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Abstract In this paper, by using the basic properties of arithmetic function σ(n), the existence

of amicable pairs is discussed. We prove that all prime cubes are anti-sociable numbers.
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1. Introduction

For any positive integer n, let σ(n) be the sum of the divisors of n. A pair of positive integers

(a, b) is called an amicable pair number if

σ(a) = σ(b) = a + b. (1)

Conversely, for certain a, if there does not exist positive integer b satisfying (1), then a is

called an anti-sociable number. When an amicable pair (a, b) satisfies a = b, a is a famous

perfect number. Therefore, the amicable pair number and the anti-soisble number are always

a conspicuous topic in Number Theory[1,2]. In 2000, Luck[3] proved that all Fermat numbers

are anti-sociable numbers. In 2007, Li[4] proved that all mersenne numbers Mp are anti-sociable

numbers. In this paper, we shall discuss the anti-sociable number on the power of an odd prime.

Let positive integer n be a prime power, that is,

n = pr, (2)

where p is a prime and r is a positive integer. In [4, Lemma 6], when r = 1, n is an anti-sociable

number. In [5] and [6], n is an anti-sociable number, where p = 2 or p is an odd prime number

and r = 2.

In this paper, we will prove the more universal result about anti-sociable numbers.

Therorem If p ≥ 2r2, n is an anti-sociable number.

On the basis of the above Theorem, we have the following deduction.

Deduction All prime cubes are anti-sociable numbers.
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Also, we get a guess of the anti-sociable numbers from the known results.

Guess All prime powers are anti-sociable numbers.

2. Preliminaries

Lemma 1 Let a = pr1

1 pr2

2 · · · prk

k be the standard facorization of the positive integer a,

σ(a) = a

k∑

i=1

(1 +
1

pi

+ · · · +
1

pri

i

).

Proof This follows immediately from [7, Therorem 1.9.1].

Lemma 2 Let a > 2. Then σ(a) < 2a log a.

Proof This follows immediately from [8, Lemma 3].

Lemma 3 Let r be positive integers with r > 2. If x ≥ 2r2, then we have

x > 2 log xr. (3)

Proof Let f(x) = x − 2 logxr. Then f ′(x) = 1 − 2r
x

. When x > 2r, f(x) is an increasing

function. Let r ≥ 3. We get 2r2 > 2r, moreover

f(2r2) = 2r(r − log 2 − 2 log r) > 0.

If x ≥ 2r2, we get f(x) > 0. Therefore, inequality (3) satisfies x > 2r2. This completes the

proof. 2

3. Proof of the Theorem

Proof Let a = pr, where p is a prime and r is a positive integer. According to the result of

the references [4] and [6], we know that the theorem satisfies r = 1 or r = 2. So we only need to

discuss the condition for r ≥ 3.

If a is not an anti-sociable number, we can find proper positive integer b satisfying (1). By

Lemma 1, we have

σ(a) = σ(pr) = 1 + p + · · · + pr−1 + pr. (4)

So, from (1) and (4), we have

b = 1 + p + · · · + pr−1, (5)

and

σ(b) = σ(a) = pb + 1. (6)

From (5), we get b = pr
−1

p−1 < pr

p−1 ≤ pr. By Lemma 2, we get

σ(b) < 2b log b < 2b log pr. (7)

Combining with (6) and (7), we have

p < 2 log pr. (8)
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However, by Lemma 3, if p ≥ 2r2, inequality (8) is impossible. We can draw the conclusion

that: If p ≥ 2r2, a = pr must be an anti-sociable number. This completes the proof. 2

4. Proof of the Deduction

Proof From the Theorem in this paper, we only need to prove p3 is an anti-sociable number

when p < 18.

When p < 18, only p = 2, 3, 5, 7, 11, 13 and 17.

If a = p3 is not an anti-sociable number, we have b ∈ {7, 13, 31, 57, 133, 183, 307} from (1)

which satisfies

σ(b) = σ(a). (9)

From the simple calculation, we know (9) is impossible. So, p3 is an anti-sociable number.

This completes the proof. 2
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