A_{1}} \otimes j_{A_{2}} \otimes \cdots \otimes j_{A_{n}}\right)\left(\left(m_{H}^{t-1}\left(j_{A_{1}} \otimes j_{A_{2}} \otimes \cdots \otimes j_{A_{t}}\right)\right)^{-1} \otimes\left(m_{H}^{n-t-1}\left(j_{A_{t+1}} \otimes\right.\right.\right.$ $\left.\left.j_{A_{t+2}} \otimes \cdots \otimes j_{A_{n}}\right)\right)^{-1}$.
(ii) If $t=1$, let $B_{1}=A_{1}, B_{2}=j_{A_{2}}\left(A_{2}\right) j_{A_{3}}\left(A_{3}\right) \cdots j_{A_{n}}\left(A_{n}\right), j_{B_{1}}=j_{A_{1}}$ and $j_{B_{2}}$ be a contain-map from B_{2} to H. We can get that $m_{H}\left(j_{B_{1}} \otimes j_{B_{2}}\right)$ is a bijective by the way similar to (i).
(iii) If $t=n-1$, let $B_{1}=j_{A_{1}}\left(A_{1}\right) j_{A_{2}}\left(A_{2}\right) \cdots j_{A_{n-1}}\left(A_{n-1}\right)$ and $B_{2}=A_{n}$. We can also get that $m_{H}\left(j_{B_{1}} \otimes j_{B_{2}}\right)$ is a bijective.

Consequently, by [2, Factorization Theorem], there exist α_{t} and β_{t} such that $B_{1 \alpha_{t}} \bowtie_{\beta_{t}} B_{2} \cong$ $j_{B_{1}}\left(B_{1}\right) j_{B_{2}}\left(B_{2}\right)=H$. Considering relations (3.1) and (3.2), we have that

$$
\sigma\left(A_{1} \sigma_{1} \bowtie_{\beta_{1}} A_{2 \alpha_{2}}^{\left.\bowtie_{\beta_{2}} A_{3 \alpha_{3}} \bowtie_{\beta_{3}} \cdots_{\alpha_{n-1}} \bowtie_{\beta_{n-1}} A_{n}\right) \cong H \quad \text { (as bialgebras or Hopf algebras) }}\right.
$$

and the isomorphism is $m_{H}^{n-1}\left(j_{A_{1}} \otimes j_{A_{2}} \otimes \cdots \otimes j_{A_{n}}\right)$. The proof is completed.
Corollary 3.3 Let X, A and H be braided bialgebras or braided Hopf algebras. Assume j_{A} and j_{H} are bialgebra or Hopf algebra morphisms from A to X and H to X, respectively. Then $\left\{j_{A}, j_{H}\right\}$ is a double factorization of X iff in braided tensor category (\mathcal{C}, C), there exist morphisms α and β such that

$$
A_{\alpha} \bowtie_{\beta} H \cong X \quad \text { (as bialgebras or Hopf algebras) }
$$

and the isomorphism is $m_{X}\left(j_{A} \otimes j_{H}\right)$.
Corollary 3.4 Let $A_{1}, A_{2}, \ldots, A_{n}$ be braided sub-Hopf algebras of a finite-dimensional Hopf algebra H, and $H=A_{1} A_{2} \cdots A_{n}$. Assume that σ is a method of adding brackets for n factors. Then the following statements are equivalent.
(i) $H=A_{1} A_{2} \cdots A_{n}$ is an inner double factorization of H with respect to σ.
(ii) $\operatorname{dim} H=\operatorname{dim}\left(A_{1}\right) \operatorname{dim}\left(A_{2}\right) \cdots \operatorname{dim}\left(A_{n}\right)$, and for every pair of brackets in $\sigma:\left(A_{t} \otimes A_{t+1} \otimes\right.$ $\left.\cdots \otimes A_{t+l}\right),\left(A_{t} A_{t+1} \cdots A_{t+l}\right)$ is a sub-Hopf algebra of H.
(iii) For every pair of bracket in $\sigma:\left(A_{t} \otimes A_{t+1} \otimes \cdots \otimes A_{t+l}\right)$, $\left(A_{t} A_{t+1} \cdots A_{t+l}\right)$ is a sub-Hopf algebra of H, and there exists a set $\left\{\alpha_{i}, \beta_{i} \mid i=1,2, \ldots, n\right\}$ of morphisms such that

$$
\sigma\left(A_{1} \alpha_{1} \bowtie_{\beta_{1}} A_{2} \alpha_{2} \bowtie_{\beta_{2}} A_{3 \alpha_{3}} \bowtie_{\beta_{3}} \cdots_{\alpha_{n-1}} \bowtie_{\beta_{n-1}} A_{n}\right) \cong H \quad \text { (as bialgebras or Hopf algebras) }
$$

and the isomorphism is m_{H}^{n-1}.
Proof Obviously, (iii) implies (ii). By Theorem 3.2, (i) implies (iii). It suffices to show that (ii) implies (i). Assume that $\left(A_{t} \otimes A_{t+1} \otimes \cdots \otimes A_{t+l}\right)$ is a pair of brackets in σ. We only need to show that m_{H}^{l} is a bijective map from $\left(A_{t} \otimes A_{t+1} \otimes \cdots \otimes A_{t+l}\right)$ onto $A_{t} A_{t+1} \cdots A_{t+l}$. Since $\operatorname{dim}\left(A_{1} A_{2} \cdots A_{n}\right)=\operatorname{dim}\left(A_{1}\right) \operatorname{dim}\left(A_{2}\right) \cdots \operatorname{dim}\left(A_{n}\right)$, we have that $\operatorname{dim}\left(A_{t} \otimes A_{t+1} \otimes \cdots \otimes A_{t+l}\right)=$ $\operatorname{dim}\left(A_{t} A_{t+1} \cdots A_{t+l}\right)$, which implies that m_{H}^{l} is a bijective map from $\left(A_{t} \otimes A_{t+1} \otimes \cdots \otimes A_{t+l}\right)$ onto $A_{t} A_{t+1} \cdots A_{t+l}$. The proof is completed.

Lemma 3.5 Let A and B be braided sub-Hopf algebras of braided Hopf algebra H.
(i) If $A B=B A$, then $A B$ is sub-Hopf algebra of H.
(ii) If the antipode of H is invertible, and $A B$ or $B A$ is a braided sub-Hopf algebra of H, then $A B=B A$.

Proof (i) It is clear.
(ii) We can assume that $A B$ is a braided sub-Hopf algebra of H without loss of generality. For any $a \in A$ and $b \in B$, we see that $S\left(S^{-1}(a) S^{-1}(b)\right)=b a$. Thus $B A \subseteq A B$ since $A B$ is a braided sub-Hopf algebra. For any $x \in A B$, there exist $a_{i} \in A$ and $b_{i} \in B$ such that $S(x)=\sum a_{i} b_{i}$. We see that $x=S^{-1} S(x)=S^{-1}\left(\sum a_{i} b_{i}\right)=\sum S^{-1}\left(b_{i}\right) S^{-1}\left(a_{i}\right) \in B A$. Thus $A B \subseteq B A$. Consequently, $A B=B A$.

Corollary 3.6 Let $A_{1}, A_{2}, \ldots, A_{n}$ be braided sub-Hopf algebras of a finite-dimensional braided Hopf algebra H, and $H=A_{1} A_{2} \cdots A_{n}$. Then the following statements are equivalent.
(i) $H=A_{1} A_{2} \cdots A_{n}$ is an inner double factorization of H.
(ii) $\operatorname{dim} H=\operatorname{dim}\left(\mathrm{A}_{1}\right) \operatorname{dim}\left(\mathrm{A}_{2}\right) \cdots \operatorname{dim}\left(\mathrm{A}_{\mathrm{n}}\right)$ and $A_{u} A_{v}=A_{v} A_{u}$ for $1 \leq u<v \leq n$.
(iii) For $1 \leq u<v \leq n, A_{u} A_{v}=A_{v} A_{u}$, and for any method σ of adding brackets, there exists a set $\left\{\alpha_{i}, \beta_{i} \mid i=1,2, \ldots, n\right\}$ of morphisms such that

$$
\sigma\left(A_{1 \alpha_{1}} \bowtie_{\beta_{1}} A_{2} \alpha_{2} \bowtie_{\beta_{2}} A_{3 \alpha_{3}} \bowtie_{\beta_{3}} \cdots_{\alpha_{n-1}} \bowtie_{\beta_{n-1}} A_{n}\right) \cong H \quad \text { (as Hopf algebras) }
$$

and the isomorphism is m_{H}^{n-1}.
(iv) $H=A_{i_{1}} A_{i_{2}} \cdots A_{i_{n}}$ is an inner double factorization of H, where $\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}=$ $\{1,2,3, \ldots, n\}$.

Proof (i) \Rightarrow (ii). For $1 \leq u<v \leq n$, there exists a method of adding brackets σ such that $\left(A_{u} \otimes A_{v}\right)$ is a pair of brackets in σ. Thus $A_{u} A_{v}$ is a sub-Hopf algebra of H. By Lemma 3.5, $A_{u} A_{v}=A_{v} A_{u}$. It follows from Corollary 3.4 that $\operatorname{dimH}=\operatorname{dim}\left(\mathrm{A}_{1}\right) \operatorname{dim}\left(\mathrm{A}_{2}\right) \cdots \operatorname{dim}\left(\mathrm{A}_{\mathrm{n}}\right)$.
(ii) \Rightarrow (i) follows from Corollary 3.4.

Similarly, (ii) and (iv) are equivalent.
By Corollary 3.4, we also have that (ii) and (iii) are equivalent.
If H is an almost commutative braided Hopf algebra, in particular, H is a coquasitriangular braided Hopf algebra, then $A B=B A$ for any braided sub-Hopf algebras A and B of H. Note that every quantum commutative braided Hopf algebra H is a coquasitriangular braided Hopf algebra with coquasitriangular structure $r=\epsilon_{H} \otimes \epsilon_{H}$.

Example ${ }^{[12, L e m m a 3.4]}$ Assume that Γ is a commutative group and $\hat{\Gamma}$ is the character group of Γ with $g_{i} \in \Gamma, \chi_{i} \in \hat{\Gamma}, \chi_{i}\left(g_{j}\right) \chi_{j}\left(g_{i}\right)=1,1<N_{i}$, where N_{i} denotes the order of $\chi_{i}\left(g_{i}\right)$, $1 \leq i<j \leq \theta$. Let H denote the algebra generated by set $\left\{x_{i} \mid 1 \leq i \leq \theta\right\}$ with relation:

$$
\begin{equation*}
x_{l}^{N_{l}}=0, x_{i} x_{j}=\chi_{j}\left(g_{i}\right) x_{j} x_{i} \text { for } 1 \leq i, j, l \leq \theta \text { with } i \neq j \tag{3.3}
\end{equation*}
$$

Define coalgebra operations and $k G$-(co-)module operations in H as follows:

$$
\begin{gathered}
\Delta x_{i}=x_{i} \otimes 1+1 \otimes x_{i}, \quad \epsilon\left(x_{i}\right)=0 \\
\delta^{-}\left(x_{i}\right)=g_{i} \otimes x_{i}, \quad h \cdot x_{i}=\chi_{i}(h) x_{i}
\end{gathered}
$$

Then H is called a quantum linear space in ${ }_{k \Gamma}^{k \Gamma} \mathcal{Y} \mathcal{D}$. By [12, Lemma 3.4], H is a braided Hopf algebra with $\operatorname{dimH}=\mathrm{N}_{1} \mathrm{~N}_{2} \cdots \mathrm{~N}_{\theta}$. Let H_{i} be the sub-algebra generated by x_{i} in H. It is easy to check that H_{i} is a braided sub-Hopf algebra of H with $\operatorname{dimH}_{\mathrm{i}}=\mathrm{N}_{\mathrm{i}}$ and $H=H_{1} H_{2} \cdots H_{\theta}$ is an inner double factorization of H by Corollary 3.6 (ii). Furthermore, when $\theta=1$ and $N_{1}=p$ is prime, then H is not commutative with $\operatorname{dimH}=\mathrm{p}$.

By the way, it is well-known that the eighth Kaplansky's conjecture is that if the dimension of Hopf algebra H is prime, then H is commutative and cocommutative. Zhu ${ }^{[13]}$ gave the positive answer. Now the above example shows that braided version of the 8th Kaplansky's conjecture does not hold, i.e., there exists a noncommutative braided Hopf algebra H with prime dimension.

If there are two non-trivial sub-bialgebras or sub-Hopf algebras A and B of H such that $H=A B$ is an inner double factorization of H, then H is called a double factorizable bialgebra or Hopf algebra. Otherwise, H is called a double infactorisable bialgebra or Hopf algebra.

A bialgebra (Hopf algebra) H is said to satisfy the a.c.c. on sub-bialgebras (sub-Hopf algebras) if for every chain $A_{1} \subseteq A_{2} \subseteq \cdots$ of sub-bialgebras (sub-Hopf algebras) of H there is an integer n such that $A_{i}=A_{n}$, for all $i>n$. Similarly, we can define d.c.c..

If H satisfies the d.c.c. or a.c.c. on sub-bialgebras (sub-Hopf algebras), then H can be factorized into a product of finite double infactorisable sub-bialgebras (sub-Hopf algebras).

By Corollary 3.3, we can easily know that Sweedler's 4-dimensional Hopf algebra H_{4} over field k is double infactorisable in category $\mathcal{V} e c t(k)$. In fact, if H_{4} is double factorisable, then there exist two non-trivial sub-Hopf algebras A and B such that $H=A B$ and $H \cong A \bowtie B$. It is clear that A and B are 2-dimensional. Thus they are commutative, which implies that H_{4} is commutative, leading to a contradiction. Thus H_{4} is double infactorisable. Similarly, if p and q are two prime numbers and H is a non-commutative Hopf algebra with $\operatorname{dim} H=p q$, then H is double infactorisable. Consequently, every Taft algebra H with dimH $=\mathrm{p}^{2}$ is double infactorisable in $\mathcal{V} \operatorname{ect}(k)$.

4. The factorization of braided bialgebras or braided Hopf algebras in Yetter-Drinfeld categories

Throughout this section, we work in a Yetter-Drinfeld category ${ }_{B}^{B} \mathcal{Y} \mathcal{D}$. In this section, we give the relation among integrals and semisimplicity of braided Hopf algebra and its factors.

If H is a finite-dimensional braided Hopf algebra in ${ }_{B}^{B} \mathcal{Y} \mathcal{D}$, then \int_{H}^{l} and \int_{H}^{r} are one-dimensional by [14] or [11, Theorem 2.2.1]. So there exist a non-zero left integral Λ_{H}^{l} and a non-zero right integral Λ_{H}^{r}.

Proposition 4.1 If A, H and $D=A \stackrel{b}{\bowtie} H$ are finite dimensional braided Hopf algebras, then
(i) There are $u \in H$ and $v \in A$ such that

$$
\Lambda_{D}^{l}=\Lambda_{A}^{l} \otimes u, \quad \Lambda_{D}^{r}=v \otimes \Lambda_{H}^{r}
$$

(ii) If $D=A \stackrel{b}{\bowtie} H$ is semisimple, then A and H are semisimple;
(iii) If $D=A \stackrel{b}{\bowtie} H$ is unimodular, i.e., $\Lambda_{D}^{l}=\Lambda_{D}^{r}$, then there exists a non-zero $x \in k$ such that $\Lambda_{D}=x \Lambda_{A}^{l} \otimes \Lambda_{H}^{r}$, and $A \stackrel{b}{\bowtie} H$ is semisimple iff A and H are semisimple.

Proof (i) Let $a^{(1)}, a^{(2)}, \ldots, a^{(n)}$ and $h^{(1)}, h^{(2)}, \ldots, h^{(m)}$ be the bases of A and H, respectively. Assuming

$$
\Lambda_{D}^{l}=\sum k_{i j}\left(a^{(i)} \otimes h^{(j)}\right)
$$

where $k_{i j} \in k$, we have that

$$
a \Lambda_{D}^{l}=\epsilon(a) \Lambda_{D}^{l}
$$

and

$$
\sum \epsilon(a) k_{i j}\left(a^{(i)} \otimes h^{(j)}\right)=\sum k_{i j}\left(a a^{(i)} \otimes h^{(j)}\right)
$$

for any $a \in A$. Let $x_{j}=\sum_{i} k_{i j} a^{(i)}$. Considering that $\left\{h^{(j)}\right\}$ is a base of H, we get x_{j} is a left integral of A and there exists $k_{j} \in k$ such that $x_{j}=k_{j} \Lambda_{A}^{l}$ for $j=1,2, \ldots, m$. Thus

$$
\Lambda_{D}^{l}=\sum_{j} k_{j}\left(\Lambda_{A}^{l} \otimes h^{(j)}\right)=\Lambda_{A}^{l} \otimes u
$$

where $u=\sum_{j} k_{j} h^{(j)}$.
Similarly, we have that $\Lambda_{D}^{r}=v \otimes \Lambda_{H}^{r}$.
(ii) and (iii) follow from (i).

Remark 4.2 For braided version of biproduct $A \nrightarrow H$ (see [10, Corollary 2.17] or [11, Chapter 4]), Proposition 4.1 also holds. For example, in Example 3.7, $\int_{H}^{l}=\int_{H}^{r}=k x_{1}^{N_{1}-1} x_{2}^{N_{2}-1} \cdots x_{\theta}^{N_{\theta}-1}$ of quantum linear space H. By Proposition 4.1, the integral of the biproduct $D=H \ggg \Gamma$ is $\int_{D}=k x_{1}^{N_{1}-1} x_{2}^{N_{2}-1} \cdots x_{\theta}^{N_{\theta}-1} \otimes\left(\sum_{g \in \Gamma} g\right)$.

5. The factorization of ordinary Hopf algebras

Throughout this section, we work in the category $\mathcal{V} \operatorname{ect}(k)$. In this section, using the results in preceding section, we give the relation among semisimplicity of Hopf algebra and its factors.

Lemma 5.1 Assume that H is a finite-dimensional Hopf algebra. Then
(i) H is cosemisimple iff H^{*} semisimple.
(ii) H is semisimple iff H^{*} cosemisimple.

Proof (i) If H is cosemisimple, then there exists $T \in \int_{H^{*}}^{l}$ such that $\epsilon_{H^{*}}(T) \neq 0$ by [15, Theorem 2.4.6, i.e., dual Maschke theorem]. Therefore H^{*} is semisimple. Conversely, if H^{*} is semisimple, then there exists $T \in \int_{H^{*}}^{l}$ such that $\epsilon_{H^{*}}(T) \neq 0$. Using again [15, dual Maschke theorem], we have that H is cosemisimple.

Similarly, we get (ii).
Lemma 5.2 ${ }^{[8],[15]}$ If H is a finite dimensional Hopf algebra with chark $=0$, then the following conditions are equivalent.
(i) H is semisimple;
(ii) H is cosemisimple;
(iii) H is semisimple and cosemisimple;
(iv) $S_{H}^{2}=\mathrm{id}_{H}$;
(v) $\operatorname{tr}\left(S_{H}^{2}\right) \neq 0$.

Proof $(\mathrm{i}) \Rightarrow$ (ii). If H is semisimple, then H^{*} is cosemisimple by Lemma 5.1. So H^{*} is semisimple by [15, Theorem 2.5.2]. Therefore H is cosemisimple. It follows from [15, Theorem 2.5.2] that (ii) implies (i). Consequently, (i), (ii) and (iii) are equivalent. Using formula $\operatorname{tr}\left(S_{H}^{2}\right)=$ $\epsilon_{H}\left(\Lambda_{H}^{l}\right) \Lambda_{H^{*}}^{r}\left(1_{H}\right)$ in [8, Proposition 2 (c)], we have that (iii) and (v) are equivalent. (iii) implies (iv) by [15, Theorem 2.5.3]. Obviously, (iv) implies (v).

Lemma 5.3 ${ }^{[8],[15]}$ If H is a finite dimensional Hopf algebra with chark $>(\operatorname{dimH})^{2}$, then the following conditions are equivalent.
(i) H is semisimple and cosemisimple;
(ii) $S_{H}^{2}=\mathrm{id}_{H}$;
(iii) $\operatorname{tr}\left(S_{H}^{2}\right) \neq 0$.

Proof Using formula $\operatorname{tr}\left(S_{H}^{2}\right)=\epsilon_{H}\left(\Lambda_{H}^{l}\right) \Lambda_{H^{*}}^{r}\left(1_{H}\right)$ in [8, Proposition 2 (c)], we have that (i) and (iii) are equivalent. (i) implies (ii) by [15, Theorem 2.5.3]. Obviously, (ii) implies (iii).

Proposition 5.4 Assume that $D=A \stackrel{b}{\bowtie} H$ are finite dimensional Hopf algebras. If $A \stackrel{b}{\bowtie} H$ is (co)semisimple, then A and H are (co)semisimple.

Proof If D is semisimple, then A and H are semisimple by Proposition 4.1. If D is cosemisimple, by Lemma 5.1, D^{*} is semisimple. Considering $(A \stackrel{b}{\bowtie} H)^{*} \cong A^{*} \stackrel{b}{\bowtie} H^{*}$ (see [11, Proposition 3.1.2], note that the evaluations in [11, Proposition 3.1.12] or [9, Proposition 1.11] are not the same in this paper), we have that A^{*} and H^{*} are semisimple by Proposition 4.1. Consequently, A and H are cosemisimple.

Theorem 5.5 Assume that $\left\{j_{A_{1}}, j_{A_{2}}, \ldots, j_{A_{n}}\right\}$ is a double factorization of finite-dimensional Hopf algebra H with respect to some method σ of adding brackets. Then
(I) H is semisimple and cosemisimple iff A_{i} is semisimple and cosemisimple for $i=1,2, \ldots, n$, iff $\operatorname{tr}\left(S_{A_{i}}^{2}\right) \neq 0$ for $i=1,2, \ldots, n$, iff $\operatorname{tr}\left(S_{H}^{2}\right) \neq 0$.
(II) If H is (co)semisimple, then A_{i} is (co)semisimple for $i=1,2, \ldots, n$.
(III) If A_{i} is involutory for $i=1,2, \ldots, n$, then H is involutory.
(IV) H admits a coquasitriangular structure iff A_{i} admits a coquasitriangular structure for $i=1,2, \ldots, n$.
(V) If chark $=0$, then the following are equivalent.
(i) H is semisimple and cosemisimple; (i) H is semisimple; (i)" H is cosemisimple.
(ii) A_{i} is semisimple and cosemisimple for $i=1,2, \ldots, n$; (ii)' A_{i} is semisimple for $i=$ $1,2, \ldots, n$; (ii) ${ }^{\prime \prime} A_{i}$ is cosemisimple for $i=1,2, \ldots, n$.
(iii) A_{i} is involutory for $i=1,2, \ldots, n$.
(iv) H is involutory.
(v) $\operatorname{tr}\left(S_{H}^{2}\right) \neq 0$.
(vi) $\operatorname{tr}\left(S_{A_{i}}^{2}\right) \neq 0$ for $i=1,2, \ldots, n$.
(VI) If chark $>(\operatorname{dimH})^{2}$, or chark $>\left(\operatorname{dimA}_{\mathrm{i}}\right)^{2}$ for $i=1,2, \ldots, n$, then the following are equivalent.
(i) H is semisimple and cosemisimple.
(ii) A_{i} is semisimple and cosemisimple for $i=1,2, \ldots, n$.
(iii) A_{i} is involutory for $i=1,2, \ldots, n$.
(iv) H is involutory.
(v) $\operatorname{tr}\left(S_{H}^{2}\right) \neq 0$.
(vi) $\operatorname{tr}\left(S_{A_{i}}^{2}\right) \neq 0$ for $i=1,2, \ldots, n$.

Proof By Theorem 3.2, there exists $\left\{\alpha_{i}, \beta_{i} \mid i=1,2, \ldots, n\right\}$ such that $D=: \sigma\left(A_{1} \alpha_{1} \bowtie_{\beta_{1}}\right.$ $\left.A_{2} \alpha_{2} \bowtie_{\beta_{2}} A_{3 \alpha_{3}} \bowtie_{\beta_{3}} \cdots_{\alpha_{n-1}} \bowtie_{\beta_{n-1}} A_{n}\right) \cong H$ (as Hopf algebras) and the isomorphism is m^{n-1}. It is clear that

$$
\begin{equation*}
S_{D}^{2}=S_{A_{1}}^{2} \otimes S_{A_{2}}^{2} \otimes \cdots \otimes S_{A_{n}}^{2} \tag{5.4}
\end{equation*}
$$

(see [9, Proposition 1.6]) and

$$
\begin{equation*}
\operatorname{tr}\left(S_{D}^{2}\right)=\operatorname{tr}\left(S_{A_{1}}^{2}\right) \operatorname{tr}\left(S_{A_{2}}^{2}\right) \cdots \operatorname{tr}\left(S_{A_{n}}^{2}\right) \tag{5.5}
\end{equation*}
$$

(see [16, Theorem XIV.4.2].
(I) If H is semisimple and cosemisimple, then $\operatorname{tr}\left(S_{H}^{2}\right) \neq 0$. So $\operatorname{tr}\left(S_{A_{i}}^{2}\right) \neq 0$ by formula (5.5) for $i=1,2, \ldots, n$. It follows from [8, Proposition 2 (c)] that A_{i} is semisimple and cosemisimple for $i=1,2, \ldots, n$. Similarly, we can show the others.
(II) It follows from Proposition 5.4.
(III) It follows from formula (5.4).
(IV) It follows from the dual result of [17, Corollary 2.3] or [11, Corollary 7.4.7 ${ }^{\circ}$.
(V) By Lemma 5.2, (i), (i) $)^{\prime}$ and (i) ${ }^{\prime \prime}$ are equivalent; (ii), (ii) $)^{\prime}$ and (ii) ${ }^{\prime \prime}$ are equivalent; (ii), (iii) and (vi) are equivalent; (i), (iv) and (v) are equivalent. By (I), (i), (ii), (v) and (vi) are equivalent.
(VI) By Lemma 5.2, (ii), (iii) and (vi) are equivalent. By (I), (i), (ii), (v) and (vi) are equivalent. By (III), (iii) implies (iv).

Now we show that (iv) implies (v). Let chark $=p$. Since p is prime and $\operatorname{dim} H=\left(\operatorname{dim} A_{1}\right)\left(\operatorname{dim} A_{2}\right)$ $\cdots\left(\operatorname{dim} A_{n}\right)$ with $p>\left(\operatorname{dim} A_{i}\right)^{2}$, we have that p does not divide $\operatorname{dim} H$. Therefore, $\operatorname{tr}\left(S_{H}^{2}\right)=$ $\operatorname{tr}\left(\mathrm{id}_{H}\right) \neq 0$.

References

[1] MAJID S. Foundations of Quantum Group Theory [M]. Cambridge University Press, Cambridge, 1995.
[2] ZHANG Shouchuan, YANG Binzhong, REN Beishang. An example of double cross coproducts with nontrivial left coaction and right coaction in strictly braided tensor categories [J]. Southeast Asian Bull. Math., 2005, 29(6): 1175-1195.
[3] HUANG Yizhi. Vertex operator algebras, the Verlinde conjecture, and modular tensor categories [J]. Proc. Natl. Acad. Sci. USA, 2005, 102(15): 5352-5356.
[4] HUANG Yizhi, KONG Liang. Open-string vertex algebras, tensor categories and operads [J]. Comm. Math. Phys., 2004, 250(3): 433-471.
[5] BAKALOV B, KIRILLOV A JR. Lectures on Tensor Categories and Modular Functors [M]. American Mathematical Society, Providence, RI, 2001.
[6] HENNINGS M A. Hopf algebras and regular isotopy invariants for link diagrams [J]. Math. Proc. Cambridge Philos. Soc., 1991, 109(1): 59-77.
[7] KAUFFMAN L H. Invariants of Links and Three-Manifolds Via Hopf Algebras [M]. Lecture Notes in Pure and Appl. Math., 184, Dekker, New York, 1997.
[8] RADFORD D E. The trace function and Hopf algebras [J]. J. Algebra, 1994, 163(3): 583-622.
[9] ZHANG Shouchuan, CHEN Huixiang. Double bicrossproducts in braided tensor categories [J]. Comm. Algebra, 2001, 29(1): 31-66.
[10] BESPALOV Y, DRABANT B. Cross product bialgebras. I [J]. J. Algebra, 1999, 219(2): 466-505.
[11] ZHANG Shouchuan, Braided Hopf Algebras [M]. Hunan Normal University Press, Changsha, Second Edition, 2005.
[12] ANDRUSKIEWITSCH N, SCHNEIDER H J. Lifting of quantum linear spaces and pointed Hopf algebras of order p^{3} [J]. J. Algebra, 1998, 209(2): 658-691.
[13] ZHU Yongchang. Hopf algebras of prime dimension [J]. Internat. Math. Res. Notices, 1994, 1: 53-59.
[14] TAKEUCHI M. Finite Hopf algebras in braided tensor categories [J]. J. Pure Appl. Algebra, 1999, 138(1): 59-82.
[15] MONTGOMERY S. Hopf Algebras and Their Actions on Rings [M]. American Mathematical Society, Providence, RI, 1993.
[16] KASSEL C. Quantum Groups [M]. Springer-Verlag, New York, 1995.
[17] CHEN Huixiang. Quasitriangular structures of bicrossed coproducts [J]. J. Algebra, 1998, 204(2): 504-531.

