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1. Introduction

Let G be a finite group. Irr1(G) denotes the set of non-linear irreducible complex characters

of G, and p always denotes a prime. For χ ∈ Irr(G), set υ(χ) := {g ∈ G |χ(g) = 0}. Clearly,

υ(χ) is a union of some conjugacy classes of G. An old theorem of Burnside asserts that υ(χ)

is not empty for any χ ∈ Irr1(G). In this paper, we consider the following problem: given the

number of zeros in character table of a finite group G, what can be said about the structure of

G? Our aim is to classify the finite meta-abelian group G satisfying the following hypothesis:

(HY) Each χ ∈ Irr1(G) vanishes on at most three conjugacy classes.

The main result of this paper is as follows.

Theorem A finite meta-abelian group G satisfies (HY) if and only if G is one of the following

groups:

(1) G is a Frobenius group with abelian kernel G′ and a complement of order 2 or 3.

(2) G ∼= D8 or Q8.

(3) G = G′P , where G′ is a normal and abelian 2-complement of G, P ∈ Syl2(G), |P | =

4, |Z(G)| = 2, and G/Z(G) is a Frobenius group with kernel (G/Z(G))′ ∼= G′ and a complement

P/Z(G) of order 2.

(4) G is a Frobenius group with kernel G′ and a cyclic complement of order 4.

(5) G = (G′〈t〉) × 〈u〉, where 〈u〉 is a cyclic group of order 3, t is an involution and G′〈t〉 is

a Frobenius group with kernel G′ and a complement of order 2.
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We will call a conjugacy class of G as a G-class. The rest of our notation is standard and

taken from [1].

2. Proof of Theorem

First, we give some lemmas for proving the theorem.

Lemma 1 Let G be a meta-abelian group. If [G : G′] = p, then G is a Frobenius group with

kernel G′ and a complement of order p.

Proof As G′ is abelian, the Hall p′-subgroup K of G′ is clearly a normal p-complement of G.

So G = KP with P ∈ Sylp(G). Next [P : P ′] = [G/K : (G/K)′] = [G/K : G′/K] = p, forcing

P ′ = 1 and so K = G′. Note that CG′(P ) ⊆ Z(G) ∩G′ = 1 (See [1, Theorem 5.6]). This implies

that P acts as fixed point freely on G′, and we are done.

For a finite group G, if G′ < G and |CG(g)| = |CG/G′(G′g)| holds for any g ∈ G − G′, then

(G, G′) is called a Camina-pair.

Lemma 2[2, Theorem 2.1] Let (G, G′) be a Camina-pair. Suppose that G is not a p-group.

Then either G is a Frobenius group with kernel G′ or G/G′ is a p-group for some prime p. In

this case, G has a normal p-complement M, M < G′ and CG(m) ⊆ G′ for all m ∈ M − {1}.

Lemma 3[3, Lemma 19.1] Let P be a p-group of class ≤ 2 and suppose that P acts non-trivially

on some p′-group Q such that CP (x) ⊆ P ′ for all x ∈ Q−{1}. Then the action is Frobenius and

P is either cyclic or isomorphic to Q8.

Proof of Theorem The sufficiency is obvious. We need only to prove the necessity. Take ϕ ∈

Irr1(G). Since G′ is abelian by the hypothesis, ϕG′ is not irreducible. It follows by [1, Theorem

6.22] that there exists a linear character λ of a subgroup H with G′ ≤ H < G such that ϕ = λG.

Then G − H ⊆ υ(ϕ).

Assume that [H : G′] = m and [G : H ] = r. Then we have

G = H + Hx1 + · · · + Hxr−1, xi 6∈ H,

and

H = G′ + G′y1 + · · · + G′ym−1, yj 6∈ G′.

It follows that

G − H =

r−1∑

i=1

m−1∑

j=1

G′yjxi +

r−1∑

i=1

G′xi. (*)

For x 6∈ G′, G′x is a G-class or a union of some G-classes, and so we conclude by the above equality

(∗) that G − H consists of at least m(r − 1) G-classes. Bearing in mind that G − H ⊆ υ(ϕ),

then G − H consists of at most 3 G-classes (since υ(ϕ) consists of at most 3 G-classes by the

hypothesis), and thus we obtain that m(r − 1) ≤ 3, that is, [H : G′] ([G : H ] − 1) ≤ 3.

Since [H : G′] ([G : H ] − 1) ≤ 3, one of the following three cases occurs: (i) [G : G′] = 2 or

[G : G′] = 3; (ii) [G : G′] = 4; (iii) [H : G′] = 3, [G : H ] = 2.
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(I) Suppose that [G : G′] = 2 or [G : G′] = 3.

In this case, by Lemma 1, we can easily conclude that G satisfies (1) of the theorem.

(II) Suppose that [G : G′] = 4.

In this case, we have G − G′ = G′x ∪ G′y ∪ G′z, where x, y, z ∈ G − G′. Note that G′ is

abelian, we obtain that G = KP , where K is an abelian normal 2-complement of G and P ∈

Syl2(G). Clearly, K ≤ G′. Then |P | ≥ 4 and G/K ∼= P . In particular, every element of Irr(P )

vanishes on at most 3 P -classes.

Suppose first that |P | ≥ 8. Then P is of maximal class (see [4, P.375]). Assume that |P | ≥ 16.

As P is of maximal class, one of the upper central series member must have index 16. Now every

group of order 16 has a non-linear irreducible character which vanishes on at least 4 classes (see

[5, P.300]). Thus P is either a group of order 4 or a non-abelian group of order 8.

Now suppose that G/K ∼= P is a non-abelian group of order 8. Let χ be the unique element

of Irr1(G/K). We can easily conclude that G − G′ ⊆ υ(χ). It follows from the hypothesis

that υ(χ) consists of at most 3 G-classes. Then G′x = xG, G′y = yG and G′z = zG. Thus

|CG(g)| = |CG/G′(G′g)| = 4 for every g ∈ G − G′. Hence (G, G′) is a Camina-pair. If G is not a

2-group, then by Lemmas 2 and 3, we see that P ∼= Q8 and G is a Frobenius group with kernel

M and a complement isomorphic to Q8. Thus G has an irreducible character χ with χ(1) = 8

such that υ(χ) consists of at least 4 G-classes, and we obtain a contradiction. So if |P | = 8, then

G = P , and thus G satisfies (2) of the theorem.

Next suppose that G/K ∼= P is of order 4. Notice that CG′(P ) ⊆ Z(G) ∩ G′ = 1 (See [1,

Theorem 5.6]), we have CG′(P ) = {1}. Since G′ is abelian and [G : G′] = 4, it follows by [1,

Theorem 6.15] that χ(1) = 2 or 4 for every χ ∈ Irr1(G).

Assume that χ(1) = 2 for all χ ∈ Irr1(G). Then, since CG′(P ) = {1}, we obtain that

|Z(G)| = 2 (see [1, Theorem 12.5 and Lemma 12.12]) and thus [G/Z(G) : (G/Z(G))′] = 2.

Bearing in mind that (G/Z(G))′ ∼= G′ is abelian, we get from Lemma 1 that G/Z(G) is a

Frobenius group with kernel (G/Z(G))′ ∼= G′ and a complement of order 2. Thus G satisfies (3)

of the theorem.

Assume that there exists χ ∈ Irr1(G) such that χ(1) = 4. Recall that [G : G′] = 4, we can

easily conclude that χ = λG, where λ is a linear character of G′. It follows that G′x ∪ G′y ∪

G′z = G − G′ = υ(χ), and thus G′g is a G-class for all g ∈ G − G′. So, we conclude that

|CG(g)| = [G : G′] = 4 = |P | for all g ∈ P − {1}. It follows that G = G′P is a Frobenius group

with kernel G′ and a cyclic complement of order 4 (see [1, Problems (7.1), p.121] and [4, V,

theorem 8.7]), and thus G satisfies (4) of the theorem.

(III) Suppose that [H : G′] = 3 and [G : H ] = 2.

We have G−H = G′x∪G′y∪G′z, where x, y, z 6∈ H . Since G−H ⊆ υ(ϕ) and υ(ϕ) consists

of at most 3 G-classes, we conclude that G−H = υ(ϕ) and G′x = xG, G′y = yG and G′z = zG.

It follows that |CG(g)| = 6 for all g ∈ G − H .

Clearly, G − H contains an involution t, and |CG(t)| = 6 implies that |G|2 = 2. Thus

G = H〈t〉 and |H | is odd.
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On the other hand, by the second orthogonality relation we have

|CG(g)| = |G/G′| +
∑

{|χ(g)|2 | χ ∈ Irr1(G)}

for all g ∈ G − G′. Then χ(g) = 0 for all g ∈ G − H and all χ ∈ Irr1(G), that is, G − H ⊆ υ(χ)

for all χ ∈ Irr1(G). So, we obtain that G − H = υ(χ) for all χ ∈ Irr1(G), and hence θH is not

irreducible for every θ ∈ Irr1(G).

Now we claim that H is abelian. If else, let α ∈ Irr1(H) and θ ∈ Irr1(G) with [θH , α] 6= 0.

Then θH = α + αt and αG = θ. As G′ is abelian, αG′ = β1 + β2 + β3 with βi ∈ Irr(G′). Then

IH(β1) = G′ so that (β1)
H = α. Then θ = αG = ((β1)

H)G = (β1)
G. So G−G′ ⊂ υ(θ) = G−H ,

a contradiction. Hence H is abelian.

Clearly, CG(t) contains an element u of order 3 so that u ∈ H and as H is abelian, 〈t, H〉 ⊂

CG(u) and so u ∈ Z(G). As G′ ∩ Z(G) = 1 (see [1, Theorem 5.6]), u ∈ H − G′. Note that

CG(t) = 〈t〉 × 〈u〉 with t, u 6∈ G′. Thus CG(t) ∩ G′ = 1 and so G = G′CG(t) = (G′〈t〉)〈u〉. As

u ∈ Z(G), G = (G′〈t〉) × 〈u〉.

Finally, CG(t)∩G′ = 1 implies that G′〈t〉 is a Frobenius group with kernel G′ and a comple-

ment of order 2. Hence G satisfies (5) of the theorem. The proof is completed. 2

Remark As in the proof of Theorem, we see that for such a group G, there exists a normal

subgroup N such that G − N contains 2 G-classes or 3 G-classes. Qian treated such groups G

in [6]. Of course, the set of such groups is big, and it is impossible to classify them completely.
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