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Abstract A class of singular nonlinear boundary value problems arising in the boundary layer

behind expansion wave are studied. Sufficient conditions for the existence and uniqueness of

positive solutions to the problems are established by utilizing the monotonic approaching tech-

nique. And a theoretical estimate formula for skin friction coefficient is presented. The numerical

solution is presented by using the shoot method. The reliability and efficiency of the theoretical

prediction are verified by numerical results.
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1. Introduction

Fluid dynamicists have long known that the appearance of boundary layers was not restricted

to the canonical problem of the motion of a body through a viscous fluid. A technologically

important source of boundary layer phenomenon is the flow behind expansion wave traveling

over smooth surfaces. When a plane expansion wave advances into a stationary fluid, with a

plane wall perpendicular to the wave front, a boundary layer is established along the wall behind

the wave. This boundary layer is often important in the studies of phenomena involving non-

stationary waves. Most outstanding and representative contribution on the problem had been

made by Mires[1], For a list of the key references of a vast literature concerning this subject we

refer to the references[2−5]. In this field, Most of work tends to similarity solutions of boundary

layer equations, and many people had paid attention to the numerical solutions of the equations

of similarity solutions. The qualitative properties of the solutions and heat transfer are studied in

this paper, and a theoretical estimate formula for skin friction coefficient denoted by the velocity

ratio parameter is presented.
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2. Laminar boundary layer equations

Consider a plane laminar flow with spatial coordinates (x, y) which is established along the

wall behind expansion wave, corresponding velocity components (u, v) and dp/dx = 0. For steady

flow, the boundary layer equations for x > 0 on the mass conservation, momentum conservation

and energy conservation can be written as[1−2].

∂ρu

∂x
+

∂ρv

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
=

1

ρ

∂

∂y
(µ

∂u

∂y
), (2)

ρCp(u
∂T

∂x
+ v

∂T

∂y
) =

∂

∂y
(κ

∂T

∂y
) + µ(

∂u

∂y
)2, (3)

P = ρRT. (4)

The boundary conditions are

u(x, 0) = uw, u(x,∞) = ue, (5)

v(x, 0) = 0, (6)

T (x, 0) = Tw, T (x,∞) = Te. (7)

Where µ is coefficient of viscosity, κ is thermal conductivity and Cp is specific heat at constant

pressure.

3. Nonlinear boundary value problems

3.1 Stream function and similarity variables

Let us introduce a stream function Ψ(x, y) and a similarity variable η by the expressions

Ψ =
√

2uexνwf(η), η =

√

ue

2xνw

∫ Y

0

Tw

T (x, y)
dy. (8)

Substituting (8) into (1)–(7), and furthermore assuming dimensionless temperature is only a

function of η, we can obtain similarity equations as follows:

Momentum equations:

f ′′′(η) + f(η)f ′′(η) = 0, 0 < η < +∞, (9)

f(0) = 0, f ′(0) = ξ, f ′(+∞) = 1. (10)

Energy equations:

T
′′

(η) + Pr · f(η)T
′

(η) = − Pr · u2
e

Cp, wTe

(f ′′(η))2, 0 < η < +∞, (11)

T (0) = λ, T (+∞) = 1. (12)

Here ξ = f ′(0) =
uw

ue

is the velocity ratio parameter, λ = Tw/Te is the temperature ration

parameter, Pr = µCp/κ is the Prandtl number, and 0 ≤ ξ < 1 for a expansion wave[1,2,4].
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3.2 Crocco variables transformation

Introducing a transformation as[7−8]

g(t) = f ′′(η) (dimensionless shear stress), (13)

t = f ′(η) (dimensionless tangential velocity), (14)

w(t) = T (η) (dimensionless temperature), (15)

and substituting (13)–(15) into (9)–(12), in terms of f ′′(η) > 0, 0 < η < +∞, f ′′(+∞) = 0, we

arrive at the following singular nonlinear two-point boundary value problems:

Momentum equations:

g(t)g′′(t) + t = 0, 0 ≤ ξ < t < 1, (16)

g(1) = 0, g′(ξ) = 0. (17)

Energy equations:

w′′(t) + (1 − Pr)w′(t)g′(t)/g = − Pr · u2
e

Cp, wTe

, 0 ≤ ξ < t < 1, (18)

w(1) = 1, w(ξ) = λ. (19)

Clearly, the boundary value problems (16)–(17) are de-coupled and may be considered firstly,

the solutions then may be used to solve the boundary value problems (18)–(19). It may be seen

from the derivation process that only the positive solutions of the boundary value problems

(16)–(17) are physically significant.

3.3 The solutions of the boundary value problems (16)–(17)

Since the boundary value problems (16)–(17) is singular at t = 1, we consider firstly the

boundary problems as follows






g′′(t) = − t

g(t)
, 0 ≤ ξ < t < 1,

g′(ξ) = 0, g(1) = h > 0.

(20)

Denote the solution of the boundary value problem (20) by gh(t), we can obtain the following

lemmas.

Lemma 1 If h1 > h2 > 0, then gh1
(t) ≥ gh2

(t).

Proof If the inequality is not true, then there exists a point t0 ∈ [ξ, 1) such that gh1
(t0) <

gh2
(t0). We consider only two cases.

(i) gh1
(ξ) < gh2

(ξ).

Choose t0 = ξ, since gh1
(1) > gh2

(1) > 0, there exists a maximal interval [ξ, k] (k < 1) such

that gh1
(t) < gh2

(t) for t ∈ [ξ, k) and gh1
(k) = gh2

(k) = m > 0. gh1
(t) and gh2

(t) are both the

positive solutions of the integral equation

g(t) = m +

∫ k

ξ

G1(t, s)
s

g(s)
ds, (21)
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where

G1(t, s) =

{

k − t, 0 ≤ ξ ≤ s ≤ t ≤ k < 1,

k − s, 0 ≤ ξ ≤ t ≤ s ≤ k < 1.

equation (21) implies

0 < gh2
(t) − gh1

(t) =

∫ k

ξ

G1(t, s)
[ s

gh2
(s)

− s

gh1
(s)

]

ds < 0,

which is a contradiction.

(ii) gh1
(ξ) ≥ gh2

(ξ).

Since gh1
(1) > gh2

(1) > 0, there exists a maximal interval [a, b] (ξ ≤ a < b < 1), which

contains the point t0 such that gh1
(a) = gh2

(a) and gh1
(b) = gh2

(b), and gh1
(t) < gh2

(t) for

t ∈ (a, b). Let gh1
(a) = gh2

(a) = α and gh1
(b) = gh2

(b) = β. Then for t ∈ [a, b], gh1
(t) and gh2

(t)

are both the positive solutions of the integral equation

g(t) =
bα − aβ

b − a
+

β − α

b − a
t +

∫ b

a

G2(t, s)
s

g(s)
ds, (22)

where

G2(t, s) =











(b − t)(s − a)

b − a
, ξ ≤ a ≤ s ≤ t ≤ b < 1,

(b − s)(t − a)

b − a
, ξ ≤ a ≤ t ≤ s ≤ b < 1.

equation (22) implies

0 < gh2
(t) − gh1

(t) =

∫ b

a

G2(t, s)
[ s

gh2
(s)

− s

gh1
(s)

]

ds < 0,

which is also a contradiction.

Lemma 2 For any fixed h > 0, the boundary value problem (20) has at most one positive

solution.

Proof Suppose the boundary value problem (20) has two different positive solutions g1(t) and

g2(t) for each fixed h > 0. Then, without loss of generality, we may assume that there exists a

point t0 ∈ [ξ, 1] such that g1(t0) > g2(t0). Since g1(1) = g2(1) = h, there exists a maximal close

interval [a1, b1] ⊆ [ξ, 1] such that g1(t) > g2(t) for t ∈ [a1, b1].

(i) If a1 = ξ, then g1(t) ≥ g2(t) for t ∈ [ξ, b1] ⊆ [ξ, 1] and g1(b1) = g2(b1).

(ii) If a1 6= ξ, then g1(a1) = g2(a1) and g1(b1) = g2(b1) for t ∈ [a1, b1] ⊂ [ξ, 1], and

g1(t) > g2(t) for t ∈ (a1, b1) .

Along the same lines as in the cases (i) and (ii) in Lemma 1, we may show that this is

impossible.

Lemma 3 For any fixed h > 0, the boundary value problem (20) has one positive solution.

Proof For any fixed h > 0, if g(t) is the positive solution of the boundary value problem (20),
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then g(t) is convex on [ξ, 1] and must be a positive solution of the following integral equation

g(t) = h +

∫ 1

ξ

G3(t, s)
s

g(s)
ds, (23)

where

G3(t, s) =

{

1 − t, ξ ≤ s ≤ t ≤ 1,

1 − s, ξ ≤ t ≤ s ≤ 1.

We define a Mapping φ : Ω → Ω by

(φg)(t) = h +

∫ 1

ξ

G3(t, s)
s

g(s)
ds,

where Ω = {g(t) ∈ C [ξ, 1] : h ≤ g(t) ≤ (φg)(t)}, and C [ξ, 1] is the set of all real-valued

continuous functions defined on [ξ, 1]. Then φ is a compactly continuous mapping from Ω to Ω.

The Schauder Fixed Point Theorem asserts that the mapping φ has at least one fixed point gh(t)

in Ω, which implies that gh(t) is a positive solution of the boundary value problem (20).

Denote g(ξ) = σ and consider the initial value problem






g′′(t) =
−t

g(t)
, 0 ≤ ξ < t < 1,

g(ξ) = σ > 0, g′(ξ) = 0.

(24)

Let g(t) be the positive solution of the boundary value problem (16)–(17) and [ξ, t∗σ) be

the maximal interval of existence of solutions of the initial value problem (24). Then we may

establish the following lemmas.

Lemma 4 (i) Let g1 and g2 be the solutions of the initial value problem (24) for σ = σ1 and

σ = σ2, respectively. If σ1 < σ2, then t∗σ1
< t∗σ2

.

(ii) t∗σ is a continuous function of σ and t∗σ → +∞ as σ → +∞.

The proof of this lemma is similar to that of [9, Lemmas 1, 2 and 3], so we omit it here.

Lemma 5 For any fixed h > 0, the positive solution gh(t) of the boundary value problem (20)

satisfies

gh(ξ) >

√

1

6
[1 − ξ2(3 − 2ξ)], 0 ≤ ξ < 1.

Proof In terms of the initial value problem (24), for t ∈ (ξ, 1)

g(t) < σ − 1

6σ
(t3 − 3ξ2t + 2ξ3) < σ − 1

6σ
(t3 − 3ξ2 + 2ξ3).

Let f(t) = σ − 1
6σ

(t3 − 3ξ2 + 2ξ3). Then the positive solution of the initial value (24) satisfies

g(t) < f(t) for t ∈ (ξ, 1). In terms of Lemma 4, assume f(t) intersects the t -axis at the point

t∗0. Then t∗0 = 3

√

6σ2 + 3ξ2 − 2ξ3. Especially for t∗0 = 1 this yields

σ =

√

1

6
[1 − ξ2(3 − 2ξ)], 0 ≤ ξ < 1.

Similar to Lemma 1, we may show the positive solution of the initial value problem (24)

is increasing with σ, so the positive solutions g(t, σ) of the initial value problem (24) cannot
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intersect the point 1 for σ ≤
√

1
6 [1 − ξ2(3 − 2ξ)]. This implies that for σ ≤

√

1
6 [1 − ξ2(3 − 2ξ)],

the positive solution of the initial value problem (24) can not satisfy g(1) ≥ 0. This shows that

for any fixed h > 0, the positive solution gh(t) of the boundary value problem (20) satisfies

gh(ξ) >

√

1

6
[1 − ξ2(3 − 2ξ)], 0 ≤ ξ < 1.

Theorem The boundary value problems (16)–(17) has a unique positive solution, for any

ξ ∈ [0, 1), and satisfies the following estimate formula
√

1

6
[1 − ξ2(3 − 2ξ)] < g(ξ) <

3(1 − ξ)(1 − ξ2)
√

6[1 − ξ2(3 − 2ξ)]
.

Proof Lemmas 2 and 3 show that for any h > 0, the boundary value problem (20) has a unique

positive solution. Then for any h2 > h1 > 0 , in terms of equation (23) and Lemma 1,

0 < gh2
(t) − gh1

(t) = h2 − h1 +

∫ 1

ξ

G3(t, s)
[ s

gh2
(s)

− s

gh1
(s)

]

ds ≤ h2 − h1.

This indicates the series of positive solutions {gh(t)} converges uniformly to a limit with h on

[ξ, 1], denoted by g0(t). Then

lim
h→0

gh(t) = g0(t), t ∈ [ξ, 1].

Lemma 5 implies g0(ξ) >
√

1
6 [1 − ξ2(3 − 2ξ)], 0 ≤ ξ < 1. For any h ≥ 0, by the convexity of

gh(t), this yields

gh(t) ≥ h +
gh(ξ) − h

ξ − 1
(t − 1) = h +

gh(ξ)

ξ − 1
(t − 1) − h

ξ − 1
(t − 1)

≥
√

6[1 − ξ2(3 − 2ξ)]

6(ξ − 1)
(t − 1). (25)

It follows from inequality (25) for h ≥ 0 and the right integral function of equation (23) that

G3(t, s)
s

gh(s)
≤ G3(t, s)

6(ξ − 1)s
√

6[1 − ξ2(3 − 2ξ)](s − 1)
. (26)

We get

gh(t) = h +

∫ 1

ξ

G3(t, s)
s

gh(s)
ds.

Let h → 0+ and use the Monotone Convergence Theorem[10], we obtain:

g0(t) = lim
h→0

∫ 1

ξ

G3(t, s)
s

gh(s)
ds =

∫ 1

ξ

lim
h→0

G3(t, s)
s

gh(s)
ds,

i.e.,

g0(t) =

∫ 1

ξ

G3(t, s)
s

g0(s)
ds. (27)

The above arguments indicate that the boundary value problems (16)–(17) have a unique positive

solution g0(t). Furthermore, we can obtain the following formula by (26) and (27)
√

1

6
[1 − ξ2(3 − 2ξ)] < g(ξ) <

3(1 − ξ)(1 − ξ2)
√

6[1 − ξ2(3 − 2ξ)]
, 0 ≤ ξ < 1. 2
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This proves that the boundary value problems (16)–(17) have a unique positive solution g(t),

satisfying
√

1

6
[1 − ξ2(3 − 2ξ)] < g(ξ) <

3(1 − ξ)(1 − ξ2)
√

6[1 − ξ2(3 − 2ξ)]
, 0 ≤ ξ < 1. (28)

In order to illustrate the reliability and efficiency of the proposed theoretical results. we

compare the results of the estimate formula (28) with numerical results by solving the boundary

value problems (16)–(17) for different velocity ratio parameter ξ. For numerical results we can

refer to Table 1 and Figure 1.

For the sake of simplicity of comparison, denote the skin friction g(ξ) obtained by numerical

calculation by σcom = g(ξ), and the estimated results are obtained by estimate formula (28)

by σlower-bound =
√

1
6 [1 − ξ2(3 − 2ξ)] and σupper-bound = 3(1−ξ)(1−ξ2)√

6[1−ξ2(3−2ξ)]
, respectively. The

skin friction coefficients obtained by numerical calculation for different velocity ratio parameter

ξ and by formula (28) are presented in Table 1. The reliability and efficiency of the theoretical

estimate formula (28) are verified by numerical results.

ξ σlower-bound σcom = g(ξ) σupper-bound

ξ=0.0 0.4082 0.4683 1.2247

ξ=0.2 0.3684 0.4421 0.9937

ξ=0.4 0.3286 0.3743 0.7668

ξ=0.6 0.2442 0.2747 0.5285

ξ=0.8 0.1317 0.1489 0.2734

ξ=0.9 0.0683 0.0772 0.1391

Table 1 The The skin friction coefficient obtained numerically and by formula (28)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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t
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? =0.6
? =0.8
? =0.9

Figure 1 Dimensionless shear stress profiles for ξ = 0.0 to 0.9

Table 1 shows that all numerical results lie in the range that are estimated by formula (28).
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When velocity ratio parameter ξ is smaller, the error that is estimated by lower-bound of formula

(28) is bigger. But, with the increasing of velocity ratio parameter ξ, the formula (28) goes more

and more reliable and efficient. Especially, for appropriately big velocity ratio parameter ξ, we

can consider the results that are estimated by lower-bound of formula (28) as approximate value

of skin fiction coefficient.

Fig.1 shows the characteristics of dimensionless shear stress g(t) for ξ = 0.0 to 0.9 by solving

the boundary value problems (16)–(17). The results indicate that the skin friction σ decreases

with increasing of the velocity ratio parameter ξ, i.e., the skin friction is a decrease function

of velocity ratio parameter. For each fixed value of ξ, dimensionless shear stress is a decrease

function of dimensionless tangential velocity in [ξ, 1], and ξ = 0 for classical Balasis solution.

Clearly, all results are completely consistent with the results obtained by theoretical analysis.

3.4 The solutions of the boundary value problems (18)–(19)

Utilizing the unique analytical solution of the boundary value problems (16)–(17), the solution

of the boundary value problems (18)–(19) is established and represented as follows:

w(t) = − Pr · u2
e

Cp, wTe

∫ t

ξ

(g(s))1−Prds

∫ t

ξ

(g(s))Pr−1ds+

1 − λ − Pr · u2
e

Cp, wTe

∫ 1

ξ

(g(s))1−Pr(

∫ s

ξ

(g(x))Pr−1dx)ds

∫ 1

ξ
gPr−1(s)ds

∫ t

ξ

(g(s))Pr−1ds+

Pr · u2
e

Cp, wTe

∫ 1

ξ

(g(s))1−Prds

∫ 1

ξ

(g(s))Pr−1ds+

Pr · u2
e

Cp, wTe

∫ t

ξ

(g(s))1−Pr(

∫ s

ξ

(g(x))Pr−1dx)ds + λ.

For pr = 1, we can obtain

w(t) = − u2
e

2Cp, wTe

(t − ξ)2 +

1 − λ +
u2

e

2Cp, wTe

(1 − ξ)2

1 − ξ
(t − ξ) + λ.

This shows that the temperature distribution w(t) has a parabolic distribution with tangential

velocity t.

4. Conclusions

A class of singular nonlinear boundary value problems arising in the boundary layer behind

expansion wave are studied. Sufficient conditions for the existence and uniqueness of positive

solutions to the problems are established by utilizing the monotonic approaching technique. And

a theoretical estimate formula for skin friction coefficient is presented. The numerical solution is

presented by using the shoot method. The reliability and efficiency of the theoretical prediction

are verified by numerical results.
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