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Abstract We present an integral test to determine the limiting behavior of delayed sums under

a non-identical distribution setup for ϕ-mixing sequence, and deduce Chover-type laws of the

iterated logarithm for them. These complement and extend the results of Vasudeva and Divanji[1]

and Chen et al.[2].
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1. Introduction and main results

Let {Xn, n ≥ 1} be a sequence of random variables with its partial sums sequence Sn =
∑n

i=1 Xi. Let {an, n ≥ 1} be a positive integer subsequence. Set Tn = Sn+an − Sn and γn =

log(n/an) + log log n. The sum Tn is called a forward delayed sum[3]. Suppose Xn’s has one

of two distribution functions F1 and F2, respectively. For each n ≥ 1, let τ1(n) denote the

number of random variables in the set {X1, X2, . . . , Xn} with distribution function F1. Then

τ2(n) = n−τ1(n) denotes the number of random variables with distribution function F2 in the set

{X1, X2, . . . , Xn}. Then (τ1(n), τ2(n)) is called the sample scheme of the sequence {Xn, n ≥ 1}.

Let Uτ1(n) be the sum of those {X1, X2, . . . , Xn} with distribution function F1 and Vτ1(n)

be the sum of those {X1, X2, . . . , Xn} with distribution function F2. Then one observes that

Sn = Uτ1(n) + Vτ2(n). One can notice in Tn there are τ1(n + an) − τ1(n) random variables with

distribution function F1 and n+an− τ1(n+an)− (n− τ1(n)) random variables with distribution

function F2.

Without further detail, we always assume that {Xn, n ≥ 1} and {an, n ≥ 1} satisfy the above

conditions.

This paper is motivated by a study by Vasudeva and Divanji[1]. They obtained the following

theorem:

Theorem A Let {Xn, n ≥ 1} be an independent sequence, and F1 and F2 be positive stable
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laws with exponents α1 and α2 respectively with 0 < α1 ≤ α2 < 1. Let τ1 = [nα1/α2 ] and

{an, n ≥ 1} be a nondecreasing sequence with 0 < an ≤ n and an/n nonincreasing.

(i) If limn→∞ log(n/an)/ log log n = +∞, then

lim sup
n→∞

(
Tn

a
1/α2

n

)1/γn = e1/α2 a.s.

(ii) If limn→∞ log(n/an)/ log log n = 0, then

lim sup
n→∞

(
Tn

a
1/α2

n

)1/γn = e1/α1 a.s.

(iii) If limn→∞ log(n/an)/ log log n = s(∈ (0, +∞)), then

lim sup
n→∞

(
Tn

a
1/α2

n

)1/γn = exp{
α1s + α2

(s + 1)α1α2
} a.s.

They only discuss the case that F1 and F2 are positive stable laws and 0 < α1 ≤ α2 < 1. By

their method, it is impossible to discuss the rest case. In this paper, combining the results of [2],

we will complement and extend Theorem A in four directions, namely:

(i) We will obtain more exact results, i.e., integral test results.

(ii) We consider ϕ-mixing random variables instead of independent random variables.

(iii) We consider the distributions in the domain of attraction of a stable (non-Gaussian)

distributions instead of the stable distributions, and the exponents of the stable laws in (0, 2),

not only in (0, 1).

(iv) We will remove some restrictions of the sequence {an, n ≥ 1}.

The kind of law of iterated logarithm was first obtained by Chover[4]. To this day, many

author discuss the kind of law of iterated logarithm, for example, [1], [2] and [5–12].

Now we give some definitions.

Definition 1.1 Let {Zn, n ≥ 1} be a sequence of random variables and Fm
n = σ(Zi, n ≤ i ≤ m).

Define ϕ-mixing parameters as follows:

ϕ(n) = sup
k≥1

{|P (B|A) − P (B)| : A ∈ Fk
1 , B ∈ F∞

k+n, P (A) 6= 0}.

If ϕ(n) → 0 as n → ∞, we call {Zn, n ≥ 1}ϕ-mixing.

Definition 1.2 We call a distribution F in the domain of attraction of a stable law L if there

exists a sequence of independent random variables {Wn, n ≥ 1} with common distribution F ,

and constants A(n) ∈ R and B(n) > 0 such that
∑n

i=1 Wi − A(n)

B(n)
→d L (1.1)

where L is one of the stable distributions with exponent α ∈ (0, 2).

By Theorem 12 of [13], (1.1) holds if and only if

F (−x) =
C1(x)l(x)

xα
, 1 − F (x) =

C2(x)l(x)

xα
, x > 0 (1.2)
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where Ci(x) > 0 if x > 0 and limx→+∞ Ci(x) = Ci, i = 1, 2, C1 + C2 > 0, and l(x) is a

non-negative slowly varying function, i.e.,

lim
x→+∞

l(tx)

l(x)
= 1, ∀ t > 0.

And by [13], F is in the normal domain of attraction of the stable law L if and only if

F (−x) =
C1(x)

xα
, 1 − F (x) =

C2(x)

xα
, x > 0 (1.3)

where Ci(x) and Ci(x) are the same as those in (1.2). In this case we can take B(n) = Cn1/α in

(1.1), where C > 0.

First we give the limiting behavior of Sn a accurate description via integral test.

Theorem 1.1 Let {Xn, n ≥ 1} be a ϕ-mixing sequence, F1 and F2 be in the normal domain of

attractions of stable laws with exponents α1 and α2, respectively, 0 < α1 ≤ α2 < 2, τ1 = [nα1/α2 ]

and EXn = 0 if E|Xn| exists. If 1 ≤ α2 < 2, additionally assume that

∞
∑

n=1

ϕ1/2(2n) < ∞.

Let f > 0 be a nondecreasing function. Then with probability one

lim sup
n→∞

|Sn|

n1/α2(f(n))1/α1
=

{

0,

+∞,
⇔

∫ +∞

1

d x

xf(x)

{

< +∞,

= +∞.

By Theorem 1.1, we have the following corollary.

Corollary 1.1 Let {Xn, n ≥ 1} be given as in Theorem 1.1. Then for every δ > 0, we have

lim sup
n→∞

|Sn|

n1/α2(log n)(1+δ)/α1
= 0 a.s.

and

lim sup
n→∞

|Sn|

n1/α2(log n)1/α1
= +∞ a.s.

In particular

lim sup
n→∞

∣

∣

∣

∣

Sn

n1/α2

∣

∣

∣

∣

1/ log log n

= e1/α1 a.s.

Remark 1.1 If α1 = α2, Corollary 1.1 extends the results of [4] and [2].

Theorem 1.2 Let {Xn, n ≥ 1} be given as in Theorem 1.1 with ϕ(1) < 1, and {an, n ≥ 1} be

a subsequence of positive integers with lim supn→∞ an/n < +∞. Let f > 0 be a nondecreasing

function. Then with probability one

lim sup
n→∞

|Tn|

n1/α2(f(n))1/α1
=

{

0,

+∞,
⇔

∫ +∞

1

d x

xf(x)

{

< +∞,

= +∞.

Corollary 1.2 Let {Xn, n ≥ 1} and {an, n ≥ 1} be given as in Theorem 1.2. Then for every

δ > 0, we have

lim sup
n→∞

|Tn|

n1/α2(log n)(1+δ)/α1
= 0 a.s.
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and

lim sup
n→∞

|Tn|

n1/α2(log n)1/α1
= +∞ a.s.

In particular

lim sup
n→∞

|
Tn

n1/α2
|1/ log log n = e1/α1 a.s.

Corollary 1.3 Let {Xn, n ≥ 1} and {an, n ≥ 1} be given as in Theorem 1.2.

(i) If limn→∞ log(n/an)/ log log n = +∞, then

lim sup
n→∞

|
Tn

a
1/α2

n

|1/γn = e1/α2 a.s.

(ii) If limn→∞ log(n/an)/ log log n = 0, then

lim sup
n→∞

|
Tn

a
1/α2

n

|1/γn = e1/α1 a.s.

(iii) If limn→∞ log(n/an)/ log log n = s(∈ (0, +∞)), then

lim sup
n→∞

|
Tn

a
1/α2

n

|1/γn = exp{
α1s + α2

(s + 1)α1α2
} a.s.

Remark 1.2 Corollary 1.3 extents and complements Theorem A.

Corollary 1.4 Let {Xn, n ≥ 1} and {an, n ≥ 1} be given as in Theorem 1.2. If α1 = α2 = α,

then

lim sup
n→∞

|
Tn

a
1/α
n

|1/γn = e1/α a.s.

Remark 1.3 Corollary 1.4 extends the results of [2] and [10].

In above results, the distributions are in the normal domain of attractions of stable laws. For

general case, we have:

Theorem 1.3 Let {Xn, n ≥ 1} be a ϕ-mixing sequence, F1 and F2 be in the domain of

attractions of stable laws with exponents α1 and α2 respectively, 0 < α1 ≤ α2 < 2, τ1 = [nα1/α2 ]

and EXn = 0 if E|Xn| exists. If 1 ≤ α2 < 2, additionally assume that

∞
∑

n=1

ϕ1/2(2n) < ∞.

Then there exists B(n) > 0 such that for every δ > 0,

lim sup
n→∞

|Sn|

B(n)(log n)(1+δ)/α1
= 0 a.s.

and

lim sup
n→∞

|Sn|

B(n)(log n)1/α1
= +∞ a.s.

In particular

lim sup
n→∞

∣

∣

∣

∣

Sn

B(n)

∣

∣

∣

∣

1/ log log n

= e1/α1 a.s.
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Theorem 1.4 Let {Xn, n ≥ 1} be given as in Theorem 1.3 with ϕ(1) < 1 and {an, n ≥ 1} as in

Theorem 1.2. Then there exists B(n) > 0 such that for every δ > 0,

lim sup
n→∞

|Tn|

B(n)(log n)(1+δ)/α1
= 0 a.s.

and

lim sup
n→∞

|Tn|

B(n)(log n)1/α1
= +∞ a.s.

In particular

lim sup
n→∞

|
Tn

B(n)
|1/ log log n = e1/α1 a.s.

Corollary 1.5 Let {Xn, n ≥ 1} and {an, n ≥ 1} be given as in Theorem 1.4. Then there exists

B(n) > 0 such that

(i) If limn→∞ log(n/an)/ log log n = +∞, then

lim sup
n→∞

|
Tn

B(an)
|1/γn = e1/α2 a.s.

(ii) If limn→∞ log(n/an)/ log log n = 0, then

lim sup
n→∞

|
Tn

B(an)
|1/γn = e1/α1 a.s.

(iii) If limn→∞ log(n/an)/ log log n = s(∈ (0, +∞)), then

lim sup
n→∞

|
Tn

B(an)
|1/γn = exp{

α1s + α2

(s + 1)α1α2
} a.s.

2. Proofs

We need the following lemmas.

Lemma 2.1 (see Lemma 2 of [14]) Let {Wn, n ≥ 1} and {Zn, n ≥ 1} be two sequences of

random variables. Define Hn
1 = σ(Wi, 1 ≤ i ≤ n) and assume

ϕ = sup
n≥1

sup{|P (B|A) − P (B)| : A ∈ Hn
1 , P (A) 6= 0, B ∈ σ(Zn)} < 1.

Then Wn + Zn → 0 a.s. and Zn → 0 in probability imply Wn → 0 a.s. and Zn → 0 a.s..

In the rest of the paper, C will be used to denote various positive constant whose exact values

are irrelevant. For the sake of simplicity, we denote by Y1 the random variable with distribution

function F1.

Proof of Theorem 1.1 First assume that
∫ ∞

1
d x

xf(x) < ∞. By Theorem 1.1 of [2], we have

lim sup
n→∞

|Uτ1(n)|

(τ1(n)f(τ1(n)))1/α1
= 0 a.s.
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and

lim sup
n→∞

|Uτ2(n)|

(τ2(n)f(τ2(n)))2/α2
= 0 a.s.

It is easy to show that

lim
n→∞

(τ1f(τ1))
1/α1

n1/α2(f(n))1/α1
= lim

n→∞

(τ2f(τ2))
1/α2

n1/α2(f(n))1/α1
= 0.

Hence

lim sup
n→∞

|Sn|

n1/α2(f(n))1/α1
= 0 a.s.

Now we assume that
∫ ∞

1
d x

xf(x) = +∞. If

∞
∑

n=1

P (|Xn| ≥ Mn1/α2(f(n))1/α1) = +∞, ∀M > 0 (2.1)

holds, then by the Borel-Cantelli lemma for ϕ-mixing sequence (see Theorem 8.2.1 in [15]), we

have

lim sup
n→∞

|Xn|

n1/α2(f(n))1/α1
= +∞ a.s.

Noticing

lim sup
n→∞

|Xn|

n1/α2(f(n))1/α1

≤ lim sup
n→∞

|Sn|

n1/α2(f(n))1/α1
+ lim sup

n→∞

Bn−1(f(n − 1))1/α1

n1/α2(f(n))1/α1
·

|Sn−1|

(n − 1)1/α2(f(n − 1))1/α1

≤ 2 lim sup
n→∞

|Sn|

n1/α2(f(n))1/α1
,

we have

lim sup
n→∞

|Sn|

n1/α2(f(n))1/α1
= +∞ a.s.

Now we prove (2.1). The following inequalities

∞
∑

n=1

P (|Xn| ≥ Mn1/α2(f(n))1/α1)

=

∞
∑

k=0

2k+1−1
∑

n=2k

P (|Xn| ≥ Mn1/α2(f(n))1/α1)

≥
∞
∑

k=0

2k+1
−1

∑

n=2k

P (|Xn| ≥ M2(k+1)/α2(f(2k+1))1/α1 )

≥

∞
∑

k=0

(τ1(2
k+1 − 1) − τ1(2

k − 1))P (|Y1| ≥ M2(k+1)/α2(f(2k+1))1/α1)

≥ C
∞
∑

k=0

(τ1(2
k+1 − 1) − τ1(2

k − 1))(2k+1)−α1/α2(f(2k+1))−1

≥ C

∞
∑

k=0

(f(2k+1))−1
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and
∫ ∞

1
d x

xf(x) = +∞ imply
∑∞

k=0(f(2k+1))−1 = +∞, i.e., (2.1) holds. 2

Proof of Theorem 1.2 Assume that
∫ ∞

1
d x

xf(x) < ∞. By Lemma 2.3 of [2], without loss of

generality, we can assume that lim supx→∞ f(2x)/f(x) < ∞. By Theorem 1.1, we have

lim sup
n→∞

|Sn|

n1/α2(f(n))1/α1
= 0 a.s.

and

lim sup
n→∞

|Sn+an |

(n + an)1/α2(f(n + an))1/α1
= 0 a.s.

Notice that lim supn→∞
an

n < ∞ implies lim supn→∞
(n+an)1/α2(f(n+an))1/α1

n1/α2(f(n))1/α1
< ∞, hence

lim sup
n→∞

|Tn|

n1/α2(f(n))1/α1

≤ lim sup
n→∞

|Sn+an |

n1/α2(f(n))1/α1
+ lim sup

n→∞

|Sn|

n1/α2(f(n))1/α1

= lim sup
n→∞

(n + an)1/α2(f(n + an))1/α1

n1/α2(f(n))1/α1
·

|Sn+an |

(n + an)1/α2(f(n + an))1/α1

= 0 a.s.

Now we assume that
∫ ∞

1
d x

xf(x) = +∞. Suppose

lim sup
n→∞

|Tn|

n1/α2(f(n))1/α1
= +∞ a.s.

does not hold. Then by 0-1 law for ϕ-mixing sequence[15], there exists a constant c0 ∈ [0,∞)

such that

lim sup
n→∞

|Tn|

n1/α2(f(n))1/α1
= c0 a.s.

Hence

lim
n→∞

Tn

n1/α2(f(n)h(n))1/α1
= 0 a.s.

where h(x) is determined by Lemma 2.4 of [2]. It is easy to show that

Xn+1

n1/α2(f(n)h(n))1/α1
→ 0 in probability.

Hence
Tn − Xn+1

n1/α2(f(n)h(n))1/α1
→ 0 in probability.

By Lemma 2.1, we have
Xn+1

n1/α2(f(n)h(n))1/α1
→ 0 a.s. (2.2)

Hence by the Borel-Cantelli lemma for ϕ-mixing sequence[15], (2.2) implies that

∞
∑

n=1

P (|Xn| ≥ n1/α2(f(n)g(n))1/α1 ) < ∞.
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But by the same argument as (2.1), we have

∞
∑

n=1

P (|Xn| ≥ n1/α2(f(n)g(n))1/α1 ) = ∞.

This leads to a contradiction. So we complete the proof. 2

Proof of Corollary 1.3 By Theorem 1.2, we have

lim sup
n→∞

|Tn|

n1/α2(log n)(1+δ)/α1
= 0 a.s. ∀ δ > 0

and

lim sup
n→∞

|Tn|

n1/α2(log n)1/α1
= +∞ a.s.

Hence we have

P (|Tn| ≥ n1/α2(log n)(1+δ)/α1 , i.o.) = 0, ∀ δ > 0

and

P (|Tn| ≥ n1/α2(log n)1/α1 , i.o.) = 1.

So we have

P (log |
Tn

a
1/α2

n

| ≥ (1/α2) log(n/an) + ((1 + δ)/α1) log log n, i.o.) = 0, ∀ δ > 0

and

P (log |
Tn

a
1/α2

n

| ≥ (1/α2) log(n/an) + (1/α1) log log n, i.o.) = 1.

If limn→∞ log(n/an)/ log log n = ∞, then

P (log |
Tn

a
1/α2

n

| ≥ (1 + δ1)γn/α2, i.o.) = 0, ∀ δ1 > 0

and

P (log |
Tn

a
1/α2

n

| ≥ (1 − δ2)γn/α2, i.o.) = 1, ∀ δ2 > 0.

Hence we have

lim sup
n→∞

|
Tn

a
1/α2

n

|1/γn = e1/α2 a.s.

If limn→∞ log(n/an)/ log log n = 0, then

P (log |
Tn

a
1/α2

n

| ≥ (1 + δ3)γn/α1, i.o.) = 0, ∀ δ3 > 0

and

P (log |
Tn

a
1/α2

n

| ≥ (1 − δ4)γn/α1, i.o.) = 1, ∀ δ4 > 0.

Hence we have

lim sup
n→∞

|
Tn

a
1/α2

n

|1/γn = e1/α1 a.s.

If limn→∞ log(n/an)/ log log n = s(∈ (0,∞)), then

P (log |
Tn

a
1/α2

n

| ≥ (
α1s + α2

α1α2(s + 1)
+ δ5)γn, i.o.) = 0, ∀ δ5 > 0
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and

P (log |
Tn

a
1/α2

n

| ≥ (
α1s + α2

α1α2(s + 1)
− δ6)γn, i.o.) = 1, ∀ δ6 > 0.

Hence we have

lim sup
n→∞

|
Tn

a
1/α2

n

|1/γn = exp(
α1s + α2

α1α2(s + 1)
) a.s. 2

The Proofs of Theorems 1.3, 1.4 and Corollary 1.5 are similar, so we omit them.
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