Weighted Composition Operators from A^p_{α} to $A^{\infty}(\varphi)$

LIU Yong Min¹, ZHANG Fang²

(1. Department of Mathematics, Xuzhou Normal University, Jiangsu 221116, China;

2. Department of Information Science, Jiangsu Polytechnic University, Jiangsu 213164, China)

(E-mail: minliu@xznu.edu.cn)

Abstract Suppose $u \in H(D)$ and ϕ is an analytic map of the unit disk D into itself. Define the weighted composition operator $uC_{\phi} : uC_{\phi}(f) = uf \circ \phi$, for all $f \in H(D)$. In this paper, we get necessary and sufficient conditions for the bounded and compact weighted composition operators from the weighted Bergman spaces A^{ϕ}_{α} to $A^{\infty}(\varphi)$ $(A^{\infty}_{0}(\varphi))$ spaces.

Keywords A^p_{α} space; $A^{\infty}(\varphi)$ space; composition operator.

Document code A MR(2000) Subject Classification 47B33; 47B38; 46E15; 30D15 Chinese Library Classification 0177.2; 0174.5

1. Introduction

Let H(D) be the collection of all analytic functions on the unit disk D. For 0 , $<math>-1 < \alpha < \infty$, the weighted Bergman space A^p_{α} is defined by

$$A^{p}_{\alpha} = \{ f \in H(D) : \|f\|^{p}_{\alpha,p} = (\alpha+1) \int_{D} |f(z)|^{p} (1-|z|^{2})^{\alpha} \mathrm{d}A(z) < \infty \},\$$

where dA(z) is the normalized Lebesgue measure on D and A^p_{α} is a Banach space with the above norm, for $1 \le p < \infty$.

Let φ denote the normal function on [0, 1). We define

$$\begin{split} A^{\infty}(\varphi) &= \{f \in H(D) : \sup_{z \in D} \varphi(|z|) |f(z)| < \infty\}; \\ A^{\infty}_{0}(\varphi) &= \{f \in H(D) : \lim_{|z| \to 1} \varphi(|z|) |f(z)| = 0\}. \end{split}$$

It is clear that $A^{\infty}(\varphi)$ $(A_0^{\infty}(\varphi))$ is the Bers-type space H^{∞}_{α} (little Bers-type space $H^{\infty}_{\alpha,0}$) for $\varphi(t) = (1 - t^2)^{\alpha}$ $(0 < t < 1, 0 < \alpha < \infty)$. $A^{\infty}(\varphi)$ is a Banach space under the norm $||f||_{\varphi} = \sup_{z \in D} \varphi(|z|)|f(z)|$, and $A_0^{\infty}(\varphi)$ is the closed subspace of $A^{\infty}(\varphi)$.

Let ϕ be an analytic self-map of D and $u \in H(D)$. The weighted composition operator uC_{ϕ} is defined by

$$uC_{\phi}(f) = uf \circ \phi, \quad f \in H(D).$$

Received date: 2006-05-15; Accepted date: 2007-07-13

Foundation item: the National Natural Science Foundation of China (No. 10471039); the Natural Science Foundation of the Education Committee of Jiangsu Province (No. 06KJD110175, 07KJB110115).

It is obvious that the operator uC_{ϕ} is linear. We can regard this operator as a generalization of a multiplication operator M_u and a composition operator C_{ϕ} .

Jiang and Li^[1] gave the characterizations of the bounded and compact composition operators from H^{∞}_{α} and $H^{\infty}_{\alpha,0}$ to the other spaces of analytic functions. He and Jiang^[2] discussed the composition operators on H^{∞}_{α} and $H^{\infty}_{\alpha,0}$, and also generalized the corresponding results to $A^{\infty}(\varphi)$. Li^[3] studied the bounded and compact weighted composition operator from Hardy space to Berstype space. The purpose of this paper is to characterize boundedness and compactness of the weighted composition operators uC_{ϕ} from A^{p}_{α} to $A^{\infty}(\varphi)$ ($A^{\infty}_{0}(\varphi)$).

In this paper, we will always use the letter C to denote a positive constant, which may change from one equation to the next. The constants usually depend on a and other fixed parameters.

2. Main results

Lemma 2.1^[4] Suppose $0 , <math>-1 < \alpha < \infty$. If $f \in A^p_{\alpha}$, then $|f(z)| \leq \frac{C ||f||_{\alpha,p}}{(1-|z|^2)^{\frac{p+\alpha}{p}}}$ for any $z \in D$, and the equality holds if and only if f is constant multiple of $f_w(z) = (\frac{1-|w|^2}{(1-\overline{w}z)^2})^{\frac{2+\alpha}{p}}$, where $w \in D$.

Lemma 2.2 A closed set E in $A_0^{\infty}(\varphi)$ is compact if and only if E is bounded and satisfies

$$\lim_{|z|\to 1}\sup_{f\in E}\varphi(|z|)|f(z)|=0$$

The proof of Lemma 2.2 is similar to that of Lemma 2.1 in [2] and here is omitted.

Theorem 2.1 Let ϕ be an analytic self-map of D and $u \in H(D)$, $0 , <math>-1 < \alpha < \infty$. Then uC_{ϕ} is bounded from A^p_{α} to $A^{\infty}(\varphi)$ if and only if

$$\sup_{z \in D} \frac{\varphi(|z|)|u(z)|}{(1-|\phi(z)|^2)^{\frac{2+\alpha}{p}}} < \infty$$

Proof Sufficiency. Assume $f \in A^p_{\alpha}$. By Lemma 2.1, we have

$$|f(z)| \le \frac{C ||f||_{\alpha,p}}{(1-|z|^2)^{\frac{2+\alpha}{p}}}, \quad \forall \ z \in D.$$

Therefore,

$$\begin{aligned} \|uC_{\phi}(f)\|_{\varphi} &= \sup_{z \in D} \varphi(|z|)|u(z)||f(\phi(z))| \\ &\leq \sup_{z \in D} \varphi(|z|)|u(z)|\frac{C\|f\|_{\alpha,p}}{(1-|\phi(z)|^2)^{\frac{2+\alpha}{p}}} \\ &\leq C\|f\|_{\alpha,p}. \end{aligned}$$

It follows that uC_{ϕ} is a bounded operator.

Necessity. Assume that $uC_{\phi}: A^p_{\alpha} \to A^{\infty}(\varphi)$ is bounded. Let $f(z) \equiv 1$. Then $f \in A^p_{\alpha}$ and $uC_{\phi}(f) = u \in A^{\infty}(\varphi)$. Let $w = \phi(\lambda)$ $(\lambda \in D)$, $f_w(z) = (\frac{1-|w|^2}{(1-wz)^2})^{\frac{2+\alpha}{p}}$. It is easy to see that

$$\|uC_{\phi}(f_w)\|_{\varphi} \le C\|f_w\|_{\alpha,p} = C$$

Thus

$$\varphi(|z|)|u(z)||f_w(\phi(z))| \le C, \quad \forall \ z \in D$$

Choose $z = \lambda$, we have

$$\frac{\varphi(|\lambda|)|u(\lambda)|}{(1-|\phi(\lambda)|^2)^{\frac{2+\alpha}{p}}} \le C$$

For any fixed $\delta \in (0, 1)$, the above inequality indicates that

$$\sup\{\frac{\varphi(|\lambda|)|u(\lambda)|}{(1-|\phi(\lambda)|^2)^{\frac{2+\alpha}{p}}}:\lambda\in D, |\phi(\lambda)|>\delta\}<\infty.$$

On the other hand, since $u \in A^{\infty}(\varphi)$, we conclude

$$\frac{\varphi(|\lambda|)|u(\lambda)|}{(1-|\phi(\lambda)|^2)^{\frac{2+\alpha}{p}}} \le \frac{\varphi(|\lambda|)|u(\lambda)|}{(1-\delta^2)^{\frac{2+\alpha}{p}}} \le \frac{\|u\|_{\varphi}}{(1-\delta^2)^{\frac{2+\alpha}{p}}},$$

where $|\phi(\lambda)| \leq \delta$. Therefore,

$$\sup\{\frac{\varphi(|\lambda|)|u(\lambda)|}{(1-|\phi(\lambda)|^2)^{\frac{2+\alpha}{p}}}:\lambda\in D, |\phi(\lambda)|\leq\delta\}<\infty.$$

Consequently,

$$\sup_{z \in D} \frac{\varphi(|z|)|u(z)|}{\left(1 - |\phi(z)|^2\right)^{\frac{2+\alpha}{p}}} < \infty$$

Corollary 2.1 Let ϕ be an analytic self-map of D, $0 , <math>-1 < \alpha < \infty$. Then C_{ϕ} is bounded from A^p_{α} to $A^{\infty}(\varphi)$ if and only if

$$\sup_{z \in D} \frac{\varphi(|z|)}{\left(1 - |\phi(z)|^2\right)^{\frac{2+\alpha}{p}}} < \infty$$

Theorem 2.2 Let ϕ be an analytic self-map of D and $u \in H(D)$, $0 , <math>-1 < \alpha < \infty$. Then uC_{ϕ} is compact from A^p_{α} to $A^{\infty}(\varphi)$ if and only if $u \in A^{\infty}(\varphi)$ and

$$\lim_{|\phi(z)| \to 1} \frac{\varphi(|z|)|u(z)|}{(1 - |\phi(z)|^2)^{\frac{2+\alpha}{p}}} = 0$$

Proof Sufficiency. Let $||f_n||_{\alpha,p} \leq C$ and $\{f_n\}$ converges to 0 uniformly on compact subsets of D. It suffices to prove that $\lim_{n\to\infty} ||uC_{\phi}(f_n)||_{\varphi} = 0$. By the assumption, for any $\varepsilon > 0$ there exists $r \in (0, 1)$, such that for $|\phi(z)| > r$,

$$\frac{\varphi(|z|)|u(z)|}{\left(1-|\phi(z)|^2\right)^{\frac{2+\alpha}{p}}} < \varepsilon.$$

Using Lemma 2.1 for any n and $|\phi(z)| > r$ gives

$$\varphi(|z|)|uC_{\phi}(f_n(z))| \le C \frac{\varphi(|z|)|u(z)||\|f_n\|_{\alpha,p}}{(1-|\phi(z)|^2)^{\frac{2+\alpha}{p}}} \le C\varepsilon.$$

On the other hand, since $\{f_n\}$ converges to 0 uniformly on compact subsets $\{w : |w| \le r\}$ of D, there exists N, for above ε and $n \ge N$,

$$|f_n(\phi(z))| < \varepsilon, \quad |\phi(z)| \le r.$$

So, for $|\phi(z)| \leq r$ and $n \geq N$, we have

$$\varphi(|z|)|uC_{\phi}(f_n(z))| \le \varphi(|z|)|u(z)|\varepsilon.$$

Since $u \in A^{\infty}(\varphi)$, we deduce that $\lim_{n \to \infty} ||uC_{\phi}(f_n)||_{\varphi} = 0$.

Necessity. Assume that $uC_{\phi}: A^p_{\alpha} \to A^{\infty}(\varphi)$ is compact. By choosing $f(z) \equiv 1$ we obtain $u \in A^{\infty}(\varphi)$. If

$$\lim_{|\phi(z)| \to 1} \frac{\varphi(|z|)|u(z)|}{(1 - |\phi(z)|^2)^{\frac{2+\alpha}{p}}} \neq 0$$

then there exist $\delta > 0$ and $\{z_n\} \subset D$, such that $|\phi(z_n)| \to 1 \ (n \to \infty)$, and for any n,

$$\frac{\varphi(|z_n|)|u(z_n)|}{(1-|\phi(z_n)|^2)^{\frac{2+\alpha}{p}}} \ge \delta.$$

Let

$$w_n = \phi(z_n), \quad f_n(z) = \left(\frac{1 - |w_n|^2}{(1 - \overline{w_n}z)^2}\right)^{\frac{2+\alpha}{p}}.$$

It is easy to see that, $||f_n||_{\alpha,p} = 1$ and $f_n \to 0$ on compact subsets of D. Thus, $\lim_{n\to\infty} ||uC_{\phi}(f_n)||_{\varphi} = 0$ 0. But, for above $\delta > 0$ and any n, we have

$$\begin{aligned} |uC_{\phi}(f_n)||_{\varphi} &\geq \varphi(|z_n|)|u(z_n)||f_n(\phi(z_n))| \\ &= \varphi(|z_n|)|u(z_n)|\frac{1}{(1-|\phi(z_n)|^2)^{\frac{2+\alpha}{p}}} \\ &\geq \delta, \end{aligned}$$

which contradicts the compactness of the weighted composition operator uC_{ϕ} . Therefore,

$$\lim_{|\phi(z)| \to 1} \frac{\varphi(|z|)|u(z)|}{(1 - |\phi(z)|^2)^{\frac{2+\alpha}{p}}} = 0.$$

Corollary 2.2 Let ϕ be an analytic self-map of D, $0 , <math>-1 < \alpha < \infty$. Then C_{ϕ} is compact from A^p_{α} to $A^{\infty}(\varphi)$ if and only if

$$\lim_{|\phi(z)| \to 1} \frac{\varphi(|z|)}{(1 - |\phi(z)|^2)^{\frac{2+\alpha}{p}}} = 0.$$

Theorem 2.3 Let ϕ be an analytic self-map of D and $u \in H(D)$, $0 , <math>-1 < \alpha < \infty$. Then the following statements are equivalent:

- (1) $uC_{\phi}: A^p_{\alpha} \to A^{\infty}_0(\varphi)$ is bounded;
- (2) $uC_{\phi}: A^p_{\alpha} \to A^{\infty}_0(\varphi) \text{ is compact};$ (3) $\lim_{|z| \to 1} \frac{\varphi(|z|)|u(z)|}{(1-|\phi(z)|^2)^{\frac{2+\alpha}{p}}} = 0.$

Proof (3) \Rightarrow (2) Let $f \in A^p_{\alpha}$ and $||f||_{\alpha,p} \leq 1$. By Lemma 2.1, we have

$$\varphi(|z|)|u(z)||f(\phi(z))| \le C ||f||_{\alpha,p} \frac{\varphi(|z|)|u(z)|}{(1-|\phi(z)|^2)^{\frac{2+\alpha}{p}}}$$

From the assumption, it follows

$$\lim_{|z|\to 1}\varphi(|z|)|u(z)||f(\phi(z))|=0.$$

Weighted composition operators from A^p_{α} to $A^{\infty}(\varphi)$

So, $uC_{\phi}(f) \in A_0^{\infty}(\varphi)$.

Suppose $E = \{uC_{\phi}(f) : ||f||_{\alpha,p} \leq 1\}$. For any $\{g_n\} \subset E$ converging to an analytic function g, there exists $\{f_n \in A^p_{\alpha} : ||f_n||_{\alpha,p} \leq 1\}$, such that $g_n = uC_{\phi}(f_n)$. By Lemma 2.1 and the Montel's theorem, there exists $\{f_{n_k}\}$ converging to an analytic function f uniformly on compact subsets of D. Thus we have

$$\begin{aligned} &(\alpha+1)\int_{D} (1-|z|^{2})^{\alpha} |f(z)|^{p} \mathrm{d}A(z) \\ &= (\alpha+1)\int_{D} \lim_{k \to \infty} (1-|z|^{2})^{\alpha} |f_{n_{k}}(z)|^{p} \mathrm{d}A(z) \\ &\leq \lim_{k \to \infty} (\alpha+1)\int_{D} (1-|z|^{2})^{\alpha} |f_{n_{k}}(z)|^{p} \mathrm{d}A(z) \\ &\leq 1, \end{aligned}$$

which implies that $f \in A^p_{\alpha}$ and $||f||_{\alpha,p} \leq 1$. By Lemma 2.1 and the assumption, for any $\varepsilon > 0$, there exists $\delta > 0$, such that for $\delta < |z| < 1$, we have

$$|\varphi(|z|)u(z)(f_{n_k}(\phi(z)) - f(\phi(z)))| \le C \frac{\varphi(|z|)|u(z)|}{(1 - |\phi(z)|^2)^{\frac{2+\alpha}{p}}} < \varepsilon$$

For $|z| \leq \delta$, there exists K > 0, such that for k > K,

$$|\varphi(|z|)u(z)(f_{n_k}(\phi(z)) - f(\phi(z)))| < \varepsilon.$$

It follows that

$$||uC_{\phi}(f_{n_k}) - uC_{\phi}(f)||_{\varphi} \to 0, \quad k \to \infty.$$

Therefore $g = uC_{\phi}(f)$ and $g \in E$. So E is the closed subset in $A_0^{\infty}(\varphi)$. Since

$$\lim_{|z| \to 1} \sup_{\|f\|_{\alpha,p} \le 1} \varphi(|z|) |u(z)| |f(\phi(z))| = 0,$$

using Lemma 2.2, we have $uC_{\phi}: A^p_{\alpha} \to A^{\infty}_0(\varphi)$ is compact.

 $(2) \Rightarrow (1)$ It is not difficult and omitted.

 $(1) \Rightarrow (3)$ Suppose

$$f_n(z) = \left(\frac{1 - |\phi(\lambda_n)|^2}{(1 - \overline{\phi(\lambda_n)}z)^2}\right)^{\frac{2+\alpha}{p}},$$

where $\lambda_n \in D$ and $|\lambda_n| \to 1$ $(n \to \infty)$. Thus $f_n \in A^p_\alpha$ and $uC_\phi(f_n) \in A^\infty_0(\varphi)$. Consequently, for any $n \in N$, we have

$$\lim_{|z|\to 1}\varphi(|z|)|u(z)f_n(\phi(z))|=0,$$

that is, for any $\varepsilon > 0$, there exists $\delta > 0$, such that for $\delta < |z| < 1$, we have

$$\varphi(|z|)|u(z)f_n(\phi(z))| < \varepsilon, \quad \forall \ n \in N$$

Since $|\lambda_n| \to 1$ $(n \to \infty)$, there exists N > 0, for n > N, we get $\delta < |\lambda_n| < 1$. Thus

$$\frac{\varphi(|\lambda_n|)|u(\lambda_n)|}{(1-|\phi(\lambda_n)|^2)^{\frac{2+\alpha}{p}}} = \varphi(|\lambda_n|)|u(\lambda_n)f_n(\phi(\lambda_n))| < \varepsilon.$$

Therefore,

$$\lim_{n \to \infty} \frac{\varphi(|\lambda_n|)|u(\lambda_n)|}{\left(1 - |\phi(\lambda_n)|^2\right)^{\frac{2+\alpha}{p}}} = 0$$

Consequently,

$$\lim_{|z| \to 1} \frac{\varphi(|z|)|u(z)|}{(1 - |\phi(z)|^2)^{\frac{2+\alpha}{p}}} = 0$$

Corollary 2.3 Let ϕ be an analytic self-map of D, $0 , <math>-1 < \alpha < \infty$. Then the following statements are equivalent:

- (1) $C_{\phi}: A^p_{\alpha} \to A^{\infty}_0(\varphi)$ is bounded;
- (2) $C_{\phi}: A^p_{\alpha} \to A^{\infty}_0(\varphi) \text{ is compact};$ (3) $\lim_{|z| \to 1} \frac{\varphi(|z|)}{(1-|\phi(z)|^2)^{\frac{2+\alpha}{p}}} = 0.$

References

- JIANG Lijian, LI Yezhou. Bers-type spaces and composition operators [J]. Northeast. Math. J., 2002, 18(3): 223–232.
- HE Weixiang, JIANG Lijian. Composition operator on Bers-type spaces [J]. Acta Math. Sci. Ser. B Engl. Ed., 2002, 22(3): 404–412.
- [3] LI Songxiao. Weighted composition operator from Hardy space into Bers-type spaces [J]. J. Huzhou Teachers College, 2004, 26: 8–11. (in Chinese)
- [4] HEDENMALM H, KORENBLUM B, ZHU Kehe. Theory of Bergman Space [M]. Springer-Verlag, New York, 2000.

540