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Abstract In this paper, we discuss the problem of simultaneous stabilization for plants more

than three by using Youla parametrization[1] and give a necessary and sufficient condition for

simultaneous stabilization.
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1. Preliminaries

The problem of simultaneous stabilization which is using a single controller to stabilize many

plants is very important in the field of robust control[2−4]. In fact, we sometimes use a series

of linear systems to approach a nonlinear system for solving some stabilization problem about

nonlinear system. Therefore, we convert the nonlinear problem into simultaneous stabilization

problem. This problem was put forward by Saeks, Murroy and Vidyadagar, Viswanadham[5,6].

There are two kinds of methods in studying simultaneous stabilization problem: One is based

on the frequency domain method and the other the state space method.

In this paper we consider the following problem of simultaneous stabilization: Given L0, L1,

. . . , Ln ∈ L, when does there exist C ∈ L for which {L0, C}, {L1, C}, . . . , {Ln, C} are stable?

We recall some basic concepts[7] that will be useful in this paper. First, we introduce the

definition about complete nest and nest algebra.

Definition 1.1 A family N of closed subspaces of the Hilbert space H is a complete nest if

(1) {0},H ∈ N .

(2) For N1, N2 ∈ N , either N1 ⊆ N2 or N2 ⊆ N1.

(3) If Nα is a subfamily in N , then ∩αNα and ∨αNα are also in N .

Every set P of projections in L(H) determines an algebra AlgP of operators,

AlgP = {T ∈ L(H) : (I − P )TP = 0}.

If N is a nest, and P is its associated family of orthogonal projections, AlgP is called a nest

algebra.
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Suppose H is a complex separable Hilbert space, and P is a complete nest on H. We

parametrize P and write P = {Pt : t ∈ Γ}. Let Qt = I − Pt,R = {Qt : t ∈ Γ}. We assume

Pt1 ≤ Pt2 for t1 ≤ t2, and for each t ∈ Γ we define a seminorm on H by

‖x‖t = ‖Ptx‖, x ∈ H, Pt 6= I.

The family {‖ ‖t : t ∈ Γ} of seminorms defines a topology on H, called the resolution topology.

Convergence in this topology is described as follows: a sequence {xn} converges to x ∈ H if, for

all seminorms, ‖xn − x‖t −→ 0. The resolution topology is a metric topology[6]. Let He denote

the completion of the metric space H.

Definition 1.2 A linear transformation T on He is causal if for each t ∈ Γ, PtT = PtTPt. A

linear system on He is a causal linear transformation on He, which is continuous with respect to

the resolution topology.

It is clear that the set of linear systems on He is an algebra. We denote this algebra by L.

Definition 1.3 A linear transformation T : He −→ He is stable if there exists M > 0 such that

for each x ∈ He and t ∈ Γ, ‖Tx‖t ≤ M‖x‖t.

We denote the set of stable linear transformations on He by S. Then S is a weakly closed

algebra containing the identity.

The following proposition is the Theorem 5.4.2 of [7].

Proposition 1.1 The following are equivalent:

(1) T on He is stable.

(2) T is causal and T |H is a bounded operator.

(3) T ∈ L and is the extension to He of an operator in AlgR.

This proposition allows us to identify the algebra S of stable operators on He with the nest

algebra AlgR. The restriction of T ∈ S to H is in AlgR and the extension of S ∈ AlgR to He

is in S.

2. Main results

From now, let H be the collection of sequences {xn} such that
∑

|xi|
2 < ∞.

Here |x| denotes the standard Euclidean norm on C. Then H is a Hilbert space with an inner

product

(x, y) =

∞
∑

n=1

xnȳn.

It is easy to check that

He = {〈x0, x1, x2, . . .〉 : xi ∈ C}.

For each n ≥ 0, let Pn denote the standard truncation projection defined on H by

Pn〈x0, x1, . . . , xn, xn+1, . . .〉 = 〈x0, x1, . . . , xn, 0, 0, . . .〉.
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Let L and C be given causal linear systems and consider the standard feedback configuration

with plant L and compensator C, where the closed loop system equation for this configuration

is
(

u1

u2

)

=

(

I C

L −I

)(

e1

e2

)

.

The system is well posed if the internal input e =

(

e1

e2

)

can be expressed as a causal function

of the external input

(

u1

u2

)

. This is equivalent to ([7], Chapter 6) requiring that

(

I C

L −I

)

be invertible. This inverse is easily computed formally and is given by the transfer matrix

H(L, C) =

(

(I + CL)−1 C(I + LC)−1

L(I + CL)−1 −(I + LC)−1

)

.

L and C may not be stable. This means that there may be an input u in H such that Lu or

Cu may not be in H. Let D(L) = {u ∈ H : Lu ∈ H} and D(C) = {u ∈ H : Cu ∈ H}. Then
(

I C

L −I

)

can be regarded as a linear transformation from D(L)
⊕

D(C) into H
⊕

H.

Definition 2.1 The closed loop system determined by the plant L and compensator C is stable

if all the entries of H(L, C) are stable systems on H. The plant L is stabilizable if there exists a

causal linear system C such that the closed loop system determined by L and C is stable.

In order to characterize the stabilizable systems, we need the notions of right and left strong

representations for a causal linear system. Recall that the graph of a linear transformation L

with domain D(L) in H is G(L) =
{( x

Lx

)

: x ∈ D(L)
}

.

The following definitions are from [1] (also see [7], Chapter5).

Definition 2.2 A plant L has a strong right representation

(

M

N

)

with M and N stable if

(1) G(L) = Ran

(

M

N

)

;

(2)

(

M

N

)

has a stable left inverse; there exist X , Y stable such that [Y, X ]

(

M

N

)

= I.

L has a strong left representation [−N̂, M̂ ] with M̂, N̂ stable if

(1) G(L) = Ker[−N̂ , M̂ ].

(2) [−N̂ , M̂ ] has a stable right inverse; there exist X̂, Ŷ stable such that

[−N̂ , M̂ ]

(

−X̂

Ŷ

)

= I.

The following proposition is Youla parametrization theorem, and was proved in [1] (also see

[7], Chapter 6).
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Proposition 2.1 A causal linear system L is stabilizable if and only if L has a strong right and

a strong left representation. If this is the case, the representations can be chosen so that we have

the double Bezout identity
(

Y X

−N̂ M̂

)(

M −X̂

N Ŷ

)

=

(

M −X̂

N Ŷ

)(

Y X

−N̂ M̂

)

=

(

I 0

0 I

)

.

A causal linear system C stabilizes L if and only if it has a strong right representation

(

Ŷ − NQ

X̂ + MQ

)

and a strong left representation [−(X + QM̂), Y − QN̂ ] for some stable Q.

We now turn to the problem of simultaneous stabilization. Given L0, L1, . . . , Ln ∈ L, when

does there exist C ∈ L for which {L0, C}, {L1, C}, . . . , {Ln, C} are stable?

Theorem 2.1 Given L0, L1, . . . , Ln ∈ L stabilizable. Define Aj = Y0Mj + X0Nj , Bj =

−N̂0Mj + M̂0Nj(j = 1, 2, . . . , n), where Mi, Ni, Xi, Yi, M̂i, N̂i, X̂i, Ŷi(i = 0, 1, 2, . . . , n) ∈ S, are

associated with Li, and

(

Mi

Ni

)

and [−N̂i, M̂i] are, respectively, strong right and left represen-

tations for Li that satisfy the double Bezout identity
(

Yi Xi

−N̂i M̂i

)(

Mi −X̂i

Ni Ŷi

)

=

(

Mi −X̂i

Ni Ŷi

)(

Yi Xi

−N̂i M̂i

)

=

(

I 0

0 I

)

.

Then there exists C ∈ L, which simultaneously stabilizes L0, L1, . . . , Ln if and only if there exists

T ∈ S such that Aj + TBj (j = 1, 2, . . . , n) are invertible in S.

Proof Since L0, L1, . . . , Ln are stabilizable, the compensators that stabilize them are given,

respectively, by the strong left representations

[−(X0 + Q0M̂0), Y0 − Q0N̂0], [−(X1 + Q1M̂1), Y1 − Q1N̂1], . . . , [−(Xn + QnM̂n), Yn − QnN̂n],

where Qi ∈ S(i = 0, 1, 2, . . . , n). Thus L0, L1, . . . , Ln can be simultaneously stabilized if and

only if there exist Qii ∈ S(i = 0, 1, 2, . . . , n) such that

[−(X0 + Q00M̂0), Y0 − Q00N̂0] = Z1[−(X1 + Q11M̂1), Y1 − Q11N̂1] = · · ·

= Zn[−(Xn + QnnM̂n), Yn − QnnN̂n]

for some invertible Zi(i = 1, 2, . . . , n) in S. This is equivalent to

X0 + Q00M̂0 = Z1(X1 + Q11M̂1) = · · · = Zn(Xn + QnnM̂n),

Y0 − Q00N̂0 = Z1(Y1 − Q11N̂1) = · · · = Zn(Yn − QnnN̂n).

Rewrite them as

[I, Q00]

(

Y0 X0

−N̂0 M̂0

)

= Z1[I, Q11]

(

Y1 X1

−N̂1 M̂1

)

= · · · = Zn[I, Qnn]

(

Yn Xn

−N̂n M̂n

)

or

[I, Q00]

(

Y0 X0

−N̂0 M̂0

)(

M1 −X̂1

N1 Ŷ1

)

= Z1[I, Q11]
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[I, Q00]

(

Y0 X0

−N̂0 M̂0

)(

M2 −X̂2

N2 Ŷ2

)

= Z2[I, Q22]

...

[I, Q00]

(

Y0 X0

−N̂0 M̂0

)(

Mn −X̂n

Nn Ŷn

)

= Zn[I, Qnn]

or

[I, Q00]

(

A1 U1

B1 V1

)

= Z1[I, Q11]

[I, Q00]

(

A2 U2

B2 V2

)

= Z2[I, Q22] (*)

...

[I, Q00]

(

An Un

Bn Vn

)

= Z2[I, Qnn],

where Ui = −Y0X̂i + X0Ŷi, Vi = −N0X̂i + M0Ŷi (i = 0, 1, 2, . . . , n).

⇒. Suppose there exist Q00, Q11, . . . , Qnn, Z1, Z2, . . . , Zn ∈ S with Zi (i = 0, 1, 2, . . . , n)

invertible, which satisfy the equation (∗). Then take T = Q00, Aj + Q00Bj = Zj(j = 1, 2, . . . , n)

are invertible in S as required.

⇐. Conversely, if there exists T ∈ S such that Aj + Q00Bj = Zj (j = 1, 2, . . . , n) are

invertible in S, take Zj = Aj +Q00Bj(j = 1, 2, . . . , n), Q00 = T , and Qii = Z−1
j (Uj +Q00Vj) (j =

1, 2, . . . , n). These satisfy the equation (∗) and the proof is completed. 2

Corollary 2.1 Given L0, L1, L2 ∈ L stabilizable. Define A1 = Y0M1 + X0N1, A2 = Y0M2 +

X0N2, B1 = −N̂0M1 + M̂0N1, B2 = −N̂0M2 + M̂0N2, where Mi, Ni etc., are associated with Li

as in Theorem 2.1. Then there exists C ∈ L, which simultaneously stabilizes L0, L1, L2 if and

only if there exists T ∈ S such that Ai + TBi (i = 1, 2) are invertible in S.

Theorem 2.2 Given L0, L1, . . . , Ln ∈ L stabilizable. Define Ãj = N̂jM0−M̂jN0, B̃j = N̂iX̂0 +

M̂jY0(j = 1, 2, . . . , n), where Mi, Ni, Xi, Yi, M̂i, N̂i, X̂i, Ŷi(i = 0, 1, 2, . . . , n) ∈ S, are associated

with Li, and

(

Mi

Ni

)

and [−N̂i, M̂i] are, respectively, strong right and left representations for

Li that satisfy the double Bezout identity
(

Yi Xi

−N̂i M̂i

)(

Mi −X̂i

Ni Ŷi

)

=

(

Mi −X̂i

Ni Ŷi

)(

Yi Xi

−N̂i M̂i

)

=

(

I 0

0 I

)

.

Then there exists C ∈ L, which simultaneously stabilizes L0, L1, . . . , Ln if and only if there exists

T ∈ S such that B̃j + ÃjT (j = 1, 2, . . . , n) are invertible in S.
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Proof Since L0, L1, . . . , Ln are stabilizable, by Youla parametrization theorem, the compen-

sators that stabilize them are given, respectively, by the strong right representations, and the

proof is similar to Theorem 2.1. 2

Remark 2.1 If H is the direct sum of finite-dimensional Euclidean spaces, then all results in

this section are true.
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