Normality Family and Shared Functions by Meromorphic Functions and Its Differential Polynomials

LU Qian ${ }^{1}$, LI Jin Dong ${ }^{2}$
(1. College of Science, Southwest University of Science and Technology, Sichuan 621010, China;
2. College of Information Management, Chengdu University of Technology, Sichuan 610059, China)
(E-mail: luqiankuo1965@hotmail.com)

Abstract

In this paper, we obtain the following normal criterion: Let \mathcal{F} be a family of meromorphic functions in domain $D \subset \mathbf{C}$, all of whose zeros have multiplicity $k+1$ at least. If there exist holomorphic functions $a(z)$ not vanishing on D, such that for every function $f(z) \in \mathcal{F}$, $f(z)$ shares $a(z)$ IM with $L(f)$ on D, then \mathcal{F} is normal on D, where $L(f)$ is linear differential polynomials of $f(z)$ with holomorphic coefficients, and k is some positive numbers. We also proved coressponding results on normal functions.

Keywords meromorphic functions; differential polynomials; normal criterion; shared functions.
Document code A
MR(2000) Subject Classification 30D35; 30D45
Chinese Library Classification O174.52

1. Introduction and main results

Suppose that $f(z)$ is meromorphic functions in plane domain $D \subset \mathbf{C}$, and a is a complex value, $a \in \mathbf{C}$. Let

$$
\bar{E}_{f}(a)=\left\{f^{-1}(a)\right\} \cap D=\{z \in D \mid f(z)=a\}
$$

We say that f shares a IM with g in D if $\bar{E}_{f}(a)=\bar{E}_{g}(a)$.
Fang ${ }^{[1]}$ obtained the following result.
Theorem A Suppose that \mathcal{F} is a family of meromorphic functions in plane domain $D \subset \mathbf{C}$ and a is a nonzero complex value. For every function $f \in \mathcal{F}$, if $f(z) \neq 0$, and $\bar{E}_{f}(a)=\bar{E}_{f(k)}(a)$, then \mathcal{F} is normal in D, where k is a positive integer.

Fang and Zalcman ${ }^{[2]}$ extended Theorem A into the case that $f(z)$ has mulitple zeros and obtained the following result.

Theorem B Let \mathcal{F} be a family of meromorphic functions in domain $D \subset \mathbf{C}$, all of whose zeros have multiplicity $k+1$ at least. If for every function $f \in \mathcal{F}, \bar{E}_{f}(a)=\bar{E}_{f^{(k)}}(b), a \neq 0$ and $b \neq 0$, then \mathcal{F} is normal in D.

Suppose that $a_{i}(z)(i=1,2, \ldots, k)$ are analytic functions in D. Let

$$
L(f)=a_{k}(z) f^{(k)}(z)+a_{k-1}(z) f^{(k-1)}(z)+\cdots+a_{1}(z) f^{\prime}(z)
$$

Received date: 2006-05-16; Accepted date: 2007-03-23
Foundation item: the "11.5" Research \& Study Programe of SWUST (No. 06zx2116).

Then we call $L(f)$ a linear differential polynomial about f with holomorphic coefficients.
In this paper, with the method similar to the one used by Fang and Zalcman in [2], allowing functions $f \in \mathcal{F}$ in Theorem A to have multiple zeros, we shall consider whether Theorem A still holds when " $f(k)$ " is replaced by $L(f)$ and the complex value a is also replaced by holomorphic function $a(z)$ which does not vanish in D, and obtain our first result as follows.

Theorem 1.1 Suppose that \mathcal{F} is a family of functions meromorphic in plane domain $D \subset \mathbf{C}$, all of whose zeros have multiplicity $k+1$ at least. If there exists a holomorphic function $a(z)$ in D, which does not vanish in D, such that $\bar{E}_{f}(a(z))=\bar{E}_{L(f)}(a(z))$, then \mathcal{F} is normal in D, where k is a positive integer and $L(f)$ is a linear differential polynomial about f defined above.

Theorem 1.1 gives some abundant conditions on which \mathcal{F} is normal when the linear differential polynomial $L(f)$ about f with holomorphic coefficients shares the holomorphic function $a(z)$ IM with $f(z)$. For these conditions, we have the following notes:

Remark 1 The restrictions of multiple zeros of $f(z)$ in Theorem 1.1 is essential. For example, taking a family of functions ${ }^{[3]}$

$$
\mathcal{F}=\left\{f_{n}(z) \left\lvert\, f_{n}(z)=\frac{e^{(n+1) z}-a}{n+1}+a\right.\right\},
$$

we can see that zeros of $f_{n}(z)$ are simple and $\bar{E}_{f_{n}}(a(z))=\bar{E}_{f_{n}^{\prime}}(a(z))$, but \mathcal{F} is not normal in the unit disc Δ, here a is a nonzero finite complex number.

Remark 2 For a positive integer $k, k \geq 2$, and a family of $\mathcal{F}, \mathcal{F}=\left\{f_{n}(z) \mid f_{n}(z)=n^{k-1} z^{k-1} e^{z}, n\right.$, $k \in \mathbf{N}\}$, it is clear that zeros of $f_{n}(z)$ have multiplicity $k-1$. Writing $L\left(f_{n}(z)\right)$ as a linear differential polynomial,

$$
L\left(f_{n}(z)\right)=\sum_{i=1}^{k}(-1)^{k-i} C_{k}^{i} f_{n}^{(i)}(z),
$$

we have $L\left(f_{n}(z)\right) \equiv f_{n}(z)$, so $f_{n}(z)$ shares any $a(z)$ IM with $L\left(f_{n}(z)\right)$, but \mathcal{F} is not normal in Δ. This also implies that the restrictions of zeros of $f(z)$ in Theorem 1.1 is necessary for the case $k \geq 2$.

Remark 3 The requirement of which holomorphic functions $a(z)$ does not assume zero is also necessary. For example, for a family $\mathcal{F}, \mathcal{F}=\left\{f_{n}(z) \mid f_{n}(z)=n^{k+1} z^{k+1}, n, k \in \mathbf{N}\right\}$, and holomorphic function $a(z)=z$, it is clear that all zeros of $f_{n}(z)$ have multiplicity $k+1$, and $\bar{E}_{f_{n}}(a(z))=\bar{E}_{f_{n}^{(k)}}(a(z))$, but \mathcal{F} is not normal in Δ.

In fact, by the same method as used in the proof of Theorem 1.1, we may obtain a corresponding result as follows.

Theorem 1.2 Let \mathcal{F} be a family of functions meromorphic in plane domain $D \subset \mathbf{C}$, all of whose zeros have multiplicity $k+1$ at least, and let $a(z) \neq 0$ and $b(z) \neq 0$ be two holomorphic functions which do not take zero value in D. If for every function $f \in \mathcal{F}, \bar{E}_{f}(a(z))=\bar{E}_{L(f)}(b(z))$, then \mathcal{F} is normal in Δ, where k is a positive integer and $L(f)$ is a linear differential polynomial about $f(z)$ defined above.

For meromorphic functions $f(z)$ in Δ, we call it a normal functions if there exists positive numbers $M>0$, such that $(1-|z|) f^{\#}(z) \leq M$ for any $z \in \mathbf{C}$, where $f^{\#}(z)=\left|f^{\prime}(z)\right| /\left(1+|f(z)|^{2}\right)$ is a spherical derivative of $f(z)$.

Suppose that there exists a property P of function families \mathcal{F} in the plane domain D, with which a family \mathcal{F} is normal in D. Then for every function $f \in \mathcal{F}$, Pang and Bergweiler bring forward whether f is normal function. In this paper, for the case that $a(z)$ and coefficients of a linear differential polynomial $L(f)$ about $f(z)$ are constants, attaching a condition that $\bar{E}_{L(f)}(0) \subset \bar{E}_{f}(0)$, we obtain that function $f(z)$ which satisfies the conditions in Theorem 1.1 or Theorem 1.2 must be a normal function. But it is valuable to consider whether the extra condition $\bar{E}_{L(f)}(0) \subset \bar{E}_{f}(0)$ is essential.

Theorem 1.3 Let $f(z)$ be meromorphic function in Δ, all of whose zeros have mulitiplicity $k+1$ at least, and $\bar{E}_{L(f)}(0) \subset \bar{E}_{f}(0)$. Suppose that for nonzero complex numbers $a \neq 0$ and $b \neq 0, \bar{E}_{f}(a)=\bar{E}_{L(f)}(b)$. Then $f(z)$ is normal function in Δ. Where

$$
L(f)=a_{k} f^{(k)}(z)+a_{k-1} f^{(k-1)}(z)+\cdots+a_{1} f^{\prime}(z)
$$

here $a_{1}, a_{2}, \ldots, a_{k}$ are complex constants, $a_{k} \neq 0$ and k is a positive integer with $k \geq 2$.

2. Some lemmas

To complete the proof of Theorem 1.1, we need some lemmas as follows.
Lemma 2.1 ${ }^{[4]}$ Let \mathcal{F} be a family of meromorphic functions on the unit disc Δ, all of whose zeroes have multiplicity at least k, and suppose there exists $A \geq 1$ such that $\left|f^{(k)}(z)\right| \leq A$ whenever $f(z)=0, f \in \mathcal{F}$. Then if \mathcal{F} is not normal, there exist, for each $0 \leq \alpha \leq k$:
(a) A number $r, 0<r<1$;
(b) Points $z_{n},\left|z_{n}\right|<r$;
(c) Functions $f_{n} \in \mathcal{F}$, and
(d) Positive numbers $\rho_{n} \rightarrow 0$ such that

$$
\frac{f_{n}\left(z_{n}+\rho_{n} \xi\right)}{\rho_{n}^{\alpha}}=g_{n}(\xi) \rightarrow g(\xi)
$$

locally uniform with respect to the spherical metric, where $g(\xi)$ is a nonconstant meromorphic function on \mathbf{C} such that

$$
g^{\#}(\xi) \leq g^{\#}(0)=k A+1
$$

Lemma 2.2 ${ }^{[3]}$ Suppose that $R(z)$ is a nonconstant rational function, all of whose zeros have multiplicity $k+1$ at least. If for any nonzero complex constant $b, b \neq 0, R^{(k)}(z) \neq b$, then

$$
R(z)=\frac{(\gamma z+\delta)^{k+1}}{\alpha z+\beta}
$$

Where $\alpha, \beta, \delta, \gamma$ are some complex constants, $\gamma^{k+1} k!=\alpha b, \alpha \gamma \neq 0,|\alpha|+|\delta| \neq 0$, and k is a positive integer.

Lemma 2.3 ${ }^{[5]}$ Suppose that $f(z)$ is a meromorphic function with finite orders, all of whose zeros have multiplicity $k+1$ at least. Then $f^{(k)}(z)$ assumes any nonzero finite value b finite times, where k is a positive integer.

Lemma 2.4 ${ }^{[6,7]}$ Suppose that $f(z)$ is a meromorphic function in the plane, and k is a positive integer. If $f(z) f^{(k)}(z) \neq 0$, then $f(z)=e^{\alpha z+\beta}$ or $f(z)=(\alpha z+\beta)^{-n}$, where $\alpha \neq 0$, β are two complex numbers, and n is a positive integer.

3. Proofs of Theorems

3.1 Proof of Theorem 1.1

Suppose \mathcal{F} is not normal at $z_{0} \in \Delta$. Without loss of generality, we write $z_{0}=0$, then from Lemma 2.1, there exist $f_{n} \in \mathcal{F}$, point sequences $z_{n} \rightarrow 0$, and positive numbers $\rho_{n} \rightarrow 0^{+}$, such that $\rho_{n}^{-\alpha} f_{n}\left(z_{n}+\rho_{n}(\xi)\right)$ locally uniformly converges on functions $g(\xi)$ with respect to the spherical metric, where $g(\xi)$ is a nonconstant meromorphic function on \mathbf{C}, whose spherical derivative satisfies $g^{\#}(\xi) \leq g^{\#}(0)=k A+1$, that is, $g(\xi)$ is of finite order. We may assert that the following conclusion is true.
(i) All zeros of $g(\xi)$ have multiplicity $k+1$ at least;
(ii) $g^{(k)}(\xi) \neq 1$;
(iii) All poles of $g(\xi)$ are multiple.

In fact, suppose that point $\xi_{0} \in \mathbf{C}$ is a zero of $g(\xi), g\left(\xi_{0}\right)=0$. Since $g(\xi)$ is not identical constant, there exists ξ_{n} such that $g_{n}\left(\xi_{n}\right)=\rho_{n}^{-k} f_{n}\left(z_{n}+\rho_{n} \xi\right)$ for n sufficiently large, that is, $f_{n}\left(z_{n}+\rho_{n} \xi\right)=0$. Because all zeros of f have multiplicity $k+1$ at least, $f_{n}^{(m)}\left(z_{n}+\rho_{n} \xi\right)=0$, $m=1,2, \ldots, k$. Thus,

$$
g_{n}^{(m)}(\xi)=\rho_{n}^{m-k} f_{n}^{(m)}\left(z_{n}+\rho_{n} \xi\right)=0, \quad m=1,2, \ldots, k
$$

Then $g^{(m)}\left(\xi_{0}\right)=0, m=1,2, \ldots, k$, that is, all zeros of $g(\xi)$ have multiplicity $k+1$ at least. The assertion (i) holds.

Suppose that there exists $\xi_{0} \in \mathbf{C}$ such that $g^{(k)}\left(\xi_{0}\right)=1$. Then $g^{(k)}\left(\xi_{0}\right) \neq \infty$. We can see that $g^{(k)}(\xi)$ is not identical constant 1 . Otherwise, $g^{(k)}(\xi) \equiv 1$ for any $\xi \in \mathbf{C}$. Therefore, $g(\xi)$ is a polynoimal about ξ with degree k, all of whose zeros have multiplicity k at most. This contradicts the assertion (i). Again because of

$$
\begin{align*}
L\left(f_{n}\right)\left(z_{n}+\rho_{n} \xi\right) & =a_{k}\left(z_{n}+\rho_{n} \xi\right) f_{n}^{(k)}\left(z_{n}+\rho_{n} \xi\right)+\cdots+a_{1}\left(z_{n}+\rho_{n} \xi\right) f_{n}^{\prime}\left(z_{n}+\rho_{n} \xi\right) \\
& =a_{k}\left(z_{n}+\rho_{n} \xi\right) g_{n}^{(k)}\left(z_{n}+\rho_{n} \xi\right)+\cdots+a_{1}\left(z_{n}+\rho_{n} \xi\right) \rho_{n}^{k-1} g_{n}^{\prime}\left(z_{n}+\rho_{n} \xi\right) \tag{3.1}
\end{align*}
$$

we have that $L(f)\left(z_{n}+\rho_{n} \xi\right)-a\left(z_{n}+\rho_{n} \xi\right) \rightarrow g^{(k)}(\xi)-1$ locally uniformly with respect to the spherical metric. From Hurwitz Theorem, there exists $\xi_{n} \rightarrow \xi_{0}$ such that $L(f)\left(z_{n}+\rho_{n} \xi_{n}\right)=$ $a\left(z_{n}+\rho_{n} \xi_{n}\right)$. Again from $\bar{E}_{f}(a(z))=\bar{E}_{L(f)}(a(z))$, we deduce that $f_{n}\left(z_{n}+\rho_{n} \xi_{n}\right)=a\left(z_{n}+\rho_{n} \xi_{n}\right)$, that is,

$$
g_{n}\left(\xi_{n}\right)=\rho_{n}^{-k} f_{n}\left(z_{n}+\rho_{n} \xi_{n}\right)=\rho_{n}^{-k} a\left(z_{n}+\rho_{n} \xi_{n}\right)
$$

Thereby, $g\left(\xi_{0}\right)=\infty$, this contradicts that $g^{(k)}\left(\xi_{0}\right) \neq \infty$, so the assertion (ii) holds.

In the sequel, we shall prove that all poles of $g(\xi)$ are multiple.
If there exists $\xi_{0}\left(\xi_{0} \in \mathbf{C}\right)$, such that $g\left(\xi_{0}\right)=\infty$, then we shall deduce that $\left.\left(g(\xi)^{-1}\right)^{\prime}\right|_{\xi=\xi_{0}}=0$.
Since $g(\xi)$ is not identical ∞, there exists a set $K=\left\{\xi:\left|\xi-\xi_{0}\right|<\delta\right\}$ in which $\frac{1}{g(\xi)}$ and $\frac{1}{g_{n}(\xi)}$ are holomorphic for n sufficiently large, and $\frac{1}{g_{n}(\xi)}$ uniformly converges to $\frac{1}{g(\xi)}$. Therefore,

$$
\frac{1}{g_{n}(\xi)}-\frac{\rho_{n}^{k}}{a\left(z_{n}+\rho_{n} \xi\right)^{-1}} \longrightarrow \frac{1}{g(\xi)}
$$

with convergence being uniform in K. From $\frac{1}{g(\xi)} \not \equiv \infty$, there exists ξ_{n} in $K, \xi_{n} \rightarrow \xi_{0}$, such that $g_{n}\left(\xi_{n}\right)^{-1}-\rho_{n}^{k} a\left(z_{n}+\rho_{n} \xi_{n}\right)^{-1}=0$ for n sufficiently large, thus $f\left(z_{n}+\rho_{n} \xi_{n}\right)=a\left(z_{n}+\rho_{n} \xi_{n}\right)$. Then

$$
\begin{equation*}
L\left(f_{n}\right)\left(z_{n}+\rho_{n} \xi_{n}\right)=a\left(z_{n}+\rho_{n} \xi_{n}\right) \tag{3.2}
\end{equation*}
$$

Writing

$$
\begin{gather*}
l\left(g_{n}(\xi)\right)=a_{k}\left(z_{n}+\rho_{n} \xi\right) g_{n}^{(k)}(\xi)+a_{k}\left(z_{n}+\rho_{n} \xi\right) \rho_{n} g_{n}^{(k)}(\xi)+\cdots+a_{1}\left(z_{n}+\rho_{n} \xi\right) \rho_{n}^{k-1} g_{n}^{\prime}(\xi) \tag{3.3}\\
\frac{1}{g(\xi)} \equiv F(\xi), \quad \frac{1}{g_{n}(\xi)} \equiv F_{n}(\xi) \tag{3.4}
\end{gather*}
$$

For the case $k=1$, Theorem 1.1 is just Theorem A, so we omit the details. For the case $k=2$, by (3.4), we have

$$
\begin{gather*}
g^{\prime}(\xi)=-F^{\prime} g^{2} \tag{3.5}\\
g^{\prime \prime}(\xi)=-F^{\prime \prime} g^{2}+2\left(F^{\prime}\right)^{2} g^{3}, \quad F^{\prime \prime}=-g^{\prime \prime} g^{-2}+2\left(F^{\prime}\right)^{2} g \tag{3.6}
\end{gather*}
$$

thus $l(F)=a_{2} F^{\prime \prime}+a_{1} \rho_{n} F^{\prime}=-l(g) g^{-2}+2 a_{2}\left(F^{\prime}\right)^{2} g$. Then we have

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} l\left(F_{n}\left(\xi_{n}\right)\right) & =\lim _{n \rightarrow+\infty}\left[-l\left(g_{n}\right) g_{n}^{-2}+2 a_{2}\left(F_{n}^{\prime}\right)^{2} g_{n}\left(\xi_{n}\right)\right] \\
& =\lim _{n \rightarrow+\infty}\left[a\left(z_{n}+\rho_{n} \xi_{n}\right) g_{n}^{-2}\left(\xi_{n}\right)+2 a_{2}\left(F_{n}^{\prime}\right)^{2} g_{n}\left(\xi_{n}\right)\right] \\
& =\lim _{n \rightarrow+\infty}\left[2 a_{2}\left(F_{n}^{\prime}\right)^{2} g_{n}\left(\xi_{n}\right)\right]
\end{aligned}
$$

From $\lim _{n \rightarrow+\infty} g_{n}\left(\xi_{n}\right)=\infty$, we deduce that $g^{\prime}\left(\xi_{0}\right) g^{-2}\left(\xi_{0}\right)=\lim _{n \rightarrow+\infty}\left(g_{n}^{\prime} g_{n}^{-2}\right)^{2}=0$, that is, ξ_{0} is of multiple pole of $g(\xi)$ with order 2 at least.

For the case $k \geq 3$, from Equs. (3.5) and (3.6), and by mathematical inductive method, it follows that

$$
g^{(k)}=-F^{(k)} g^{2}+A_{k 3} g^{3}+A_{k 4} g^{4}+\cdots+A_{k k} g^{k}+(-1)^{k} k!\left(F^{\prime}\right)^{k} g^{k+1}
$$

where $A_{k j}(j=1,2, \ldots, k)$ are some polynomials about $F^{\prime}, F^{\prime \prime}, \ldots, F^{(k)}$. Thus,

$$
\begin{equation*}
F^{(k)}=-g^{(k)} g^{-2}+(-1)^{k} k!\left(F^{\prime}\right)^{k} g^{k-1} A_{k 3} g^{1}+A_{k 4} g^{2}+\cdots+A_{k k} g^{k-2} \tag{3.7}
\end{equation*}
$$

Setting $B_{0}=-a_{1} \rho_{n}^{k-1} F^{\prime}, B_{t}=(-1)^{t+1}(t+1)!a_{t+1} \rho_{n}^{k-t-1}\left(F^{\prime}\right)^{t+1}+\sum_{i=3}^{k} a_{i} \rho_{n}^{k-i} A_{i, t+2}, t=$ $1,2, \ldots, k-2$, by Equs. (3.3)-(3.7) and the above signs, we have

$$
\begin{equation*}
l\left(F_{n}\right)=l\left(g_{n}^{-1}\right)=-l\left(g_{n}\right) g_{n}^{-2}+(-1)^{k} k!a_{k}\left(F^{\prime}\right)^{k} g_{n}^{k-1}+\sum_{t=0}^{k-2} B_{t} g_{n}^{t} \tag{3.8}
\end{equation*}
$$

Again by Equs. (3.1) and (3.2), Equ. (3.8) implies

$$
l\left(F_{n}\left(\xi_{n}\right)\right)=-a\left(z_{n}+\rho_{n} \xi_{n}\right) g_{n}^{-2}+(-1)^{k} k!a_{k}\left(F^{\prime}\right)^{k} g_{n}^{k-1}+\sum_{t=0}^{k-2} B_{t} g_{n}^{t} .
$$

From $\lim _{n \rightarrow+\infty} g_{n}\left(\xi_{n}\right)=\infty$ and $\lim _{n \rightarrow+\infty} B_{0}\left(\xi_{n}\right)=B_{0}\left(\xi_{0}\right)=0$, we have

$$
\lim _{n \rightarrow+\infty}\left[l\left(F_{n}\left(\xi_{n}\right)\right)\right]=\lim _{n \rightarrow+\infty}\left\{\left[(-1)^{k} k!a_{k}\left(F^{\prime}\right)^{k} g_{n}^{k-2}+\sum_{t=1}^{k-2} B_{t} g_{n}^{t-1}\right] g_{n}\right\} .
$$

Therefore, we have

$$
\lim _{n \rightarrow+\infty}\left[(-1)^{k} k!a_{k}\left(F^{\prime}\right)^{k} g_{n}^{k-2}+\sum_{t=1}^{k-2} B_{t} g_{n}^{t-1}\right]=0 .
$$

Similarly, from $\lim _{n \rightarrow+\infty} B_{1}\left(\xi_{n}\right)=B_{1}\left(\xi_{0}\right)$, we have

$$
\lim _{n \rightarrow+\infty}\left[l\left(F_{n}\left(\xi_{n}\right)\right)\right]=\lim _{n \rightarrow+\infty}\left\{\left[(-1)^{k} k!a_{k}\left(F^{\prime}\right)^{k} g_{n}^{k-3}+\sum_{t=2}^{k-2} B_{t} g_{n}^{t-2}\right] g_{n}\right\}=-B_{1}\left(\xi_{0}\right) .
$$

Again by $\lim _{n \rightarrow+\infty} g_{n}\left(\xi_{n}\right)=\infty$, we also have

$$
\lim _{n \rightarrow+\infty}\left[(-1)^{k} k!a_{k}\left(F^{\prime}\right)^{k} g_{n}^{k-3}+\sum_{t=2}^{k-2} B_{t} g_{n}^{t-2}\right]=0
$$

Going on with the similar duduction step by step, we have $\lim _{n \rightarrow+\infty}\left[(-1)^{k} k!a_{k}\left(F^{\prime}\right)^{k}\right]=0$. Thereby, $\left.\left(g^{-1}\right)^{\prime}\right|_{\xi=\xi_{0}}=\lim _{n \rightarrow+\infty} F_{n}^{\prime}\left(\xi_{n}\right)=0$, that is, ξ_{0} is of multiple poles of $g(\xi)$, thus the assertion (iii) also holds.

Since $g(\xi)$ is of finite order, by assertions (i) and (ii), and Lemma 2.3, we have that $g(\xi)$ must be nonconstant rational function. Again from Lemma 2.2, we deduce that $g(\xi)$ only has simple poles, which contradicts that all poles of $g(\xi)$ are multiple. This completes proof of Theorem 1.1, thus \mathcal{F} is normal in D.

3.2 Proof of Theorem 1.3

If $f(z)$ is not normal function in Δ, then there exists $z_{n},\left|z_{n}\right|<1$, such that $\lim _{n \rightarrow+\infty}(1-$ $\left.\left|z_{n}\right|\right) f^{\#}\left(z_{n}\right)=\infty$. Let $f_{n}(z)=f\left(z_{n}+\left(1-\left|z_{n}\right|\right) z\right)$ and $\mathcal{F}=\left\{f_{n}\right\}$. By Marty's criterion, it is not difficult to see that \mathcal{F} is not normal at $z=0$. From Lemma 2.1, there exists point sequences $\xi_{n} \rightarrow 0, \rho_{n} \rightarrow 0^{+}$, and one subsequence of \mathcal{F}, still denoted $\left\{f_{n}\right\}$ for this subsequence, such that

$$
g_{n}(\xi)=f_{n}\left(\xi_{n}+\rho_{n} \xi\right)=f\left(z_{n}+\left(1-\left|z_{n}\right|\right) \xi_{n}+\left(1-\left|z_{n}\right|\right) \rho_{n} \xi\right) \rightarrow g(\xi)
$$

locally uniformly with respect to the spherical metric, where $g^{(k)}(\xi)$ is not identical zeros. Then all zeros of $g(\xi)$ have multiplicity $k+1$ at least. We may assert that $\bar{E}_{g}(a)=\bar{E}_{g^{(k)}}(0) \subset \bar{E}_{g}(0)$.
(i) $\bar{E}_{g}(a)=\bar{E}_{g^{(k)}}(0)$.

Suppose that there exists $\xi_{0} \in \mathbf{C}$ such that $g^{(k)}\left(\xi_{0}\right)=0$. Since

$$
\begin{aligned}
& a_{k} g_{n}^{(k)}(\xi)+a_{k}\left(1-\left|z_{n}\right|\right) \rho_{n} g_{n}^{(k-1)}(\xi)+\cdots+a_{1}\left[\left(1-\left|z_{n}\right|\right) \rho_{n}\right]^{k-1} g_{n}^{\prime}(\xi)-\left[\left(1-\left|z_{n}\right|\right) \rho_{n}\right]^{k} b \\
& \quad=\left[\left(1-\left|z_{n}\right|\right) \rho_{n}\right]^{k} L(f)\left(z_{n}+\left(1-\left|z_{n}\right|\right) \xi_{n}+\left(1-\left|z_{n}\right|\right) \rho_{n} \xi\right)-\left[\left(1-\left|z_{n}\right|\right) \rho_{n}\right]^{k} b \longrightarrow g^{(k)}(\xi)
\end{aligned}
$$

locally uniformly with respect to the spherical metric, and $g^{(k)}(\xi)$ is not identically zero, by Rouché Theorem, there exists point sequence $\xi_{n}^{*} \rightarrow \xi_{0}$, such that

$$
\left[\left(1-\left|z_{n}\right|\right) \rho_{n}\right]^{k} L(f)\left(z_{n}+\left(1-\left|z_{n}\right|\right) \xi_{n}+\left(1-\left|z_{n}\right|\right) \rho_{n} \xi_{n}^{*}\right)-\left[\left(1-\left|z_{n}\right|\right) \rho_{n}\right]^{k} b=0
$$

for n sufficiently large, that is, $L(f)\left(z_{n}+\left(1-\left|z_{n}\right|\right) \xi_{n}+\left(1-\left|z_{n}\right|\right) \rho_{n} \xi_{n}^{*}\right)=b$. Again from $\bar{E}_{f}(a)=$ $\bar{E}_{L(f)}(b)$, we have

$$
g_{n}\left(\xi_{n}^{*}\right)=f\left(z_{n}+\left(1-\left|z_{n}\right|\right) \xi_{n}+\left(1-\left|z_{n}\right|\right) \rho_{n} \xi_{n}^{*}\right)=a .
$$

Thus, $g\left(\xi_{0}\right)=a$, that is, $\bar{E}_{g^{(k)}}(0) \subset \bar{E}_{g}(a)$.
Similarly, suppose there exists $\xi_{0} \in \mathbf{C}$ such that $g\left(\xi_{0}\right)=a$. Since

$$
g_{n}(\xi)-a=f\left(z_{n}+\left(1-\left|z_{n}\right|\right) \xi_{n}+\left(1-\left|z_{n}\right|\right) \rho_{n} \xi\right)-a \rightarrow g(\xi)-a
$$

locally uniformly with respect to the spherical metric, and $g^{(k)}(\xi) \not \equiv 0, g(\xi)-a \not \equiv 0$. Then, from Rouché Theorem we have that there exists point sequence $\xi_{n}^{*} \rightarrow \xi_{0}$, such that

$$
g_{n}\left(\xi_{n}^{*}\right)-a=f\left(z_{n}+\left(1-\left|z_{n}\right|\right) \xi_{n}+\left(1-\left|z_{n}\right|\right) \rho_{n} \xi_{n}^{*}\right)-a=0
$$

for n sufficiently large. Again from $\bar{E}_{f}(a)=\bar{E}_{L(f)}(b)$, we have

$$
L(f)\left(z_{n}+\left(1-\left|z_{n}\right|\right) \xi_{n}+\left(1-\left|z_{n}\right|\right) \rho_{n} \xi_{n}^{*}\right)=b
$$

that is,

$$
\left[\left(1-\left|z_{n}\right|\right) \rho_{n}\right]^{k} L(f)\left(z_{n}+\left(1-\left|z_{n}\right|\right) \xi_{n}+\left(1-\left|z_{n}\right|\right) \rho_{n} \xi_{n}^{*}\right)=\left[\left(1-\left|z_{n}\right|\right) \rho_{n}\right]^{k} b .
$$

Then $g^{(k)}\left(\xi_{0}\right)=0$. This shows that $\bar{E}_{g}(a) \subset \bar{E}_{g^{(k)}}(0)$, so the assertion (i) holds.
(ii) $\bar{E}_{g^{(k)}}(0) \subset \bar{E}_{g}(0)$.

By the same argument as the first part in proof of the assertion (i), suppose that there exists $\xi_{0} \in \mathbf{C}$ such that $g^{(k)}\left(\xi_{0}\right)=0$. Since

$$
\begin{aligned}
& a_{k} g_{n}^{(k)}(\xi)+a_{k}\left(1-\left|z_{n}\right|\right) \rho_{n} g_{n}^{(k-1)}(\xi)+\cdots+a_{1}\left[\left(1-\left|z_{n}\right|\right) \rho_{n}\right]^{k-1} g_{n}^{\prime}(\xi) \\
& \quad=\left[\left(1-\left|z_{n}\right|\right) \rho_{n}\right]^{k} L(f)\left(z_{n}+\left(1-\left|z_{n}\right|\right) \xi_{n}+\left(1-\left|z_{n}\right|\right) \rho_{n} \xi\right) \longrightarrow g^{(k)}(\xi)
\end{aligned}
$$

locally uniformly with respect to the spherical metric, where $g^{(k)}(\xi) \not \equiv 0$, and by Rouché Theorem, we have that there exists point sequence $\xi_{n}^{*} \rightarrow \xi_{0}$, such that

$$
\left[\left(1-\left|z_{n}\right|\right) \rho_{n}\right]^{k} L(f)\left(z_{n}+\left(1-\left|z_{n}\right|\right) \xi_{n}+\left(1-\left|z_{n}\right|\right) \rho_{n} \xi_{n}^{*}\right)=0
$$

for n sufficiently large. That is, $L(f)\left(z_{n}+\left(1-\left|z_{n}\right|\right) \xi_{n}+\left(1-\left|z_{n}\right|\right) \rho_{n} \xi_{n}^{*}\right)=0$.
From $\bar{E}_{L(f)}(0) \subset \bar{E}_{f}(0)$, we may deduce that

$$
g_{n}\left(\xi_{n}^{*}\right)=f\left(z_{n}+\left(1-\left|z_{n}\right|\right) \xi_{n}+\left(1-\left|z_{n}\right|\right) \rho_{n} \xi_{n}^{*}\right)=0 .
$$

Then $g\left(\xi_{0}\right)=0$. Thereby, $\bar{E}_{g^{(k)}}(0) \subset \bar{E}_{g}(0)$, which shows that the assertion (ii) also holds.
From the above assertions that $\bar{E}_{g}(a)=\bar{E}_{g^{(k)}}(0) \subset \bar{E}_{g}(0)$ and all zeros of $g(\xi)$ have multiplicity $k+1$ at least, we obtain $g^{(k)}(\xi) \neq 0$ and $g(\xi) \neq 0$.

Again from $\bar{E}_{g}(a)=\bar{E}_{g^{(k)}}(0)$, we have $g(\xi) \neq a$. On the other hand, from Lemma 2.4, we immediately obtain that the expression of $g(\xi)$ is either $g(\xi)=e^{\alpha z+\beta}$ or $g(\xi)=(\alpha z+\beta)^{-n}$.

Clearly, this contradicts $g(\xi) \neq a$. Therefore, $f(z)$ must be a normal function in Δ. So far, we give the complete proof of Theorem 1.3.

Acknowledgment The authors thank the referee for his/her thorough review and valuable suggestions towards improvment of the paper.

References

[1] FANG Mingliang. A note on sharing values and normality [J]. J. Math. Study, 1996, 29(4): 29-32.
[2] FANG Mingliang, ZALCMAN L. Normality of meromorphic functions with multiple zeros and shared values [J]. J. Math. Anal. Appl., 2003, 277: 190-198.
[3] WANG Yuefei, FANG Mingliang. Picard values and normal families of meromorphic functions with multiple zeros [J]. Acta Math. Sinica (N.S.), 1998, 14(1): 17-26.
[4] PANG Xuecheng, ZALCMAN L. Normal families and shared values [J]. Bull. London Math. Soc., 2000, 32(3): 325-331.
[5] BERGWEILER W, EREMENKO A. On the singularities of the inverse to a meromorphic function of finite order [J]. Rev. Mat. Iberoamericana, 1995, 11(2): 355-373.
[6] FRANK G. Eine Vermutung von Hayman ü ber Nullstellen meromorpher Funktionen [J]. Math. Z., 1976, 149(1): 29-36. (in German)
[7] LANGLEY J K. Proof of a conjecture of Hayman concerning f and f [J]. J. London Math. Soc. (2), 1993, 48(3): 500-514.

