# The Existence of Solutions of Initial Value Problems for Nonlinear Second Order Impulsive Integro-Differential Equations of Mixed Type in Banach Spaces 

YU Wei Qin, CHEN Fang Qi<br>(Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Jiangsu 210016, China)<br>(E-mail: yuweiqin1982@163.com)


#### Abstract

By the use of Mönch fixed point theorem and a new comparison result, the solutions of initial value problems for nonlinear second order impulsive integro-differential equations of mixed type in Banach spaces are investigated and the existence theorem is obtained.


Keywords Banach spaces; impulsive integro-differential equations; initial value problems; measure of noncompactness; cone.

Document code A
MR(2000) Subject Classification 45J05; 34B15
Chinese Library Classification O175.14

## 1. Introduction

In this paper we consider the following initial value problems (IVP) for nonlinear second order impulsive integro-differential equations of mixed type in a Banach space $E$ :

$$
\left\{\begin{array}{l}
u^{\prime \prime}=f\left(t, u, u^{\prime}, T u, S u\right), \quad t \in J, t \neq t_{k}  \tag{1}\\
\left.\triangle u\right|_{t=t_{k}}=I_{k}\left(u\left(t_{k}\right), u^{\prime}\left(t_{k}\right)\right), \\
\left.\triangle u^{\prime}\right|_{t=t_{k}}=H_{k}\left(u\left(t_{k}\right), u^{\prime}\left(t_{k}\right)\right), \quad k=1,2, \ldots, m \\
u(0)=x_{0}, u^{\prime}(0)=x_{1}
\end{array}\right.
$$

where $J=[0, a](a>0), f \in C[J \times E \times E \times E \times E, E], I_{k}, H_{k} \in C[E \times E, E](k=1,2, \ldots, m)$, $0<t_{1}<t_{2}<\cdots<t_{m}<a, x_{0}, x_{1} \in E$, and

$$
\begin{equation*}
(T u)(t)=\int_{0}^{t} k(t, s) u(s) \mathrm{d} s, \quad(S u)(t)=\int_{0}^{a} h(t, s) u(s) \mathrm{d} s \tag{2}
\end{equation*}
$$

In (2), $k \in C\left[D, R^{+}\right], h \in C\left[J \times J, R^{+}\right]$, where $R^{+}=[0,+\infty), D=\{(t, s) \in J \times J: t \geq s\}$, $\left.\triangle u\right|_{t=t_{k}}$ denotes the jump of $u(t)$ at $t=t_{k}$, i.e.,

$$
\left.\Delta u\right|_{t=t_{k}}=u\left(t_{k}^{+}\right)-u\left(t_{k}^{-}\right),
$$

where $u\left(t_{k}^{+}\right)$and $u\left(t_{k}^{-}\right)$represent the right-hand limit and left-hand limit of $u(t)$ at $t=t_{k}$, respectively. $\left.\triangle u^{\prime}\right|_{t=t_{k}}$ has a similar meaning for $u^{\prime}(t)$.

Received date: 2006-06-20; Accepted date: 2007-01-17
Foundation item: the National Natural Science Foundation of China (No. 10572057); the Natural Science Foundation of Jiangsu Province (No. BK2006186).

Initial value problems for nonlinear integro-differential equations arise from many nonlinear problems in science. Over the last couple of decades, many attempts have been made to study the existence of solutions for first-order or second-order initial value problems with or without impulses in Banach spaces. In particular, for the special case where $f$ does not include $u^{\prime}, T u$ and $S u$, Lakshmikantham and Leela ${ }^{[1]}$ discussed the unique solution of IVP (1) by means of the strongly minimal and maximal solutions conditions, Lipschitz condition and Kuratowski measure of noncompactness. Removing the Lipschitz condition, Hao and Liu ${ }^{[2]}$ obtained the existence of solutions of $\operatorname{IVP}(1)$ for the case in which $f$ does not include $u^{\prime}$. And in another special case where $f$ does not contain $u^{\prime}$, in [3], Liu, Wu and Hao studied the global solutions of IVP(1). Recently, Su, Liu and et al. investigated the global solutions of $\operatorname{IVP}(1)$ where $f$ does not contain impulses.

In this paper, by using Mönch fixed point theorem and a new comparison, we establish the theorem of existence of solutions of $\operatorname{IVP}(1)$. The result presented in this paper is new.

## 2. Preliminaries

In this paper, we always suppose that $(E,\|\cdot\|)$ is a real Banach space and $P$ is a normal cone in $E$. Let $P C[J, E]=\left\{x: x\right.$ is a map from $J$ into $E$ such that $x(t)$ is continuous at $t \neq t_{k}$, left continuous at $t=t_{k}$, and $x\left(t_{k}^{+}\right)$exists, $\left.k=1,2, \ldots, m\right\}$, and $P C^{1}[J, E]=\{x: x$ is a map from $J$ into $E$ such that $x(t)$ is continuously differentiable at $t \neq t_{k}$, left continuous at $t=t_{k}$, and $x\left(t_{k}^{+}\right), x^{\prime}\left(t_{k}^{-}\right), x^{\prime}\left(t_{k}^{+}\right)$exist, $\left.k=1,2, \ldots, m\right\}$. Evidently, $P C[J, E]$ is a Banach space with norm

$$
\|x\|_{P C}=\sup _{t \in J}\|x(t)\| .
$$

For $x \in P C^{1}[J, E]$, by virtue of mean value theorem

$$
x\left(t_{k}\right)-x\left(t_{k}-h\right) \in h \overline{\mathrm{co}}\left\{x^{\prime}(t): t_{k}-h<t<t_{k}\right\}(h>0),
$$

it is easy to see that the left derivative $x_{-}^{\prime}\left(t_{k}\right)$ exists and

$$
x_{-}^{\prime}\left(t_{k}\right)=\lim _{h \rightarrow 0^{+}} h^{-1}\left[x\left(t_{k}\right)-x\left(t_{k}-h\right)\right]=x^{\prime}\left(t_{k}^{-}\right)
$$

In IVP (1) and in the following, $x^{\prime}\left(t_{k}\right)$ is understood as $x_{-}^{\prime}\left(t_{k}\right)$. Evidently, $\mathrm{PC}^{1}[J, E]$ is also a Banach space with norm

$$
\|x\|_{P C^{1}}=\max \left\{\|x\|_{P C},\left\|x^{\prime}\right\|_{P C}\right\}
$$

where $\|x\|_{P C}$ is defined above and $\left\|x^{\prime}\right\|_{P C}=\sup _{t \in J}\left\|x^{\prime}(t)\right\|$. Let $J^{\prime}=J \backslash\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$, $J_{0}=\left[0, t_{1}\right], J_{1}=\left(t_{1}, t_{2}\right], \ldots, J_{m}=\left(t_{m-1}, t_{m}\right], J_{m}=\left(t_{m}, a\right]$, and $\alpha$ denotes the Kuratowski measure of noncompactness in $E . u \in P C^{1}[J, E] \bigcap C^{2}\left[J^{\prime}, E\right]$ is called a solution of $\operatorname{IVP}(1)$ if it satisfies (1).

Let $k_{0}=\max \{k(t, s):(t, s) \in D\}, h_{0}=\max \{h(t, s):(t, s) \in J \times J\}$. For $v_{0}, \omega_{0} \in$ $P C^{1}[J, E], v_{0} \leq \omega_{0}$, we write $\left[v_{0}, \omega_{0}\right]=\left\{u \in P C^{1}[J, E]: v_{0}(t) \leq u(t) \leq \omega_{0}(t), v_{0}^{\prime}(t) \leq u^{\prime}(t) \leq\right.$ $\left.\omega_{0}^{\prime}(t), t \in J\right\}$. For $B \subset P C^{1}[J, E]$, we write $B^{\prime}=\left\{x^{\prime}: x \in B\right\} \subset \mathrm{PC}[J, E], B_{k}=\left\{\left.x\right|_{J_{k}}\right.$ : $x \in B\}, B(t)=\{x(t): x \in B\} \subset E(t \in J)$, and $(T B)(t)=\{(T x)(t): x \in B\} \subset E$. $B_{k}^{\prime}, B^{\prime}(t),(S B)(t),(T B)^{\prime}(t),(S B)^{\prime}(t)$ have the similar meanings.

At the end of this section, we state some lemmas which will be used in Section 3.
Lemma 1 Assume that $E$ is a real Banach space, and $p \in P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right]$ satisfies

$$
\left\{\begin{array}{l}
p^{\prime \prime}(t) \leq-a(t) p(t)-b(t) p^{\prime}(t)-c(t)(T p)(t), \quad \forall t \in J, \quad t \neq t_{k}  \tag{3}\\
\left.\triangle p\right|_{t=t_{k}}=L_{k} p^{\prime}\left(t_{k}\right) \\
\left.\triangle p^{\prime}\right|_{t=t_{k}} \leq-L_{k}^{\prime} p^{\prime}\left(t_{k}\right), \quad k=1,2, \ldots, m \\
p^{\prime}(0) \leq p(0) \leq \theta
\end{array}\right.
$$

where $a, b, c$ are bounded integrable nonnegative functions on $J$ and $L_{k}, L_{k}^{\prime}(k=1,2, \cdots, m)$ are nonnegative constants, and provided the following conditions hold

$$
\begin{equation*}
\int_{0}^{a}\left(1+t+\sum_{k=1}^{m} L_{k}\right) a(t) \mathrm{d} t+\int_{0}^{a} b(t) \mathrm{d} t+\int_{0}^{a} c(t) \mathrm{d} t \cdot \int_{0}^{t}\left(1+s+\sum_{k=1}^{m} L_{k}\right) k(t, s) \mathrm{d} s+\sum_{k=1}^{m} L_{k}^{\prime} \leq 1 \tag{4}
\end{equation*}
$$

Then $p(t) \leq \theta, p^{\prime}(t) \leq \theta, \forall t \in J$.
Proof Let $p_{1}(t)=p^{\prime}(t)(t \in J)$. Then $p_{1} \in P C[J, E] \bigcap C^{1}\left[J^{\prime}, E\right]$. By (3) and Lemma 1 in [2], we have

$$
\begin{align*}
p(t) & =p(0)+\int_{0}^{t} p_{1}(s) \mathrm{d} s+\sum_{0<t_{k}<t}\left[p\left(t_{k}^{+}\right)-p\left(t_{k}\right)\right] \\
& =p(0)+\int_{0}^{t} p_{1}(s) \mathrm{d} s+\sum_{0<t_{k}<t} L_{k} p_{1}\left(t_{k}\right), \quad \forall t \in J \tag{5}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
(T p)(t)=\int_{0}^{t} k(t, s)\left[p(0)+\sum_{0<t_{k}<s} L_{k} p_{1}\left(t_{k}\right)\right] \mathrm{d} s+\int_{0}^{t} p_{1}(r) \mathrm{d} r \int_{r}^{t} k(t, s) \mathrm{d} s, \quad \forall t \in J \tag{6}
\end{equation*}
$$

Substituting (5) and (6) into (3), we get

$$
\left\{\begin{array}{l}
p_{1}^{\prime}(t) \leq-b(t) p_{1}(t)-a_{1}(t) p(0)-\int_{0}^{t} k_{1}(t, s) p_{1}(s) \mathrm{d} s-a(t) \sum_{0<t_{k}<t} L_{k} p_{1}\left(t_{k}\right)-  \tag{7}\\
\quad c(t) \int_{0}^{t} k(t, s)\left[\sum_{0<t_{k}<s} L_{k} p_{1}\left(t_{k}\right)\right] \mathrm{d} s, \quad \forall t \in J, \quad t \neq t_{k} \\
\left.\triangle p_{1}\right|_{t=t_{k}} \leq-L_{k}^{\prime} p_{1}\left(t_{k}\right), \quad k=1,2, \ldots, m \\
p_{1}(0) \leq p(0) \leq \theta
\end{array}\right.
$$

where

$$
\begin{gather*}
a_{1}(t)=a(t)+c(t) \int_{0}^{t} k(t, s) \mathrm{d} s, \quad \forall t \in J,  \tag{8}\\
k_{1}(t, s)=a(t)+c(t) \int_{s}^{t} k(t, r) \mathrm{d} r, \quad \forall(t, s) \in D . \tag{9}
\end{gather*}
$$

For any given $g \in P^{*}\left(P^{*}\right.$ denotes the dual cone of $\left.P\right)$, let $v(t)=g\left(p_{1}(t)\right)$. Then $v \in$
$P C\left[J, R^{1}\right] \bigcap C^{1}\left[J^{\prime}, R^{1}\right]$ and $v^{\prime}(t)=g\left(p_{1}^{\prime}(t)\right), \forall t \in J, t \neq t_{k}, k=1,2, \ldots, m$. From (7), we know

$$
\left\{\begin{array}{l}
v^{\prime}(t) \leq-b(t) v(t)-a_{1}(t) g(p(0))-\int_{0}^{t} k_{1}(t, s) v(s) \mathrm{d} s-a(t) \sum_{0<t_{k}<t} L_{k} v\left(t_{k}\right)-  \tag{10}\\
\quad c(t) \int_{0}^{t} k(t, s)\left[\sum_{0<t_{k}<s} L_{k} v\left(t_{k}\right)\right] \mathrm{d} s, \quad \forall t \in J, \quad t \neq t_{k} \\
\left.\Delta v\right|_{t=t_{k}} \leq-L_{k}^{\prime} v\left(t_{k}\right), \quad k=1,2, \ldots, m, \\
v(0) \leq g(p(0)) \leq 0
\end{array}\right.
$$

We shall show that

$$
\begin{equation*}
v(t) \leq 0, \quad \forall t \in J \tag{11}
\end{equation*}
$$

On the contrary, if we suppose (11) is not true, i.e., there exists a $0<t^{*} \leq a$ such that $v\left(t^{*}\right)>0$. Let $t^{*} \in J_{i}$ and $\inf \left\{v(t): 0 \leq t \leq t^{*}\right\}=-\lambda$. Then $\lambda \geq 0$ and for some $t_{*} \in J_{j}(j \leq i), v\left(t_{*}\right)=-\lambda$ or $v\left(t_{j}^{+}\right)=-\lambda$. We may assume $v\left(t_{*}\right)=-\lambda$ (the proof is similar when $v\left(t_{j}^{+}\right)=-\lambda$ ). We have by $(10), g(p(0)) \geq-\lambda$, and

$$
\left\{\begin{array}{l}
v^{\prime}(t) \leq \lambda b(t)+\lambda a_{1}(t)+\lambda \int_{0}^{t} k_{1}(t, s) \mathrm{d} s+\lambda a(t)\left(\sum_{0<t_{k}<t} L_{k}\right)+  \tag{12}\\
\quad \lambda c(t) \int_{0}^{t} k(t, s)\left(\sum_{0<t_{k}<s} L_{k}\right) \mathrm{d} s, \quad \forall 0 \leq t \leq t^{*}, \quad t \neq t_{k} \\
\left.\triangle v\right|_{t=t_{k}} \leq \lambda L_{k}^{\prime}, \quad \forall t_{k} \leq t^{*}
\end{array}\right.
$$

So, applying formula ${ }^{[12, ~ L e m m a ~ 1] ~}$

$$
\begin{equation*}
v\left(t^{*}\right)=v\left(t_{*}\right)+\int_{t_{*}}^{t^{*}} v^{\prime}(s) \mathrm{d} s+\sum_{k=j+1}^{i}\left[v\left(t_{k}^{+}\right)-v\left(t_{k}\right)\right] \tag{13}
\end{equation*}
$$

to (12), we find

$$
\begin{aligned}
& 0<v\left(t^{*}\right) \leq-\lambda+\lambda \int_{0}^{a}\left[b(t)+a_{1}(t)+\left(\sum_{k=1}^{m} L_{k}\right) a(t)\right] \mathrm{d} t+ \\
& \quad \lambda \int_{0}^{a} \mathrm{~d} t \int_{0}^{t} k_{1}(t, s) \mathrm{d} s+\lambda\left(\sum_{k=1}^{m} L_{k}\right) \int_{0}^{a} c(t) \mathrm{d} t \int_{0}^{t} k(t, s) \mathrm{d} s+ \\
& \quad \lambda \sum_{k=1}^{m} L_{k}^{\prime}
\end{aligned}
$$

which implies that $\lambda>0$ and

$$
\begin{align*}
& \int_{0}^{a}\left[b(t)+a_{1}(t)+\left(\sum_{k=1}^{m} L_{k}\right) a(t)\right] \mathrm{d} t+\int_{0}^{a} \mathrm{~d} t \int_{0}^{t} k_{1}(t, s) \mathrm{d} s+ \\
& \left(\sum_{k=1}^{m} L_{k}\right) \int_{0}^{a} c(t) \mathrm{d} t \int_{0}^{t} k(t, s) \mathrm{d} s+\sum_{k=1}^{m} L_{k}^{\prime}>1 \tag{14}
\end{align*}
$$

It is easy to see by simple calculation of (8), (9) and (14) that

$$
\int_{0}^{a}\left[b(t)+a_{1}(t)+\left(\sum_{k=1}^{m} L_{k}\right) a(t)\right] \mathrm{d} t+\int_{0}^{a} \mathrm{~d} t \int_{0}^{t} k_{1}(t, s) \mathrm{d} s+
$$

$$
\begin{aligned}
& \left(\sum_{k=1}^{m} L_{k}\right) \int_{0}^{a} c(t) \mathrm{d} t \int_{0}^{t} k(t, s) \mathrm{d} s+\sum_{k=1}^{m} L_{k}^{\prime} \\
= & \int_{0}^{a}\left(1+t+\sum_{k=1}^{m} L_{k}\right) a(t) \mathrm{d} t+\int_{0}^{a} b(t) \mathrm{d} t+\int_{0}^{a} c(t) \mathrm{d} t \times \\
& \int_{0}^{t}\left(1+s+\sum_{k=1}^{m} L_{k}\right) k(t, s) \mathrm{d} s+\sum_{k=1}^{m} L_{k}^{\prime}>1
\end{aligned}
$$

which contradicts (4). Consequently (11) holds.
Since $g \in P^{*}$ is arbitrary, we get from (11) that $p_{1}(t) \leq \theta$ for $t \in J$, namely, $p^{\prime}(t) \leq \theta$ for $t \in J$. Thus, the function $p(t)$ is nondecreasing on $J_{k}(k=0,1,2, \ldots, m)$. And from (3),

$$
\left.\triangle p\right|_{t=t_{k}}=L_{k} p^{\prime}\left(t_{k}\right) \leq \theta, \quad k=1,2, \ldots, m
$$

We know $p(t)$ is nondecreasing on $J$. Therefore, $p(t) \leq p(0) \leq \theta$ for $t \in J$. The lemma is proved.

Lemma $2^{[5]}$ Let $B \subset P C^{1}[J, E]$ be bounded and equicontinuous on each $J_{k}(k=0,1,2, \ldots, m)$. Then $\alpha\left(\left\{x(t): x \in B_{k}\right\}\right)$ is continuous on $t \in J_{k}$ and

$$
\alpha\left(\left\{\int_{J} x(t) \mathrm{d} t: x \in B\right\}\right) \leq \int_{J} \alpha(\{x(t): x \in B\}) \mathrm{d} t .
$$

Lemma $3^{[5]}$ Assume that $m \in C\left[J_{i}, R^{+}\right](i=0,1,2, \ldots, m)$ satisfies

$$
m(t) \leq M \int_{0}^{t} m(s) \mathrm{d} s+N \int_{0}^{a} m(s) \mathrm{d} s+\sum_{0<t_{k}<t} M_{k} m\left(t_{k}\right), \quad t \in J
$$

where $M>0, N \geq 0, M_{k} \geq 0(k=1,2, \ldots, m)$ are constants. Then $m(t) \equiv 0$ for any $t \in J$, provided one of the following conditions holds
(i) $N\left[\left(e^{M t_{1}}-1\right)+\left(1+M_{1}\right)\left(e^{M t_{2}}-e^{M t_{1}}\right)+\cdots+\prod_{k=1}^{m}\left(1+M_{k}\right)\left(e^{M a}-e^{M t_{m}}\right)\right]<M$;
(ii) $(M+N)\left[t_{1}+\left(t_{2}-t_{1}\right)\left(1+M_{1}\right)+\cdots+\left(a-t_{m}\right) \prod_{k=1}^{m}\left(1+M_{k}\right)\right]<1$.

Lemma $4^{[7]}$ Assume that $B \subset P C^{1}[J, E]$ is bounded, and $B^{\prime}$ is equicontinuous on each $J_{k}(k=$ $0,1,2, \ldots, m)$. Then

$$
\alpha(B)=\max \left\{\sup _{t \in J} \alpha(B(t)), \sup _{t \in J} \alpha\left(B^{\prime}(t)\right)\right\}
$$

Lemma $5^{[8]}$ Let $B=\left\{x_{n}\right\} \subset L[J, E]$, and suppose that there exists a $g \in L\left[J, R^{+}\right]$such that $\left\|x_{n}(t)\right\| \leq g(t)$ for any $t \in J$ and $x_{n} \in B$. Then $\alpha(B(t)) \in L\left[J, R^{+}\right]$and

$$
\alpha\left(\left\{\int_{0}^{t} x_{n}(s) \mathrm{d} s: n \in N\right\}\right) \leq 2 \int_{0}^{t} \alpha(B(s)) \mathrm{d} s, \quad \forall t \in J
$$

Lemma $6^{[9]}$ Let $E$ be a Banach space, $K \subset E$ closed and convex and $F: K \rightarrow K$ continuous with the further property that for $x \in K$, we have $B \subset K$ countable, $\bar{B}=\overline{\operatorname{co}}(\{x\} \cup F(B)) \Rightarrow B$ is relatively compact. Then $F$ has a fixed point in $K$.

## 3. Main result

We are now in a position to prove our existence results. Let us list the following assumptions for convenience.
(H1) There exist $v_{0}, \omega_{0} \in P C^{1}[J, E] \bigcap C^{2}\left[J^{\prime}, E\right]$ such that $v_{0}(t) \leq \omega_{0}(t), v_{0}^{\prime}(t) \leq \omega_{0}^{\prime}(t), \forall t \in J$ and bounded integrable nonnegative functions $a(t), b(t), c(t)$ and nonnegative constants $L_{k}, L_{k}^{\prime}(k=$ $1,2, \ldots, m)$ which satisfy (4), for any $h \in\left[v_{0}, \omega_{0}\right]$,

$$
\begin{aligned}
& \left\{\begin{array}{l}
v_{0}^{\prime \prime} \leq f\left(t, h, h^{\prime}, T h, S h\right)-a(t)\left(v_{0}-h\right)-b(t)\left(v_{0}^{\prime}-h^{\prime}\right)-c(t)\left(T v_{0}-T h\right) \\
\quad \forall t \in J, \quad t \neq t_{k}, \\
\left.\triangle v_{0}\right|_{t=t_{k}}=I_{k}\left(h\left(t_{k}\right), h^{\prime}\left(t_{k}\right)\right)+L_{k}\left(v_{0}^{\prime}\left(t_{k}\right)-h^{\prime}\left(t_{k}\right)\right), \\
\left.\Delta v_{0}^{\prime}\right|_{t=t_{k}} \leq H_{k}\left(h\left(t_{k}\right), h^{\prime}\left(t_{k}\right)\right)-L_{k}^{\prime}\left(v_{0}^{\prime}\left(t_{k}\right)-h^{\prime}\left(t_{k}\right)\right), \quad k=1,2, \ldots, m \\
v_{0}(0) \leq x_{0}, \quad v_{0}^{\prime}(0)-v_{0}(0) \leq x_{1}-x_{0},
\end{array}\right. \\
& \left\{\begin{array}{l}
\omega_{0}^{\prime \prime} \geq f\left(t, h, h^{\prime}, T h, S h\right)-a(t)\left(\omega_{0}-h\right)-b(t)\left(\omega_{0}^{\prime}-h^{\prime}\right)-c(t)\left(T \omega_{0}-T h\right), \\
\quad \forall t \in J, \quad t \neq t_{k}, \\
\left.\triangle \omega_{0}\right|_{t=t_{k}}=I_{k}\left(h\left(t_{k}\right), h^{\prime}\left(t_{k}\right)\right)+L_{k}\left(\omega_{0}^{\prime}\left(t_{k}\right)-h^{\prime}\left(t_{k}\right)\right), \\
\left.\Delta \omega_{0}^{\prime}\right|_{t=t_{k} \geq H_{k}\left(h\left(t_{k}\right), h^{\prime}\left(t_{k}\right)\right)-L_{k}^{\prime}\left(\omega_{0}^{\prime}\left(t_{k}\right)-h^{\prime}\left(t_{k}\right)\right), \quad k=1,2, \ldots, m} ^{\omega_{0}(0) \geq x_{0}, \quad \omega_{0}^{\prime}(0)-\omega_{0}(0) \geq x_{1}-x_{0}}
\end{array}\right.
\end{aligned}
$$

(H2) For any countable bounded equicontinuous set $B=\left\{u_{n}\right\} \subset\left[v_{0}, \omega_{0}\right]$ and $t \in J$,

$$
\begin{aligned}
\alpha\left(f\left(t, B(t), B^{\prime}(t),(T B)(t),(S B)(t)\right)\right) \leq & k_{1} \alpha(B(t))+k_{2} \alpha\left(B^{\prime}(t)\right)+ \\
& k_{3} \alpha((T B)(t))+k_{4} \alpha((S B)(t))
\end{aligned}
$$

where $k_{i}(i=1,2,3,4)$ are constants satisfying one of the following two conditions
(i) $a k_{4} h_{0}\left(e^{M a}-1\right)<k_{1}+k_{2}+2 a^{*}+2 b^{*}+a k_{0} k_{3}+2 a c^{*} k_{0}$,
(ii) $2\left(k_{1}+k_{2}+2 a^{*}+2 b^{*}+a k_{0} k_{3}+2 a c^{*} k_{0}+a k_{4} h_{0}\right) \max \{a, 1\} a<1$,
where $M=\max \left\{2 a\left(k_{1}+k_{2}+2 a^{*}+2 b^{*}+a k_{0} k_{3}+2 a k_{0} c^{*}\right), 2\left(k_{1}+k_{2}+2 a^{*}+2 b^{*}+a k_{0} k_{3}+2 a k_{0} c^{*}\right)\right\}$, $a^{*}=\sup \{a(t): t \in J\}, b^{*}=\sup \{b(t): t \in J\}, c^{*}=\sup \{c(t): t \in J\}$.

Theorem 1 Let $E$ be a real Banach space and $P$ be a normal cone in $E$. Assume that conditions (H1) and (H2) hold. Then IVP(1) has a solution $u^{*}$ in $\left[v_{0}, \omega_{0}\right]$.

Proof First, for any $h \in\left[v_{0}, \omega_{0}\right]$, we consider the following initial value problems for linear second order integro-differential equation (LIVP) in $E$

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)=g(t)-a(t) u(t)-b(t) u^{\prime}(t)-c(t)(T u)(t), \quad \forall t \in J, \quad t \neq t_{k}  \tag{15}\\
\left.\triangle u\right|_{t=t_{k}}=I_{k}\left(h\left(t_{k}\right), h^{\prime}\left(t_{k}\right)\right)+L_{k}\left(u^{\prime}\left(t_{k}\right)-h^{\prime}\left(t_{k}\right)\right), \\
\left.\triangle u^{\prime}\right|_{t=t_{k}}=H_{k}\left(h\left(t_{k}\right), h^{\prime}\left(t_{k}\right)\right)-L_{k}^{\prime}\left(u^{\prime}\left(t_{k}\right)-h^{\prime}\left(t_{k}\right)\right), \quad k=1,2, \ldots, m \\
u(0)=x_{0}, \quad u^{\prime}(0)=x_{1}
\end{array}\right.
$$

where

$$
g(t)=f\left(t, h(t), h^{\prime}(t),(T h)(t),(S h)(t)\right)+a(t) h(t)+b(t) h^{\prime}(t)+c(t)(T h)(t), \quad \forall t \in J
$$

It is easy to check that $u \in P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right]$ is a solution of $\operatorname{LIVP}(15)$ if and only if
$u \in P C[J, E] \cap C^{1}\left[J^{\prime}, E\right]$ is a unique solution of the following integrable equation

$$
\begin{align*}
u(t)= & x_{0}+t x_{1}+\int_{0}^{t}(t-s)\left[g(s)-a(s) u(s)-b(s) u^{\prime}(s)-c(s)(T u)(s)\right] \mathrm{d} s+ \\
& \sum_{0<t_{k}<t}\left\{\left[I_{k}\left(h\left(t_{k}\right), h^{\prime}\left(t_{k}\right)\right)+L_{k}\left(u^{\prime}\left(t_{k}\right)-h^{\prime}\left(t_{k}\right)\right)\right]+\right. \\
& \left.\left(t-t_{k}\right)\left[H_{k}\left(h\left(t_{k}\right), h^{\prime}\left(t_{k}\right)\right)-L_{k}^{\prime}\left(u^{\prime}\left(t_{k}\right)-h^{\prime}\left(t_{k}\right)\right)\right]\right\}, \quad \forall t \in J, t \neq t_{k} . \tag{16}
\end{align*}
$$

We can define an operator

$$
A h=u
$$

where $u, h$ satisfy (16). Then

$$
\begin{align*}
(A h)^{\prime}(t)= & u^{\prime}(t) \\
= & x_{1}+\int_{0}^{t}\left[g(s)-a(s) u(s)-b(s) u^{\prime}(s)-c(s)(T u)(s)\right] \mathrm{d} s+ \\
& \sum_{0<t_{k}<t}\left[H_{k}\left(h\left(t_{k}\right), h^{\prime}\left(t_{k}\right)\right)-L_{k}^{\prime}\left(u^{\prime}\left(t_{k}\right)-h^{\prime}\left(t_{k}\right)\right)\right], \quad \forall t \in J, t \neq t_{k} \tag{17}
\end{align*}
$$

We can easily find $u \in P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right]$ is a solution of $\operatorname{IVP}(1)$ if and only if $u \in P C[J, E] \cap C^{1}\left[J^{\prime}, E\right]$ is a fixed point of $A$.

In the following, we will show that $A$ has a fixed point in $P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right]$. We will divide the proof into three steps.
(i) We will show that the operator $A:\left[v_{0}, \omega_{0}\right] \rightarrow\left[v_{0}, \omega_{0}\right]$.

In fact, for any $h \in\left[v_{0}, \omega_{0}\right]$, let $u=A h$. All we need to do is to prove $v_{0} \leq u \leq \omega_{0}, v_{0}^{\prime} \leq$ $u^{\prime} \leq \omega_{0}^{\prime}$. Let $p=u-\omega_{0}$. By (15) and (H1), we know

$$
\left\{\begin{aligned}
& p^{\prime \prime}= u^{\prime \prime}-\omega_{0}^{\prime \prime} \\
& \leq f\left(t, h, h^{\prime}, T h, S h\right)+a(t)(h-u)+b(t)\left(h^{\prime}-u^{\prime}\right)+c(t)(T h-T u)- \\
& f\left(t, h, h^{\prime}, T h, S h\right)+a(t)\left(\omega_{0}-h\right)+b(t)\left(\omega_{0}^{\prime}-h^{\prime}\right)+c(t)\left(T \omega_{0}-T h\right) \\
&=-a(t) p(t)-b(t) p^{\prime}(t)-c(t)(T p)(t), \quad \forall t \in J, \quad t \neq t_{k}, \\
&\left.\triangle p\right|_{t=t_{k}}= I_{k}\left(h\left(t_{k}\right), h^{\prime}\left(t_{k}\right)\right)+L_{k}\left(u^{\prime}\left(t_{k}\right)-h^{\prime}\left(t_{k}\right)\right)-I_{k}\left(h\left(t_{k}\right), h^{\prime}\left(t_{k}\right)\right)- \\
& L_{k}\left(\omega_{0}^{\prime}\left(t_{k}\right)-h^{\prime}\left(t_{k}\right)\right)=L_{k} p^{\prime}\left(t_{k}\right), \\
&\left.\triangle p^{\prime}\right|_{t=t_{k}} \leq H_{k}\left(h\left(t_{k}\right), h^{\prime}\left(t_{k}\right)\right)-L_{k}^{\prime}\left(u^{\prime}\left(t_{k}\right)-h^{\prime}\left(t_{k}\right)\right)-H_{k}\left(h\left(t_{k}\right), h^{\prime}\left(t_{k}\right)\right)+ \\
& \quad L_{k}^{\prime}\left(\omega_{0}^{\prime}\left(t_{k}\right)-h^{\prime}\left(t_{k}\right)\right)=-L_{k}^{\prime} p^{\prime}\left(t_{k}\right), \quad k=1,2, \ldots, m \\
& p^{\prime}(0)= u^{\prime}(0)-\omega_{0}^{\prime}(0)=x_{1}-\omega_{0}^{\prime}(0) \leq x_{0}-\omega_{0}(0)=u(0)-\omega_{0}(0)=p(0) \leq \theta
\end{aligned}\right.
$$

From Lemma 1, we get $p(t) \leq 0, p^{\prime}(t) \leq 0$. Therefore $u \leq \omega_{0}, u^{\prime} \leq \omega_{0}^{\prime}$. By similar method we can obtain $v_{0} \leq u, v_{0}^{\prime} \leq u^{\prime}$.
(ii) We now prove that $A:\left[v_{0}, \omega_{0}\right] \rightarrow\left[v_{0}, \omega_{0}\right]$ is continuous. Let $A=A_{1}+A_{2}$, where

$$
\begin{aligned}
\left(A_{1} h\right)(t)= & x_{0}+t x_{1}+\int_{0}^{t}(t-s)\left[g(s)-a(s) u(s)-b(s) u^{\prime}(s)-c(s)(T u)(s)\right] \mathrm{d} s \\
\left(A_{2} h\right)(t)= & \sum_{0<t_{k}<t}\left\{\left[I_{k}\left(h\left(t_{k}\right), h^{\prime}\left(t_{k}\right)\right)+L_{k}\left(u^{\prime}\left(t_{k}\right)-h^{\prime}\left(t_{k}\right)\right)\right]+\right. \\
& \left.\left(t-t_{k}\right)\left[H_{k}\left(h\left(t_{k}\right), h^{\prime}\left(t_{k}\right)\right)-L_{k}^{\prime}\left(u^{\prime}\left(t_{k}\right)-h^{\prime}\left(t_{k}\right)\right)\right]\right\}, \quad \forall t \in J, \quad t \neq t_{k} .
\end{aligned}
$$

The proof of (ii) is similar to that of [10].
(iii) In the end we will show $A$ has a fixed point in $\left[v_{0}, \omega_{0}\right]$. For $x \in\left[v_{0}, \omega_{0}\right], B=\left\{u_{n}\right\} \subset$ $\left[v_{0}, \omega_{0}\right]$ satisfying

$$
\begin{equation*}
\bar{B}=\overline{\operatorname{co}}(\{x\} \cup(A B)), \tag{18}
\end{equation*}
$$

we shall prove that $B$ is relatively compact.
From (H1), we get

$$
\begin{gathered}
v_{0}^{\prime \prime}+a(t) v_{0}+b(t) v_{0}^{\prime}+c(t)\left(T v_{0}\right) \leq f\left(t, u_{n}, u_{n}^{\prime}, T u_{n}, S u_{n}\right)+a(t) u_{n}+ \\
b(t) u_{n}^{\prime}+c(t)\left(T u_{n}\right) \\
\leq \omega_{0}^{\prime \prime}+a(t) \omega_{0}+b(t) \omega_{0}^{\prime}+c(t)\left(T \omega_{0}\right), \\
\left.\triangle v_{0}\right|_{t=t_{k}}-L_{k} v_{0}^{\prime}\left(t_{k}\right) \leq I_{k}\left(u_{n}\left(t_{k}\right), u_{n}^{\prime}\left(t_{k}\right)\right)-L_{k} u_{n}^{\prime}\left(t_{k}\right) \leq\left.\triangle \omega_{0}\right|_{t=t_{k}}-L_{k} \omega_{0}^{\prime}\left(t_{k}\right), \\
\left.\triangle v_{0}^{\prime}\right|_{t=t_{k}}+L_{k}^{\prime} v_{0}^{\prime}\left(t_{k}\right) \leq H_{k}\left(u_{n}\left(t_{k}\right), u_{n}^{\prime}\left(t_{k}\right)\right)+L_{k}^{\prime} u_{n}^{\prime}\left(t_{k}\right) \leq\left.\triangle \omega_{0}\right|_{t=t_{k}}+L_{k}^{\prime} \omega_{0}^{\prime}\left(t_{k}\right) .
\end{gathered}
$$

Therefore, $\left\{f\left(t, u_{n}, u_{n}^{\prime}, T u_{n}, S u_{n}\right)+a(t) u_{n}+b(t) u_{n}^{\prime}+c(t)\left(T u_{n}\right): u_{n} \in B\right\}$ are bounded in $P C^{1}[J, E]$ and $\left\{I_{k}\left(u_{n}\left(t_{k}\right), u_{n}^{\prime}\left(t_{k}\right)\right)-L_{k} u_{n}^{\prime}\left(t_{k}\right): k=1,2, \ldots, m\right\},\left\{H_{k}\left(u_{n}\left(t_{k}\right), u_{n}^{\prime}\left(t_{k}\right)\right)+L_{k}^{\prime} u_{n}^{\prime}\left(t_{k}\right)\right.$ : $k=1,2, \ldots, m\}$ are bounded in $E$. Together with (16) and (17) we can easily get $(A B)(t)$, $(A B)^{\prime}(t)$ are bounded and equicontinuous on $J_{i}(i=0,1,2, \ldots, m)$ and from (18) we know $B(t)$, $B^{\prime}(t)$ are bounded and equicontinuous on $J_{i}(i=0,1,2, \ldots, m)$. Hence, by Lemma 4, we have $\alpha(B)=\max \left\{\sup _{t \in J} \alpha(B(t)), \sup _{t \in J} \alpha\left(B^{\prime}(t)\right)\right\}$. Let $m(t)=\max \left\{\alpha(B(t)), \alpha\left(B^{\prime}(t)\right)\right\}$. Then, from Lemma 2, we can obtain $m \in C\left[J_{i}, R^{+}\right](i=0,1,2, \ldots, m)$.

For $t \in J_{0}=\left[0, t_{1}\right]$, from (18), Lemma 2, 5 , the definition of $A$ and the nature of the measure of noncompactness, we can get

$$
\begin{align*}
\alpha(B(t))= & \alpha(\bar{B}(t))=\alpha((A B)(t)) \\
= & \alpha\left(\int_{0}^{t}(t-s)\left[g(s)-a(s) u(s)-b(s) u^{\prime}(s)-c(s)(T u)(s)\right] \mathrm{d} s\right) \\
\leq & 2 a \int_{0}^{t} \alpha\left(f\left(s, B(s), B^{\prime}(s),(T B)(s),(S B)(s)\right)\right) \mathrm{d} s+ \\
& 4 a a^{*} \int_{0}^{t} \alpha(B(s)) \mathrm{d} s+4 a b^{*} \int_{0}^{t} \alpha\left(B^{\prime}(s)\right) \mathrm{d} s+4 a c^{*} \int_{0}^{t} \alpha((T B)(s)) \mathrm{d} s \\
\leq & \left(2 a k_{1}+4 a a^{*}\right) \int_{0}^{t} \alpha(B(s)) \mathrm{d} s+\left(2 a k_{2}+4 a b^{*}\right) \int_{0}^{t} \alpha\left(B^{\prime}(s)\right) \mathrm{d} s+ \\
& \left(2 a k_{3}+4 a c^{*}\right) \int_{0}^{t} \alpha((T B)(s)) \mathrm{d} s+2 a k_{4} \int_{0}^{t} \alpha((S B)(s)) \mathrm{d} s \\
\leq & 2 a\left(k_{1}+k_{2}+2 a^{*}+2 b^{*}\right) \int_{0}^{t} m(s) \mathrm{d} s+2 a\left(k_{3}+2 c^{*}\right) k_{0} t \int_{0}^{t} m(s) \mathrm{d} s+ \\
& 2 a k_{4} h_{0} t \int_{0}^{a} m(s) \mathrm{d} s \\
\leq & 2 a\left(k_{1}+k_{2}+2 a^{*}+2 b^{*}+a k_{0} k_{3}+2 a c^{*} k_{0}\right) \int_{0}^{t} m(s) \mathrm{d} s+ \\
& 2 a^{2} k_{4} h_{0} \int_{0}^{a} m(s) \mathrm{d} s, \tag{19}
\end{align*}
$$

$$
\begin{align*}
\alpha\left(B^{\prime}(t)\right)= & \alpha\left(\overline{B^{\prime}}(t)\right)=\alpha\left((A B)^{\prime}(t)\right) \\
= & \alpha\left(\int_{0}^{t}\left[g(s)-a(s) u(s)-b(s) u^{\prime}(s)-c(s)(T u)(s)\right] \mathrm{d} s\right) \\
\leq & 2 \int_{0}^{t} \alpha\left(f\left(s, B(s), B^{\prime}(s),(T B)(s),(S B)(s)\right)\right) \mathrm{d} s+ \\
& 4 a^{*} \int_{0}^{t} \alpha(B(s)) \mathrm{d} s+4 b^{*} \int_{0}^{t} \alpha\left(B^{\prime}(s)\right) \mathrm{d} s+4 c^{*} \int_{0}^{t} \alpha((T B)(s)) \mathrm{d} s \\
\leq & 2\left(k_{1}+k_{2}+2 a^{*}+2 b^{*}+a k_{0} k_{3}+2 a c^{*} k_{0}\right) \int_{0}^{t} m(s) \mathrm{d} s+ \\
& 2 a k_{4} h_{0} \int_{0}^{a} m(s) \mathrm{d} s \tag{20}
\end{align*}
$$

From (19) and (20), we have

$$
m(s) \leq M \int_{0}^{t} m(s) \mathrm{d} s+N \int_{0}^{a} m(s) \mathrm{d} s, \quad \forall t \in J_{0}
$$

where

$$
\begin{align*}
M= & \max \left\{2 a\left(k_{1}+k_{2}+2 a^{*}+2 b^{*}+a k_{0} k_{3}+2 a c^{*} k_{0}\right), 2\left(k_{1}+k_{2}+2 a^{*}+\right.\right. \\
& \left.\left.2 b^{*}+a k_{0} k_{3}+2 a c^{*} k_{0}\right)\right\} \\
N= & \max \left\{2 a^{2} k_{4} h_{0}, 2 a k_{4} h_{0}\right\} . \tag{21}
\end{align*}
$$

Therefore, from (H1) and Lemma 3, $m(t) \equiv 0, \forall t \in J_{0}$. Especially,

$$
\begin{equation*}
\alpha\left(B\left(t_{1}\right)\right)=\alpha\left(B^{\prime}\left(t_{1}\right)\right)=0 \tag{22}
\end{equation*}
$$

Observing that $I_{1}, H_{1} \in C[E \times E, E]$, we have

$$
\begin{equation*}
\alpha\left(I_{1}\left(B\left(t_{1}\right), B^{\prime}\left(t_{1}\right)\right)\right)=0, \quad \alpha\left(H_{1}\left(B\left(t_{1}\right), B^{\prime}\left(t_{1}\right)\right)\right)=0 \tag{23}
\end{equation*}
$$

Using the similar method, for $t \in\left(t_{1}, t_{2}\right]$, we get

$$
\begin{aligned}
\alpha(B(t)) \leq & 2 a\left(k_{1}+k_{2}+2 a^{*}+2 b^{*}+a k_{0} k_{3}+2 a c^{*} k_{0}\right) \int_{0}^{t} m(s) \mathrm{d} s+ \\
& 2 a^{2} k_{4} h_{0} \int_{0}^{a} m(s) \mathrm{d} s+\alpha\left(I_{1}\left(B\left(t_{1}\right), B^{\prime}\left(t_{1}\right)\right)\right)+ \\
& 2 L_{1} \alpha\left(B^{\prime}\left(t_{1}\right)\right)+a \alpha\left(H_{1}\left(B\left(t_{1}\right), B^{\prime}\left(t_{1}\right)\right)\right)+2 a L_{1}^{\prime} \alpha\left(B^{\prime}\left(t_{1}\right)\right) .
\end{aligned}
$$

By (22) and (23), we know

$$
\begin{align*}
\alpha(B(t)) \leq & 2 a\left(k_{1}+k_{2}+2 a^{*}+2 b^{*}+a k_{0} k_{3}+2 a c^{*} k_{0}\right) \int_{0}^{t} m(s) \mathrm{d} s+ \\
& 2 a^{2} k_{4} h_{0} \int_{0}^{a} m(s) \mathrm{d} s \tag{24}
\end{align*}
$$

Similarly, we can obtain

$$
\alpha\left(B^{\prime}(t)\right) \leq 2\left(k_{1}+k_{2}+2 a^{*}+2 b^{*}+a k_{0} k_{3}+2 a c^{*} k_{0}\right) \int_{0}^{t} m(s) \mathrm{d} s+
$$

$$
\begin{equation*}
2 a k_{4} h_{0} \int_{0}^{a} m(s) \mathrm{d} s \tag{25}
\end{equation*}
$$

Together with (24) and (25), we get

$$
m(s) \leq M \int_{0}^{t} m(s) \mathrm{d} s+N \int_{0}^{a} m(s) \mathrm{d} s, \quad \forall t \in J_{1}
$$

where $M, N$ are defined by (21). Thus, from Lemma 3 , we have $m(t) \equiv 0, \forall t \in J_{1}$. And so,

$$
\alpha\left(B\left(t_{2}\right)\right)=\alpha\left(B^{\prime}\left(t_{2}\right)\right)=0
$$

By the continuity of $I_{2}, H_{2}$, we obtain

$$
\alpha\left(I_{2}\left(B\left(t_{2}\right), B^{\prime}\left(t_{2}\right)\right)\right)=0, \quad \alpha\left(H_{2}\left(B\left(t_{2}\right), B^{\prime}\left(t_{2}\right)\right)\right)=0
$$

Similarly to above, we can easily verify that $\alpha(B(t))=0, \alpha\left(B^{\prime}(t)\right)=0, t \in J_{i}(i=2,3, \ldots, m)$. Hence, $\alpha(B)=0, t \in J$, which implies $B$ is a relatively compact set in $P C^{1}[J, E]$. From Lemma $6, A$ has a fixed point $u^{*}$ in $\left[v_{0}, \omega_{0}\right]$, i.e., $\operatorname{IVP}(1)$ has a solution in $P C^{1}[J, E] \bigcap C^{2}\left[J^{\prime}, E\right]$. The proof is completed.

Remark 1 In this paper, we discussed the initial value problems for nonlinear second order impulsive integro-differential equations of mixed type which contain impulses, therefore, the conditions for the comparison result are different from those in [4].

Remark 2 We can let $k_{4}=0$ where the $\operatorname{IVP}(1)$ does not include impulses and $f$ does not include $S u$, and the assumptions of (H2) hold for any $k_{1} \geq 0, k_{2} \geq 0, k_{3} \geq 0$.

## References

[1] LAKSHMIKANTHAM V, LEELA S. On the method of upper and lower solutions in abstract cones [J]. Ann. Polon. Math., 1983, 42: 159-164.
[2] HAO Zhaocai, LIU Lishan. Global solutions of initial value problems for nonlinear integral-differential equations of mixed type in Banach spaces [J]. Indian J. Pure Appl. Math., 2002, 33(9): 1417-1430.
[3] LIU Lishan, WU Congxin, HAO Zhaocai. Global solutions of initial value problems for nonlinear integrodifferential equations of mixed type in Banach spaces [J]. Acta Anal. Funct. Appl., 2005, 7(4): 331-338. (in Chinese)
[4] SU Hua, LIU Lishan, ZHANG Xiaoyan. et al. Global solutions of initial value problems for nonlinear secondorder integro-differential equations of mixed type in Banach spaces [J]. J. Math. Anal. Appl., 2007, 330(2): 1139-1151.
[5] ZHANG Xiaoyan, SUN Jinxian. Solutions of nonlinear second-order impulsive integro-differential equations of mixed type in Banach spaces [J]. J. Systems Sci. Math. Sci., 2002, 22(4): 428-438. (in Chinese)
[6] JIANG Yanjun, LIU Lishan. Existence of solutions of initial value problems for first-order impulsive integrodifferential equations in Banach spaces [J]. Pure Appl. Math. (Xi'an), 2006, 22(1): 80-85. (in Chinese)
[7] GUO Dajun, LAKSHMIKANTHAM V, LIU Xinzhi. Nonlinear Integral Equations in Abstract Spaces [M]. Dordrecht: Kluwer Academic Publishers, 1996.
[8] HEIN H P. On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions [J]. Nonlinear Anal., 1983, 7(12): 1351-1371.
[9] DEIMLING K. Nonlinear Functional Analysis [M]. Berlin: Springer-Verlag, 1985.
[10] YU Lixin, LIU Lishan. Existence of solutions of initial value problems for a first-order nonlinear impulsive integro-differential equation in Banach spaces [J]. J. Systems Sci. Math. Sci., 2003, 23(2): 257-265. (in Chinese)
[11] CHEN Fangqi. Extreme solutions of initial value problems for nonlinear second order integrodifferential equations in Banach spaces [J]. Acta Math. Appl. Sinica, 2001, 17(3): 289-295.

