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1. Introduction

Stochastic modelling has come to play an important role in many branches of science and

industry. An area of particular interest has been the automatic control of stochastic systems, with

consequent emphasis being placed on the analysis of stability in stochastic models[1],[4−6],[8−10],[13].

Recently, stochastic differential delay equations with Markovian switching have received a

great deal of attention. Moreover, there are quite a number of papers on the stability of the

delay equations[2],[3],[14],[15]. In particular, we here highlight Mao’s great contribution. The

fundamental theory of existence and uniqueness of solutions of such delay equations has been

studied in [11], and the exponential stability in mean square of a stochastic differential delay

equation with Markovian switching has also been discussed in [12]. The form of the delay

equation is as follows:

dx(t) = f(x(t), x(t − τ1), t, r(t))dt + g(x(t), x(t − τ2), t, r(t))dW (t). (1)

In this paper, we shall further allow the time delay to be of time dependent instead of

constant, and investigate the pth moment exponential stability of a stochastic differential delay

equation of the form:

dx(t) = f(x(t), x(t − τ1(t)), t, r(t))dt + g(x(t), x(t − τ2(t)), t, r(t))dW (t). (2)

The form of the equation is expatiated in detail in Section 2. In Section 3, we adopt a specific

Lyapunov function which is relatively easy to verify, then we apply the generalized Itô’s formula
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to obtain the pth moment exponential stability which is also our main result. We also get the

almost sure exponential stability for the delay equation in the last section.

2. Stochastic differential delay equations with Markovian switching

Throughout this paper, unless otherwise specified, we let {Ω,F , {Ft}t≥0, P} be a complete

probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is right con-

tinuous and F0 contains all P-null sets). Let W (t) = (W1(t), W2(t), . . . , Wm(t))T be an m-

dimensional Brownian motion defined on the probability space. Let t0 ∈ R+ = [0,∞) and

suppose τi(t) : [0, τi](i = 1, 2) are continuous. Let τ = max[τ1, τ2] > 0 and C([−τ, 0], Rn) denote

the family of continuous functions ϕ from [−τ, 0] to Rn with the norm ‖ϕ‖ = sup−τ≤s≤0 |ϕ(s)|,

where |·| is the Euclidean norm in Rn. If A is a vector or matrix, its transpose is denoted by AT. If

A is a matrix, its trace norm is denoted by |A| =
√

trace(ATA) while its operator norm is denoted

by ‖A‖ = sup{|Ax| : |x| = 1} (without any confusion with ‖ϕ‖). Denote by Cb
F0

([−τ, 0], Rn) the

family of all bounded, F0 measurable, and C([−τ, 0], Rn)-valued random variables. If x(t) is a

continuous Rn-valued stochastic process on t ∈ [−τ,∞), we let xt = {x(t + s) : −τ ≤ s ≤ 0} for

t ≥ 0 which is regarded as a C([−τ, 0], Rn)-valued stochastic process.

Let r(t), t ≥ 0, be a right-continuous Markov chain on the probability space taking values in

a finite state space S = {1, 2, . . . , N} with generator Γ = (γij)N×N given by

P{r(t + ∆) = j|r(t) = i} =

{

γij∆ + o(∆) if i 6= j

1 + γii∆ + o(∆) if i = j
,

where ∆ > 0. Here γij ≥ 0 is the transition rate from i to j if i 6= j while

γii = −
∑

i6=j

γij .

We assume that the Markov chain r(·) is independent of the Brownian motion W (·). It is known

that almost every sample path of r(t) is a right-continuous step function with a finite number of

simple jumps in any finite subinterval of R+.

Consider a stochastic differential delay equation with Markovian switching of the form

dx(t) = f(x(t), x(t − τ1(t)), t, r(t))dt + g(x(t), x(t − τ2(t)), t, r(t))dW (t),

on t ≥ 0 with initial data x0 = ξ ∈ Cb
F0

([−τ, 0], Rn), where

f : Rn × Rn × R+ × S → Rn and g : Rn × Rn × R+ × S → Rn×m.

Let C2,1(Rn ×R+ × S, R+) denote the family of all nonnegative functions V (x, t, i) on Rn ×

R+ × S which are continuously twice differentiable in x and once differentiable in t. If V ∈

C2,1(Rn × R+ × S, R+), define an operator LV from Rn × Rn × Rn × R+ × S to R by

LV (x, y, z, t, i) =Vt(x, t, i) + Vx(x, t, i)f(x, y, t, i)+

1

2
trace[gT(x, z, t, i)Vxxg(x, z, t, i)] +

N
∑

j=1

γijV (x, t, j), (3)
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where

Vt(x, t, i) =
∂V (x, t, i)

∂t
, Vx(x, t, i) =

(∂V (x, t, i)

∂x1
, . . . ,

∂V (x, t, i)

∂xn

)

,

Vxx(x, t, i) =
(∂2V (x, t, i)

∂xi∂xj

)

n×n
.

The generalized Itô formula reads as follows: if V ∈ C2,1(Rn × R+ × S, R+), then for any

stopping times 0 ≤ ρ1 ≤ ρ2 < ∞,

EV (x(ρ2), ρ2, r(ρ2)) =EV (x(ρ1), ρ1, r(ρ1))+

E

∫ ρ2

ρ1

LV (x(s), x(s − τ1(s)), x(s − τ2(s)), s, r(s))ds. (4)

3. The pth moment exponential stability

We give Theorem 1 which includes a standing hypothesis in this paper firstly.

Theorem 1
[11] Assume that both f and g satisfy the local Lipschitz condition and the linear

growth condition. Then equation (2) has a unique continuous solution on t ≥ −τ , which is

denoted by x(t, ξ) in this paper. Moreover, for every p > 0,

E[ sup
−τ≤s≤t

|x(s, ξ)|p] < ∞, on t ≥ 0. (5)

Now we discuss the pth moment exponential stability for equation (2). We impose the

following hypotheses:

(H1) For every i ∈ S, there are constants αi ∈ R and βi, δi ≥ 0 such that

xTf(x, x, t, i) ≤ αi|x|
2,

and

|g(x, z, t, i)|p ≤ βi|x|
p + δi|z|

p,

for all x, z ∈ Rn and t ≥ 0.

(H2) There are three nonnegative constants K1, K2 and K3 such that

|f(x, x, t, i) − f(x, y, t, i)|p ≤ K1|x − y|p,

and

|f(x, y, t, i)|p ≤ K2|x|
p + K3|y|

p,

for all x, y ∈ Rn, t ≥ 0 and i ∈ S.

It is easy to see from these hypotheses that f(0, 0, t, i) ≡ 0 and g(0, 0, t, i) ≡ 0, so equation

(2) admits a trivial solution x(t, 0) ≡ 0. Using the two hypotheses and the conclusion of Theorem

1 we can deduce that

lim sup
t→∞

1

t
ln(E|x(t, ξ)|p) < 0,

for any initial data ξ ∈ Cb
F0

([−τ, 0], Rn).
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Theorem 2 Let hypotheses (H1) and (H2) hold, p ≥ 2, and assume that there are positive

constants q1, q2, . . . , qN . Set

q̌ = max
1≤i≤N

qi, q̂ = min
1≤i≤N

qi, α̌ = max
1≤i≤N

αi, β̌ = max
1≤i≤N

βi, δ̌ = max
1≤i≤N

δi. (6)

η = 1 − sup
t≥0

τ ′
i(t) > 0, i = 1, 2. (7)

µ := max
1≤i≤N

(εqi +

N
∑

j=1

γijqj), ε > 0. (8)

If the following inequality holds,


















C3 := 2p−1τ
p
2 eετ

[

τ
p
2 (K2 + K3

eετ

η
) + [

p(p − 1)

2
]

p
2 (β̌ + δ̌

eετ

η
)
]

α̌ ≤ −

µ + pq̌(K1C3)
1
p +

p(p − 1)

2
q̌(β̌ + δ̌

eετ

η
)

2
p

pq̂
< 0

, (9)

then the trivial solution of equation (2) is pth moment exponentially stable.

Proof Fix any initial data ξ ∈ Cb
F0

([−τ, 0], Rn) and write x(t, ξ) = x(t). We give some ε > 0

sufficiently small, and define a specific Lyapunov function

V (x, t, i) = qie
εt|x|p for (x, t, i) ∈ Rn × R+ × S.

Clearly V ∈ C2,1(Rn × R+ × S, R+). Moreover, the operator LV from Rn ×Rn × Rn × R+ × S

to R defined by (3) becomes

LV (x, y, z, t, i) =eεt{εqi|x|
p + pqi|x|

p−2xTf(x, y, t, i) +
1

2
pqi|x|

p−2|g(x, z, t, i)|2+

1

2
p(p − 2)qi|x|

p−4|xTg(x, z, t, i)|2 +
N

∑

j=1

γijqj |x|
p}. (10)

Using hypotheses (H1) and (H2), we derive

pqi|x|
p−2xTf(x, y, t, i)

≤ pqiαi|x|
p + pqi|x|

p−1|f(x, x, t, i) − f(x, y, t, i)|

≤ pqiαi|x|
p + (p − 1)qiθ

p
p−1 |x|p + qiθ

−p|f(x, x, t, i) − f(x, y, t, i)|p

≤ [pqiαi + (p − 1)q̌θ
p

p−1 ]|x|p + q̌θ−pK1|x − y|p, (11)

and

1

2
pqi|x|

p−2|g(x, z, t, i)|2 +
1

2
p(p − 2)qi|x|

p−4|xTg(x, z, t, i)|2

≤
1

2
p(p − 1)qi|x|

p−2|g(x, z, t, i)|2

≤
1

2
(p − 1)(p − 2)qiσ

p
p−2 |x|p + (p − 1)qiσ

−
p
2 |g(x, z, t, i)|p

≤ [
1

2
(p − 1)(p − 2)q̌σ

p
p−2 + (p − 1)q̌β̌σ−

p
2 ]|x|p + (p − 1)q̌δ̌σ−

p
2 |z|p. (12)



Stability of stochastic differential delay equations with Markovian switching 515

We use the elementary inequality ab ≤ θ
p

p−1 a
p

p−1
p

p−1
+ bp

pθp in (11) and ab ≤ σ
p

p−2 a
p

p−2
p

p−2
+ b

p
2

p
2 σ

p
2

in

(12). θ and σ are inequality parameters which will be exactly determined later. θ > 0, σ > 0.

Then, substituting (8), (11) and (12) into (10) yields that

LV (x, y, z, t, i) ≤eεt{[µ + pqiαi + (p − 1)q̌θ
p

p−1 +
1

2
(p − 1)(p − 2)q̌σ

p
p−2 +

(p − 1)q̌β̌σ− p
2 ]|x|p + (p − 1)q̌δ̌σ− p

2 |z|p + q̌θ−pK1|x − y|p}. (13)

Noting

C1 := EV (x(0), 0, r(0)) ≤ q̌E|x(0)|p ≤ q̌E‖ξ‖p,

we obtain, by the generalized Itô’s formula, that

EV (x(t), t, r(t)) ≤ C1 + [µ + pqiαi + (p − 1)q̌θ
p

p−1 +
1

2
(p − 1)(p − 2)q̌σ

p
p−2 +

(p − 1)q̌β̌σ−
p
2 ]

∫ t

0

eεsE|x(s)|pds + (p − 1)q̌δ̌σ−
p
2

∫ t

0

eεsE|x(s − τ2(s))|
pds+

q̌θ−pK1

∫ t

0

eεsE|x(s) − x(s − τ1(s))|
pds. (14)

Now we compute these integrals in (14) respectively, and we shall use (7).
∫ t

0

eεsE|x(s − τ2(s))|
pds ≤

1

η

∫ t

−τ

eε(s+τ)E|x(s)|pds

≤
τ

η
eετE‖ξ‖p +

eετ

η

∫ t

0

eεsE|x(s)|pds. (15)

Moreover, applying Hölder’s inequality, the moment inequality and hypotheses (H1) and (H2),

by equation (2) we have

E|x(t) − x(t − τ1(t))|
p

≤ 2p−1E|

∫ t

t−τ1(t)

f(x(s), x(s − τ1(s)), s, r(s))ds|p+

2p−1E|

∫ t

t−τ1(t)

g(x(s), x(s − τ2(s)), s, r(s))dW (s)|p

≤ (2τ)p−1E

∫ t

t−τ

|f(x(s), x(s − τ1(s)), s, r(s))|
pds+

2p−1τ
p
2−1[

p(p − 1)

2
]

p
2 E

∫ t

t−τ

|g(x(s), x(s − τ2(s)), s, r(s))|
pds

≤ (2τ)p−1K2

∫ t

t−τ

E|x(s)|pds + (2τ)p−1K3

∫ t

t−τ

E|x(s − τ1(s))|
pds+

2p−1τ
p
2−1[

p(p − 1)

2
]

p
2 β̌

∫ t

t−τ

E|x(s)|pds + 2p−1τ
p
2−1[

p(p − 1)

2
]

p
2 δ̌

∫ t

t−τ

E|x(s − τ2(s))|
pds

= [(2τ)p−1K2 + 2p−1τ
p
2−1[

p(p − 1)

2
]

p
2 β̌]

∫ t

t−τ

E|x(s)|pds + (2τ)p−1K3

∫ t

t−τ

E|x(s − τ1(s))|
pds+

2p−1τ
p
2−1[

p(p − 1)

2
]

p
2 δ̌

∫ t

t−τ

E|x(s − τ2(s))|
pds. (16)
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Let t ≥ τ . Then

∫ t

0

eεsE|x(s) − x(s − τ1(s))|
pds

≤ [(2τ)p−1K2 + 2p−1τ
p
2−1[

p(p − 1)

2
]

p
2 β̌]

∫ t

0

eεs(

∫ s

s−τ

E|x(u)|pdu)ds+

(2τ)p−1K3

∫ t

0

eεs(

∫ s

s−τ

E|x(u − τ1(u))|pdu)ds+

2p−1τ
p
2−1[

p(p − 1)

2
]

p
2 δ̌

∫ t

0

eεs(

∫ s

s−τ

E|x(u − τ2(u))|pdu)ds. (17)

By changing the order of integrations, we can show that

∫ t

0

eεs(

∫ s

s−τ

E|x(u)|pdu)ds ≤

∫ t

−τ

E|x(u)|p(

∫ u+τ

u

eεsds)du

≤ τeετ

∫ t

−τ

eεuE|x(u)|pdu ≤ τ2eετE‖ξ‖p + τeετ

∫ t

0

eεuE|x(u)|pdu. (18)

Using (15) and (18), we have

∫ t

0

eεs(

∫ s

s−τ

E|x(u − τ1(u))|pdu)ds

≤ τeετ

∫ t

−τ

eεuE|x(u − τ1(u))|pdu

≤ τeετ [

∫ 0

−τ

eεuE|x(u − τ1(u))|pdu +

∫ t

0

eεuE|x(u − τ1(u))|pdu]

≤ (τ2eετ +
τ2

η
e2ετ )E‖ξ‖p +

τe2ετ

η

∫ t

0

eεuE|x(u)|pdu. (19)

Proceeding with the same argument as in (19), we can get that

∫ t

0

eεs(

∫ s

s−τ

E|x(u − τ2(u))|pdu)ds

≤ (τ2eετ +
τ2

η
e2ετ )E‖ξ‖p +

τe2ετ

η

∫ t

0

eεuE|x(u)|pdu. (20)

Substituting (18), (19) and (20) into (17) gives

∫ t

0

eεsE|x(s) − x(s − τ1(s))|
pds = C2 + C3

∫ t

0

eεuE|x(u)|pdu, (21)

where

C2 :={[(2τ)p−1K2 + 2p−1τ
p
2−1[

p(p − 1)

2
]

p
2 β̌] + [(2τ)p−1K3+

2p−1τ
p
2−1[

p(p − 1)

2
]

p
2 δ̌](1 +

eετ

η
)}τ2eετE‖ξ‖p ≥ 0,

C3 :=2p−1τ
p
2 eετ [τ

p
2 (K2 + K3

eετ

η
) + [

p(p − 1)

2
]

p
2 (β̌ + δ̌

eετ

η
)] ≥ 0.
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Substituting (15) and (21) into (14) yields

EV (x(t), t, r(t)) ≤ C4 + λ

∫ t

0

eεsE|x(s)|pds, (22)

for all t ≥ τ , where

C4 := C1 + (p − 1)q̌δ̌σ−
p
2
τ

η
eετE‖ξ‖p + q̌θ−pK1C2,

λ :=µ + pqiαi + (p − 1)q̌θ
p

p−1 +
1

2
(p − 1)(p − 2)q̌σ

p
p−2 + (p − 1)q̌β̌σ−

p
2 +

(p − 1)q̌δ̌σ− p
2
eετ

η
+ q̌θ−pK1C3. (23)

Now we try to find the best θ and σ. Let

∂λ

∂θ
= 0 and

∂λ

∂σ
= 0.

We can get

θ = (K1C3)
p−1

p2 , σ = (β̌ + δ̌
eετ

η
)

2(p−2)

p2 . (24)

Substituting (24) into (23) gives

C4 := C1 + (p − 1)q̌δ̌(β̌ + δ̌
eετ

η
)−

p−2
p

τ

η
eετE‖ξ‖p + q̌(K1C3)

− p−1
p K1C2 ≥ 0,

λ = µ + pqiαi + pq̌(K1C3)
1
p +

1

2
(p − 1)(p − 2)q̌(β̌ + δ̌

eετ

η
)

2
p . (25)

Putting (9) into (25), we get

λ ≤ 0.

It follows from (22) that

EV (x(t), t, r(t)) ≤ C4, t ≥ τ. (26)

Noting

EV (x(t), t, r(t)) ≥ q̂eεtE|x(t)|p, (27)

we obtain

E|x(t)|p ≤ e−εt C4

q̂
, t ≥ τ. (28)

Consequently

lim sup
t→∞

1

t
ln(E|x(t)|p) ≤ −ε < 0. (29)

In other words, the trivial solution of equation (2) is pth moment exponentially stable. The proof

is completed. 2

4. The almost sure exponential stability

We now begin to discuss the almost sure exponential stability for equation (2).

Theorem 3 Suppose hypotheses (H1) and (H2) hold, p ≥ 2. Assume that the trivial solution

of equation (2) is pth moment exponentially stable. Then the trivial solution of equation (2) is
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almost sure exponentially stable.

Proof Fix the initial data ξ ∈ Cb
F0

([−τ, 0], Rn) arbitrarily and write x(t, ξ) = x(t). By Theorem

2, there is a positive constant C5 such that

E|x(t)|p ≤ C5e
−εt, t ≥ τ. (30)

Let k̄ be an integer sufficiently large and µ = τ
k̄
, k = k̄ + 1, k = k̄ + 2, . . .. We have

E[ sup
(k−1)µ≤t≤kµ

|x(t)|p]

≤ 3pE|x((k − 1)µ)|p + 3pE(

∫ kµ

(k−1)µ

|f(x(s), x(s − τ1(s)), s, r(s))|ds)p+

3pE( sup
(k−1)µ≤t≤kµ

∫ t

(k−1)µ

|g(x(s), x(s − τ2(s)), s, r(s))dW (s)|p). (31)

By (30), we have

E|x((k − 1)µ)|p ≤ C5e
−ε(k−1)µ. (32)

Applying Hölder’s inequality and hypothesis (H2), we can get

E(

∫ kµ

(k−1)µ

|f(x(s), x(s − τ1(s)), s, r(s))|ds)p

≤ µp−1

∫ kµ

(k−1)µ

E|f(x(s), x(s − τ1(s)), s, r(s))|
pds

≤ µp−1K2

∫ kµ

(k−1)µ

E|x(s)|pds + µp−1K3

∫ kµ

(k−1)µ

E|x(s − τ1(s))|
pds

≤ µpK2 sup
(k−1)µ≤s≤kµ

E|x(s)|p + µpK3 sup
(k−1−k̄)µ≤s≤kµ

E|x(s)|p.

One can also obtain

E( sup
(k−1)µ≤t≤kµ

∫ t

(k−1)µ

|g(x(s), x(s − τ2(s)), s, r(s))dW (s)|p)

≤ CpE(

∫ kµ

(k−1)µ

|g(x(s), x(s − τ2(s)), s, r(s))|
2ds)

p
2

≤ Cpµ
p
2−1

∫ kµ

(k−1)µ

E|g(x(s), x(s − τ2(s)), s, r(s))|
pds

≤ Cpµ
p
2−1β̌

∫ kµ

(k−1)µ

E|x(s)|pds + Cpµ
p
2−1δ̌

∫ kµ

(k−1)µ

E|x(s − τ2(s))|
pds

≤ Cpµ
p
2 β̌ sup

(k−1)µ≤s≤kµ

E|x(s)|p + Cpµ
p
2 δ̌ sup

(k−1−k̄)µ≤s≤kµ

E|x(s)|p, (34)

where Cp is the constant given by the Burkholder-Davis-Gundy inequality. We have used

Burkholder-Davis-Gundy inequality, Hölder’s inequality and hypothesis (H1) in (34). Substi-

tuting (32), (33) and (34) into (31) yields

E[ sup
(k−1)µ≤t≤kµ

|x(t)|p]
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≤ 3pC5e
−ε(k−1)µ + 3p(µpK2 + Cpµ

p
2 β̌) sup

(k−1)µ≤s≤kµ

E|x(s)|p+

3p(µpK3 + Cpµ
p
2 δ̌) sup

(k−1−k̄)µ≤s≤kµ

E|x(s)|p

≤ 3pC5e
−ε(k−1)µ + 3p(µpK2 + Cpµ

p
2 β̌)C5e

−ε(k−1)µ+

3p(µpK3 + Cpµ
p
2 δ̌)C5e

−ε(k−1−k̄)µ

≤ C6e
−εkµ, (35)

where

C6 := 3p(1 + µpK2 + Cpµ
p
2 β̌)C5e

εµ + 3p(µpK3 + Cpµ
p
2 δ̌)C5e

ε(µ+τ).

By Chebyshev’s inequality and (35), we can get

P{ω : sup
(k−1)µ≤t≤kµ

|x(t)| > e
−εkµ

2p } ≤ C6e
−εkµ

2 .

In view of the well-known Borel-Cantelli lemma, we see that for almost all ω ∈ Ω,

sup
(k−1)µ≤t≤kµ

|x(t)| ≤ e
−εkµ

2p , (36)

holds for all but finitely many k. Hence there exists a k0(ω), for all ω ∈ Ω excluding a P -null

set, for which (36) holds whenever k ≥ k0. Consequently, for almost all ω ∈ Ω,

1

t
ln |x(t)| ≤ −

εkµ

2pt
≤ −

ε

2p
,

if (k − 1)µ ≤ t ≤ kµ. Therefore

lim sup
t→∞

1

t
ln |x(t)| ≤ −

ε

2p
. a.s. (37)

The proof is completed. 2
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