All Prime Cubes Are Anti-Sociable Numbers

LI Wei Xun
(Department of Mathematics, Maoming University, Guangdong 525000, China)
(E-mail: liweixun@163.com)

Abstract

In this paper, by using the basic properties of arithmetic function $\sigma(n)$, the existence of amicable pairs is discussed. We prove that all prime cubes are anti-sociable numbers.

Keywords prime; power; amicable pair; anti-sociable number.
Document code A
MR(2000) Subject Classification 11A25; 11A41; 11N05
Chinese Library Classification O156.1

1. Introduction

For any positive integer n, let $\sigma(n)$ be the sum of the divisors of n. A pair of positive integers (a, b) is called an amicable pair number if

$$
\begin{equation*}
\sigma(a)=\sigma(b)=a+b \tag{1}
\end{equation*}
$$

Conversely, for certain a, if there does not exist positive integer b satisfying (1), then a is called an anti-sociable number. When an amicable pair (a, b) satisfies $a=b, a$ is a famous perfect number. Therefore, the amicable pair number and the anti-soisble number are always a conspicuous topic in Number Theory ${ }^{[1,2]}$. In 2000, Luck ${ }^{[3]}$ proved that all Fermat numbers are anti-sociable numbers. In 2007, $\mathrm{Li}^{[4]}$ proved that all mersenne numbers M_{p} are anti-sociable numbers. In this paper, we shall discuss the anti-sociable number on the power of an odd prime.

Let positive integer n be a prime power, that is,

$$
\begin{equation*}
n=p^{r} \tag{2}
\end{equation*}
$$

where p is a prime and r is a positive integer. In [4, Lemma 6], when $r=1, n$ is an anti-sociable number. In [5] and [6], n is an anti-sociable number, where $p=2$ or p is an odd prime number and $r=2$.

In this paper, we will prove the more universal result about anti-sociable numbers.
Therorem If $p \geq 2 r^{2}$, n is an anti-sociable number.
On the basis of the above Theorem, we have the following deduction.
Deduction All prime cubes are anti-sociable numbers.
Received date: 2008-04-21; Accepted date: 2008-05-21
Foundation item: the National Natural Science Foundation of China (No. 10771186); the Natural Science Foundation of Guangdong Province (No. 06029035); the Science Foundation of Maoming University (No. 201076).

Also, we get a guess of the anti-sociable numbers from the known results.
Guess All prime powers are anti-sociable numbers.

2. Preliminaries

Lemma 1 Let $a=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}$ be the standard facorization of the positive integer a,

$$
\sigma(a)=a \sum_{i=1}^{k}\left(1+\frac{1}{p_{i}}+\cdots+\frac{1}{p_{i}^{r_{i}}}\right) .
$$

Proof This follows immediately from [7, Therorem 1.9.1].
Lemma 2 Let $a>2$. Then $\sigma(a)<2 a \log a$.
Proof This follows immediately from [8, Lemma 3].
Lemma 3 Let r be positive integers with $r>2$. If $x \geq 2 r^{2}$, then we have

$$
\begin{equation*}
x>2 \log x^{r} . \tag{3}
\end{equation*}
$$

Proof Let $f(x)=x-2 \log x^{r}$. Then $f^{\prime}(x)=1-\frac{2 r}{x}$. When $x>2 r, f(x)$ is an increasing function. Let $r \geq 3$. We get $2 r^{2}>2 r$, moreover

$$
f\left(2 r^{2}\right)=2 r(r-\log 2-2 \log r)>0
$$

If $x \geq 2 r^{2}$, we get $f(x)>0$. Therefore, inequality (3) satisfies $x>2 r^{2}$. This completes the proof.

3. Proof of the Theorem

Proof Let $a=p^{r}$, where p is a prime and r is a positive integer. According to the result of the references [4] and [6], we know that the theorem satisfies $r=1$ or $r=2$. So we only need to discuss the condition for $r \geq 3$.

If a is not an anti-sociable number, we can find proper positive integer b satisfying (1). By Lemma 1, we have

$$
\begin{equation*}
\sigma(a)=\sigma\left(p^{r}\right)=1+p+\cdots+p^{r-1}+p^{r} . \tag{4}
\end{equation*}
$$

So, from (1) and (4), we have

$$
\begin{equation*}
b=1+p+\cdots+p^{r-1} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma(b)=\sigma(a)=p b+1 \tag{6}
\end{equation*}
$$

From (5), we get $b=\frac{p^{r}-1}{p-1}<\frac{p^{r}}{p-1} \leq p^{r}$. By Lemma 2, we get

$$
\begin{equation*}
\sigma(b)<2 b \log b<2 b \log p^{r} \tag{7}
\end{equation*}
$$

Combining with (6) and (7), we have

$$
\begin{equation*}
p<2 \log p^{r} \tag{8}
\end{equation*}
$$

However, by Lemma 3, if $p \geq 2 r^{2}$, inequality (8) is impossible. We can draw the conclusion that: If $p \geq 2 r^{2}, a=p^{r}$ must be an anti-sociable number. This completes the proof.

4. Proof of the Deduction

Proof From the Theorem in this paper, we only need to prove p^{3} is an anti-sociable number when $p<18$.

When $p<18$, only $p=2,3,5,7,11,13$ and 17 .
If $a=p^{3}$ is not an anti-sociable number, we have $b \in\{7,13,31,57,133,183,307\}$ from (1) which satisfies

$$
\begin{equation*}
\sigma(b)=\sigma(a) \tag{9}
\end{equation*}
$$

From the simple calculation, we know (9) is impossible. So, p^{3} is an anti-sociable number. This completes the proof.

References

[1] GUY R K. Unsolved Problems in Number Theory [M]. Springer-Verlag, New York-Berlin, 1981.
[2] YAN Songyuan. 2500 years in the search for amicable numbers [J]. Adv. Math. (China), 2004, 33(4): 385-400.
[3] LUCA, F. The anti-social Fermat number [J]. Amer. Math. Monthly, 2000, 107(2): 171-173.
[4] LI Weixun. All Mersenne numbers are anti-sociable numbers [J]. J. Math. Res. Exposition, 2007, 27(4): 693-696. (in Chinese)
[5] LE Maohua. Powers of 2 are Anti-Sociable Numbers [J]. J. Sichuan Univ. Sci. Eng. Nat. Sci. Ed., 2005, 18(3): 1-2.
[6] LE Maohua. The square of an odd prime is an anti-sociable number [J]. J. Zhoukou Normal Univ., 2006, 23(5): 4-5.
[7] HUA Luogeng. An Introdution to Number Theory [M]. Beijing: Science Press, 1979. (in Chinese)
[8] SÁNDOR J. On certain limits for arithmetical functions [J]. Octogon Math. Mag., 2007, 15(1): $280-282$.

