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1. Introduction

In this paper, we study the existence of three nonnegative solutions to a type of three-point

boundary value problem for the second-order impulsive differential equation






















−x′′(t) = f(t, x(t)) for t ∈ (0, 1)\{t1, . . . , tm},

∆x|t=tk
= Ik(x(tk)), k = 1, 2, . . . , m,

∆x′|t=tk
= 0, k = 1, 2, . . . , m,

x(0) = βx(ξ), x′(1) = 0,

(1.1)

where f ∈ C([0, 1] × R+, R+), R+ = [0, +∞), 0 < t1 < t2 < · · · < tm < 1, β, ξ ∈ (0, 1),

Ik ∈ C(R+, R+), ∆x|t=tk
= x(t+k ) − x(t−k ), and x(t+k ) and x(t−k ) denote the right limit and left

limit of x(t) at t = tk, k = 1, 2, . . . , m, respectively. Also ∆x′|t=tk
= x′(t+k ) − x′(t−k ).

By means of the Leggett-Williams’s fixed point theorem, we obtain the sufficient conditions

for existence of three nonnegative solutions in which there is a positive solution at least.

In many problems of science and technology, the impulsive phenomenon exists widely, espe-

cially in engineering, physics, communication, science of life and economic field. Impulsive dif-

ferential equations describe processes which experience a sudden change of their state at certain

moments. They, under some circumstances, could express the certain regulation of the matters
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more accurately than the classical differential equations[1]. Therefore, it is very important to

study impulsive differential equations.

Guo[2] used fixed point index theory for cone mappings to investigate the existence of multiple

positive solutions of a boundary value problem










−x′′(t) = f(t, x(t)), t 6= tk, k = 1, 2, . . . , m,

∆x|t=tk
= Ik(x(tk)), k = 1, 2, . . . , m,

ax(0) − bx′(0) = θ, cx(1) + dx′(1) = θ.

In [3], by using the Leggett Williams fixed point theorem, some results were obtained which

guarantee the existence of three nonnegative solutions to the second order impulsive differential

equations






















y′′(t) + φ(t)f(y(t)) = 0 for t ∈ (0, 1)\{t1, . . . , tm},

∆y|t=tk
= Ik(y(t−k )), k = 1, 2, . . . , m,

∆y′|t=tk
= Jk(y(t−k )), k = 1, 2, . . . , m,

y(0) = y(1) = 0.

He[4] used the method of upper and lower solutions and monotone iterative to investigate the

existence of maximal and minimal solutions of the periodic boundary value problem for first

order impulsive functional differential equations. Zhang[5] obtained results of existence for first

order non-homogeneous boundary value problem of impulsive differential equations by means

of the method of upper and lower solutions coupled with the monotone iterative technique. In

[6] was investigated the existence of solutions to the second order impulsive integro-differential

equations by using Leray-Schauder continuous theorem of the condensing mapping,

2. Preliminaries

Denote J = [0, 1] and PC[J, R] = {x|x : J → R, x is continuous for t 6= tk, right limit

x(t+k ) and left limit x(t−k ) exist, and x(tk) = x(t−k ) at t = tk, for k = 1, 2, . . . , m}. Ob-

viously, PC[J, R] is a Banach space with norm ‖x‖PC = supt∈J |x(t)|. Denote J0 = [0, t1],

J1 = (t1, t2], . . . , Jm−1 = (tm−1, tm], Jm = (tm, 1], and J ′ = J\{t1, t2, . . . , tm}.

Definition 2.1 x is said to be a solution of boundary value problem (1.1), if x ∈ PC[J, R]
⋂

C2[J ′, R]

and satisfies (1.1).

Lemma 2.1
[7] H ⊂ PC[J, R] is a relatively compact set if and only if H is uniform bounded

in J and equicontinuous in all Jk, k = 1, 2, . . . , m.

Let

G(t, s) =
1

1 − β























s, s < ξ, s < t;

βs + (1 − β)t, t ≤ s ≤ ξ;

βξ + s(1 − β), ξ ≤ s ≤ t;

βξ + t(1 − β), t < s, ξ < s.

Lemma 2.2 x ∈ PC[J, R]
⋂

C2[J ′, R] is a solution of the boundary value problem (1.1) if and
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only if x ∈ PC[J, R] is a solution of the integral equation

x(t) =

∫ 1

0

G(t, s)f(s, x(s))ds +
β

1 − β

∑

0<tk<ξ

Ik(x(tk)) +
∑

0<tk<t

Ik(x(tk)). (2.1)

Proof Suppose x ∈ PC[J, R]
⋂

C2[J ′, R] is a solution of the boundary value problem (1.1),

and let t0 = 0. By virtue of mean value theorem of differentials, we obtain

x(tk) − x(tk − h) = x′(ξk)h for 0 < h < tk − tk−1,

where ξk ∈ (tk−h, tk). By (1.1), we have ∆x′|t=tk
= x′(t+k )−x′(t−k ) = 0. Then the left derivative

x′

−
(tk) exists, and

x′

−
(tk) = lim

h→0+

x(tk) − x(tk − h)

h
= lim

ξk→t
−

k

x′(ξk) = x′(t−k ).

Set x′(tk) = x′(t−k ), k = 1, 2, . . . , m. Then

x′(t) = x′(0) −

∫ t

0

f(s, x(s))ds for 0 ≤ t ≤ t1

x′(t1) = x′(0) −

∫ t1

0

f(s, x(s))ds. (2.2)

It follows from (1.1) and (2.2) that

x′(t) = x′(t+1 ) −

∫ t

t1

f(s, x(s))ds = x′(0) −

∫ t

0

f(s, x(s))ds + x′(t+1 ) − x′(t1)

for t1 < t ≤ t2. Similarly, we have

x′(t) = x′(0) −

∫ t

0

f(s, x(s))ds +
∑

0<tk<t

[x′(t+k ) − x′(tk)] for all t ∈ J.

Therefore

x(t) = x(0) + x′(0)t −

∫ t

0

(t − s)f(s, x(s))ds for 0 ≤ t ≤ t1,

x(t1) = x(0) + x′(0)t1 −

∫ t1

0

(t1 − s)f(s, x(s))ds

and for t1 < t ≤ t2

x(t) =x(t+1 ) + x′(0)(t − t1) −

∫ t1

0

(t − t1)f(s, x(s))ds −

∫ t

t1

(t − s)f(s, x(s))ds + (x′(t+1 ) − x′(t1))(t − t1)

=x(0) + x′(0)t −

∫ t

0

(t − s)f(s, x(s))ds + (x′(t+1 ) − x′(t1))(t − t1) + (x(t+1 ) − x(t1)).

In the same way, we can show

x(t) = x(0)+x′(0)t−

∫ t

0

(t−s)f(s, x(s))ds+
∑

0<tk<t

[x′(t+k )−x′(tk)](t− tk)+
∑

0<tk<t

[x(t+k )−x(t−k )]

for all t ∈ J .
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Since ∆x|t=tk
= Ik(x(tk)), ∆x′|t=tk

= 0, k = 1, 2, . . . , m, we have

x(t) = x(0) + x′(0)t −

∫ t

0

(t − s)f(s, x(s))ds +
∑

0<tk<t

Ik(x(tk)) for all t ∈ J. (2.3)

Combining the boundary conditions of the problem (1.1), we obtain

x′(1) = x′(0) −

∫ 1

0

f(s, x(s))ds, x′(0) =

∫ 1

0

f(s, x(s))ds.

By (2.3), we have x(ξ) = x(0) + x′(0)ξ −
∫ ξ

0
(ξ − s)f(s, x(s))ds +

∑

0<tk<ξ Ik(x(tk)). But

x(0) = βx(ξ), we get

x(0) =
β

1 − β

[

ξ

∫ 1

0

f(s, x(s))ds −

∫ ξ

0

(ξ − s)f(s, x(s))ds +
∑

0<tk<ξ

Ik(x(tk))
]

.

Hence

x(t) =
βξ

1 − β

∫ 1

0

f(s, x(s))ds −
β

1 − β

∫ ξ

0

(ξ − s)f(s, x(s))ds +
β

1 − β

∑

0<tk<ξ

Ik(x(tk))+

t

∫ 1

0

f(s, x(s)ds −

∫ t

0

(t − s)f(s, x(s)ds +
∑

0<tk<t

Ik(x(tk)).

10 For all t ≤ ξ

x(t) =

∫ t

0

s

1 − β
f(s, x(s))ds +

∫ ξ

t

βs + t(1 − β)

1 − β
f(s, x(s))ds +

∫ 1

ξ

βξ + t(1 − β)

1 − β
f(s, x(s))ds+

β

1 − β

∑

0<tk<ξ

Ik(x(tk)) +
∑

0<tk<t

Ik(x(tk)).

20 For all t ≥ ξ

x(t) =

∫ ξ

0

s

1 − β
f(s, x(s))ds +

∫ t

ξ

βξ + s(1 − β)

1 − β
f(s, x(s))ds +

∫ 1

t

βξ + t(1 − β)

1 − β
f(s, x(s))ds+

β

1 − β

∑

0<tk<ξ

Ik(x(tk)) +
∑

0<tk<t

Ik(x(tk)).

Then for all t ∈ J

x(t) =

∫ 1

0

G(t, s)f(s, x(s))ds +
β

1 − β

∑

0<tk<ξ

Ik(x(tk)) +
∑

0<tk<t

Ik(x(tk)).

On the other hand, if x ∈ PC[J, R] is a solution of the integral equation (2.1), it is easy to

obtain x ∈ PC[J, R]
⋂

C2[J ′, R] is a solution of the boundary value problem (1.1) by (2.1). 2

The operator A : PC[J, R] → PC[J, R] is defined by

(Ax)(t) =

∫ 1

0

G(t, s)f(s, x(s))ds +
β

1 − β

∑

0<tk<ξ

Ik(x(tk)) +
∑

0<tk<t

Ik(x(tk)) for t ∈ J. (2.4)

Obviously, we have the following

Lemma 2.3 x ∈ PC[J, R]
⋂

C2[J ′, R] is a solution of the boundary value problem (1.1) if and
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only if x ∈ PC[J, R] is a fixed point of A.

Lemma 2.4 The function G satisfies

(1) G(t, s) ≤ s
1−β

for all t, s ∈ J , and G(t, s) ≥ β
1−β

min{s, ξ} for all t ∈ J ;

(2)
∫ 1

0 G(t, s)ds = βξ(2−ξ)
2(1−β) + t − 1

2 t2, and mint∈[δ,1]

∫ 1

0 G(t, s)ds = βξ(2−ξ)
2(1−β) + δ(2−δ)

2 for

max{tm, ξ} < δ < 1.

Lemma 2.5 A : PC[J, R] → PC[J, R] is a completely continuous operator.

Proof By (2.4), it is easy to see that A is a continuous operator. Since

(Ax)′(t) =

∫ 1

0

∂G

∂t
f(s, x(s))ds, t ∈ J, t 6= tk, k = 1, 2, . . . , m

and |∂G
∂t

| ≤ 1, A(S) is uniform bounded in J and equicontinuous in all Jk for any bounded set

S ∈ PC[J, R], k = 1, 2, . . . , m.

Therefore, it follows from Lemma 2.1 that A is a completely continuous operator. 2

Let E = (E, ‖ · ‖) be a Banach space and P ⊂ E be a cone on E. A continuous mapping

ω : P −→ [0, +∞) is said to be a concave nonnegative continuous functional on P , if ω satisfies

ω
(

λx + (1 − λ)y
)

≥ λω(x) + (1 − λ)ω(y) for all x, y ∈ P and λ ∈ [0, 1].

Let a, b, d > 0 be constants. Define Pd = {x ∈ P : ‖x‖ < d}, P d = {x ∈ P : ‖x‖ ≤ d}

and P (ω, a, b) = {x ∈ P : ω(x) ≥ a, ‖x‖ ≤ b}. In order to prove our main results, we need the

following Legget-Williams fixed point theorem[7,8].

Lemma 2.6 Let (E, ‖ · ‖) be a Banach space, P ⊂ E be a cone of E and c > 0 be a constant.

Suppose there exists a concave nonnegative continuous functional ω on P with ω(x) ≤ ‖x‖ for

all x ∈ P c. Let A : P c −→ P c be a completely continuous operator. Assume there are numbers

a, b and d with 0 < d < a < b ≤ c such that

(H1) {x ∈ P (ω, a, b) : ω(x) > a} 6= ∅ and ω(Ax) > a for all x ∈ P (ω, a, b);

(H2) ‖Ax‖ < d for all x ∈ P d;

(H3) ω(Ax) > a for all x ∈ P (ω, a, c) with ‖Ax‖ > b.

Then A has at least three fixed points x1, x2 and x3 in P c. Furthermore,

x1 ∈ Pa; x2 ∈ {x ∈ P (ω, b, c) : ω(x) > b}; x3 ∈ P c \ (P (ω, b, c) ∪ P a).

3. Main results

Let E = PC[J, R] and P = PC[J, R+] = {x|x : J → R+, x is continuous for t 6= tk, x(t+k )

and x(t−k ) exist, x(tk) = x(t−k ), k = 1, 2, . . . , m}. Then P is a cone of E = PC[J, R].

Take δ satisfying max{tm, ξ} < δ < 1. Define ω : P → R+ with ω(x) = mint∈[δ,1] x(t). Then

ω is a concave nonnegative continuous functional on P , and satisfies ω(x) ≤‖ x ‖ for all x ∈ P .

Denote σ = max(t,s)∈J×J G(t, s), ik = infx∈[0,+∞) Ik(x), k = 1, 2, . . . , m and a = 1 +
β

1−β

∑

0<tk<ξ ik +
∑m

k=1 ik.
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(A0) There exist constants 0 < γ, γk < +∞ such that limx→+∞

f(t,x)
x

< γ holds uniformly

for t, and limx→+∞

Ik(x)
x

< γk, for k = 1, 2, . . . , m.

Theorem 3.1 Suppose A0 holds, and σγ + β
1−β

∑

0<tk<ξ γk +
∑m

k=1 γk < 1. There exist

constants b and d with 0 < d < a < a
βξ

< b, such that the following conditions hold

(A1) f(t, x) < (1 − β)d for all (t, x) ∈ J × [0, d];

(A2) Ik(x) ≤ min{ d
4m

, (1−β)d
4mβ

}, k = 1, 2, . . . , m for all x ∈ [0, d];

(A3) f(t, x) >
2(1−β)

βξ(2−ξ)+δ(2−δ)(1−β) for all (t, x) ∈ [δ, 1]× [a, b].

Then the boundary value problem (1.1) has at least three nonnegative solutions x1, x2 and

x3 in P c. Furthermore the nonnegative solutions x1 ∈ Pa and x2 ∈ {x ∈ P (ω, b, c) : ω(x) > b},

the positive solution x3 ∈ P c \ (P (ω, b, c) ∪ P a).

Proof It follows from (A0) that there exists τ > 0 such that 0 ≤ f(t, x) ≤ γx, Ik(x) ≤ γkx for

all t ∈ J and x > τ .

Let M = max(t,x)∈J×[0,τ ] f(t, x), Mk = maxx∈[0,τ ] Ik(x). Then

0 ≤ f(t, x) ≤ γx + M for t ∈ J and x ≥ 0

Ik(x) ≤ γkx + Mk for x ≥ 0, k = 1, 2, . . . , m.

Take c >
σM+ β

1−β

∑

0<tk<ξ
Mk+

∑ m
k=1

Mk

1−(σγ+ β
1−β

∑

0<tk<ξ
γk+

∑

m
k=1

γk)
. Then as ‖x‖ ≤ c, for all t ∈ J , we have

0 ≤ |(Ax)(t)| ≤ σ(γ‖x‖ + M) +
β

1 − β

∑

0<tk<ξ

(γk‖x‖ + Mk) +
m

∑

k=1

(γk‖x‖ + Mk)

≤ (σγ +
β

1 − β

∑

0<tk<ξ

γk +

m
∑

k=1

γk)c + (σM +
β

1 − β

∑

0<tk<ξ

Mk +

m
∑

k=1

Mk)

< c.

Therefore, ‖Ax‖ < c.

By Lemma 2.5, we obtain that A : P c → P c is a completely continuous operator.

Take u0 = a+bβξ
2βξ

. Then ω(u0) = a+bβξ
2βξ

> a and ‖u0‖ = a+bβξ
2βξ

< b. Thus u0 ∈ {x ∈

P (ω, a, b) : ω(x) > a} 6= ∅. For x ∈ P (ω, a, b), by (A3), we have

ω(Ax) = min
t∈[δ,1]

(

∫ 1

0

G(t, s)f(s, x(s))ds +
β

1 − β

∑

0<tk<ξ

Ik(x(tk)) +
∑

0<tk<t

Ik(x(tk))
)

> min
t∈[δ,1]

( 2(1 − β)

βξ(2 − ξ) + δ(2 − δ)(1 − β)

∫ 1

0

G(t, s)ds +
β

1 − β

∑

0<tk<ξ

ik +

m
∑

k=1

ik

)

= 1 +
β

1 − β

∑

0<tk<ξ

ik +

m
∑

k=1

ik = a.

So the condition (H1) of Lemma 2.6 holds.

It follows from Lemma 2.4, (A1) and (A2) that for x ∈ P d = {x ∈ P : ‖x‖ ≤ d}

‖Ax‖ = sup
t∈J

(

∫ 1

0

G(t, s)f(s, x(s))ds +
β

1 − β

∑

0<tk<ξ

Ik(x(tk)) +
∑

0<tk<t

Ik(x(tk))
)
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≤
1

1 − β

∫ 1

0

sf(s, x(s))ds +
β

1 − β

∑

0<tk<ξ

Ik(x(tk)) +

m
∑

k=1

Ik(x(tk))

< d

∫ 1

0

sds +
β

1 − β

md(1 − β)

4βm
+

dm

4m
= d.

Hence, the condition (H2) of Lemma 2.6 holds.

Since ‖x‖ ≤ c, ω(x) ≥ a and ‖Ax‖ > b as x ∈ P (ω, a, c) and ‖Ax‖ > b, by Lemma 2.4 and

(A3), we can show that

ω(Ax) = min
t∈[δ,1]

(

∫ 1

0

G(t, s)f(s, x(s))ds +
β

1 − β

∑

0<tk<ξ

Ik(x(tk)) +
∑

0<tk<t

Ik(x(tk)
)

≥ min
t∈[δ,1]

1

1 − β

(

∫ ξ

0

βsf(s, x(s))ds +

∫ 1

ξ

βξf(s, x(s))ds
)

+
β

1 − β

∑

0<tk<ξ

Ik(x(tk)) +

m
∑

k=1

Ik(x(tk))

>
βξ

1 − β

(

∫ ξ

0

sf(s, x(s))ds +

∫ 1

ξ

sf(s, x(s))ds
)

+
β

1 − β

∑

0<tk<ξ

Ik(x(tk)) +

m
∑

k=1

Ik(x(tk))

≥ βξ sup
t∈J

(

∫ 1

0

G(t, s)f(s, x(s))ds +
β

1 − β

∑

0<tk<ξ

Ik(x(tk)) +
∑

0<tk<t

Ik(x(tk))
)

= βξ‖Ax‖ > a.

Therefore the condition (H3) of Lemma 2.6 holds.

Then the boundary value problem (1.1) has at least three nonnegative solutions x1, x2 and

x3 in P c. Furthermore the nonnegative solutions x1 ∈ Pa and x2 ∈ {x ∈ P (ω, b, c) : ω(x) > b},

and the positive solution x3 ∈ P c \ (P (ω, b, c) ∪ P a).

Therefore the theorem is proved. 2

When the condition (A0) holds, it is easy to see that for all b0 > b and x ∈ [b, b0], there is no

restriction on the growth of f and Ik, k = 1, 2, . . . , m. If the restriction of the condition (A0),

for f and Ik, k = 1, 2, . . . , m as x → +∞, is removed, we can get

Theorem 3.2 Suppose that there exist constants b, c, d with 0 < d < a < a
βξ

< b < c such

that (A1) and (A3) hold, and

(A4) f(t, x) < (1 − β)c for all (t, x) ∈ J × [0, c];

(A5) Ik(x) ≤ d
4m

min{1, (1−β)
β

} for all x ∈ [0, c], k = 1, 2, . . . , m.

Then the boundary value problem (1.1) has at least three nonnegative solutions x1, x2 and

x3 in P c. Furthermore the nonnegative solutions x1 ∈ Pa and x2 ∈ {x ∈ P (ω, b, c) : ω(x) > b},

and the positive solution x3 ∈ P c \ (P (ω, b, c) ∪ P a).

Proof Since 2(1−β)
βξ(2−ξ)+δ(2−δ)(1−β) <

(1−β)
βξ

<
(1−β)

βξ
< (1 − β)c, conditions (A3) and (A4) are

reasonable. The condition (A4) implies (A2).

As ‖x‖ ≤ c, we can show that

‖Ax‖ = sup
t∈J

(

∫ 1

0

G(t, s)f(s, x(s))ds +
β

1 − β

∑

0<tk<ξ

Ik(x(tk)) +
∑

0<tk<t

Ik(x(tk))
)
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≤
1

1 − β

∫ 1

0

sf(s, x(s))ds +
β

1 − β

∑

0<tk<ξ

Ik(x(tk)) +

m
∑

k=1

Ik(x(tk))

< c

∫ 1

0

sds +
β

1 − β

mc(1 − β)

4βm
+

cm

4m
< c.

Therefore, ‖Ax‖ < c.

The following proof is similar to that in Theorem 3.1, and the theorem is proved. 2

Theorem 3.3 Suppose that there exists a constant b with 0 < a < a
βξ

< b such that (A3)

holds. Either (A0) holds, or both (A4) and (A5) hold. And

(A6) f(t, 0) = 0 for t ∈ J , limx→0+
f(t,x)

x
< 1 − β holds uniformly on t. Ik(0) = 0,

limx→0+
Ik(x)

x
< 1

4m
min{1 (1−β)

β
}, k = 1, 2, . . . , m;

Then the boundary value problem (1.1) has at least three nonnegative solutions x1, x2 and x3

in P c. Furthermore the x1 ∈ Pa and x2 ∈ {x ∈ P (ω, b, c) : ω(x) > b}, and the positive solution

x3 ∈ P c \ (P (ω, b, c) ∪ P a).

Proof By (A6), there exists 0 < d ≤ 1, such that 0 ≤ f(t, x) ≤ (1 − β)x for all t ∈ J and

0 ≤ x ≤ d. Ik(x) ≤ 1
4m

min{1 (1−β)
β

}x for 0 ≤ x ≤ d, k = 1, 2, . . . , m.

As ‖x‖ ≤ d, it is easy to see

‖Ax‖ = sup
t∈J

(

∫ 1

0

G(t, s)f(s, x(s))ds +
β

1 − β

∑

0<tk<ξ

Ik(x(tk)) +
∑

0<tk<t

Ik(x(tk))
)

<
(

∫ 1

0

sds +
β

1 − β

m(1 − β)

4βm
+

m

4m

)

‖x‖ = ‖x‖.

We get ‖Ax‖ < d.

The following proof is similar to that in Theorem 3.1, and the theorem is proved. 2
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