Limiting Behavior of Delayed Sums of φ -Mixing under a Non-Identical Distribution Setup

CHEN Ping Yan¹, LI Feng Ling²

(1. Department of Mathematics, Jinan University, Guangdong 510630, China;
 2. Department of Statistics, Jinan University, Guangdong 510630, China)

(E-mail: tchenpy@jnu.edu.cn)

Abstract We present an integral test to determine the limiting behavior of delayed sums under a non-identical distribution setup for φ -mixing sequence, and deduce Chover-type laws of the iterated logarithm for them. These complement and extend the results of Vasudeva and Divanji^[1] and Chen et al.^[2].

Keywords stable distribution; laws of the iterated logarithm; delayed sum; integral test.

Document code A MR(2000) Subject Classification 60F15 Chinese Library Classification 0211.4

1. Introduction and main results

Let $\{X_n, n \ge 1\}$ be a sequence of random variables with its partial sums sequence $S_n = \sum_{i=1}^n X_i$. Let $\{a_n, n \ge 1\}$ be a positive integer subsequence. Set $T_n = S_{n+a_n} - S_n$ and $\gamma_n = \log(n/a_n) + \log\log n$. The sum T_n is called a forward delayed sum^[3]. Suppose X_n 's has one of two distribution functions F_1 and F_2 , respectively. For each $n \ge 1$, let $\tau_1(n)$ denote the number of random variables in the set $\{X_1, X_2, \ldots, X_n\}$ with distribution function F_1 . Then $\tau_2(n) = n - \tau_1(n)$ denotes the number of random variables with distribution function F_2 in the set $\{X_1, X_2, \ldots, X_n\}$. Then $(\tau_1(n), \tau_2(n))$ is called the sample scheme of the sequence $\{X_n, n \ge 1\}$.

Let $U_{\tau_1(n)}$ be the sum of those $\{X_1, X_2, \ldots, X_n\}$ with distribution function F_1 and $V_{\tau_1(n)}$ be the sum of those $\{X_1, X_2, \ldots, X_n\}$ with distribution function F_2 . Then one observes that $S_n = U_{\tau_1(n)} + V_{\tau_2(n)}$. One can notice in T_n there are $\tau_1(n + a_n) - \tau_1(n)$ random variables with distribution function F_1 and $n + a_n - \tau_1(n + a_n) - (n - \tau_1(n))$ random variables with distribution function F_2 .

Without further detail, we always assume that $\{X_n, n \ge 1\}$ and $\{a_n, n \ge 1\}$ satisfy the above conditions.

This paper is motivated by a study by Vasudeva and Divanji^[1]. They obtained the following theorem:

Theorem A Let $\{X_n, n \ge 1\}$ be an independent sequence, and F_1 and F_2 be positive stable

Received date: 2006-07-13; Accepted date: 2007-11-22

Foundation item: the National Natural Science Foundation of China (No. 60574002).

laws with exponents α_1 and α_2 respectively with $0 < \alpha_1 \le \alpha_2 < 1$. Let $\tau_1 = [n^{\alpha_1/\alpha_2}]$ and $\{a_n, n \ge 1\}$ be a nondecreasing sequence with $0 < a_n \le n$ and a_n/n nonincreasing.

(i) If $\lim_{n\to\infty} \log(n/a_n) / \log \log n = +\infty$, then

$$\limsup_{n \to \infty} \left(\frac{T_n}{a_n^{1/\alpha_2}}\right)^{1/\gamma_n} = e^{1/\alpha_2} \quad a.s$$

(ii) If $\lim_{n\to\infty} \log(n/a_n) / \log\log n = 0$, then

$$\limsup_{n \to \infty} \left(\frac{T_n}{a_n^{1/\alpha_2}}\right)^{1/\gamma_n} = e^{1/\alpha_1} \quad a.s$$

(iii) If $\lim_{n\to\infty} \log(n/a_n)/\log\log n = s \in (0, +\infty)$, then

$$\limsup_{n \to \infty} \left(\frac{T_n}{a_n^{1/\alpha_2}}\right)^{1/\gamma_n} = \exp\left\{\frac{\alpha_1 s + \alpha_2}{(s+1)\alpha_1 \alpha_2}\right\} \quad a.s.$$

They only discuss the case that F_1 and F_2 are positive stable laws and $0 < \alpha_1 \le \alpha_2 < 1$. By their method, it is impossible to discuss the rest case. In this paper, combining the results of [2], we will complement and extend Theorem A in four directions, namely:

- (i) We will obtain more exact results, i.e., integral test results.
- (ii) We consider φ -mixing random variables instead of independent random variables.

(iii) We consider the distributions in the domain of attraction of a stable (non-Gaussian) distributions instead of the stable distributions, and the exponents of the stable laws in (0, 2), not only in (0, 1).

(iv) We will remove some restrictions of the sequence $\{a_n, n \ge 1\}$.

The kind of law of iterated logarithm was first obtained by $Chover^{[4]}$. To this day, many author discuss the kind of law of iterated logarithm, for example, [1], [2] and [5–12].

Now we give some definitions.

Definition 1.1 Let $\{Z_n, n \ge 1\}$ be a sequence of random variables and $\mathcal{F}_n^m = \sigma(Z_i, n \le i \le m)$. Define φ -mixing parameters as follows:

$$\varphi(n) = \sup_{k \ge 1} \{ |P(B|A) - P(B)| : A \in \mathcal{F}_1^k, B \in \mathcal{F}_{k+n}^\infty, P(A) \neq 0 \}$$

If $\varphi(n) \to 0$ as $n \to \infty$, we call $\{Z_n, n \ge 1\}\varphi$ -mixing.

Definition 1.2 We call a distribution F in the domain of attraction of a stable law \mathcal{L} if there exists a sequence of independent random variables $\{W_n, n \ge 1\}$ with common distribution F, and constants $A(n) \in R$ and B(n) > 0 such that

$$\frac{\sum_{i=1}^{n} W_i - A(n)}{B(n)} \to_d \mathcal{L}$$
(1.1)

where \mathcal{L} is one of the stable distributions with exponent $\alpha \in (0, 2)$.

By Theorem 12 of [13], (1.1) holds if and only if

$$F(-x) = \frac{C_1(x)l(x)}{x^{\alpha}}, \quad 1 - F(x) = \frac{C_2(x)l(x)}{x^{\alpha}}, \quad x > 0$$
(1.2)

where $C_i(x) > 0$ if x > 0 and $\lim_{x\to+\infty} C_i(x) = C_i$, $i = 1, 2, C_1 + C_2 > 0$, and l(x) is a non-negative slowly varying function, i.e.,

$$\lim_{x \to +\infty} \frac{l(tx)}{l(x)} = 1, \quad \forall \ t > 0.$$

And by [13], F is in the normal domain of attraction of the stable law \mathcal{L} if and only if

$$F(-x) = \frac{C_1(x)}{x^{\alpha}}, \quad 1 - F(x) = \frac{C_2(x)}{x^{\alpha}}, \quad x > 0$$
(1.3)

where $C_i(x)$ and $C_i(x)$ are the same as those in (1.2). In this case we can take $B(n) = Cn^{1/\alpha}$ in (1.1), where C > 0.

First we give the limiting behavior of S_n a accurate description via integral test.

Theorem 1.1 Let $\{X_n, n \ge 1\}$ be a φ -mixing sequence, F_1 and F_2 be in the normal domain of attractions of stable laws with exponents α_1 and α_2 , respectively, $0 < \alpha_1 \le \alpha_2 < 2$, $\tau_1 = [n^{\alpha_1/\alpha_2}]$ and $EX_n = 0$ if $E|X_n|$ exists. If $1 \le \alpha_2 < 2$, additionally assume that

$$\sum_{n=1}^{\infty} \varphi^{1/2}(2^n) < \infty.$$

Let f > 0 be a nondecreasing function. Then with probability one

$$\limsup_{n \to \infty} \frac{|S_n|}{n^{1/\alpha_2} (f(n))^{1/\alpha_1}} = \begin{cases} 0, \\ +\infty, \end{cases} \Leftrightarrow \int_1^{+\infty} \frac{\mathrm{d}\,x}{x f(x)} \begin{cases} < +\infty, \\ = +\infty. \end{cases}$$

By Theorem 1.1, we have the following corollary.

Corollary 1.1 Let $\{X_n, n \ge 1\}$ be given as in Theorem 1.1. Then for every $\delta > 0$, we have

$$\limsup_{n \to \infty} \frac{|S_n|}{n^{1/\alpha_2} (\log n)^{(1+\delta)/\alpha_1}} = 0 \quad a.s.$$

and

$$\limsup_{n \to \infty} \frac{|S_n|}{n^{1/\alpha_2} (\log n)^{1/\alpha_1}} = +\infty \quad a.s.$$

In particular

$$\limsup_{n \to \infty} \left| \frac{S_n}{n^{1/\alpha_2}} \right|^{1/\log \log n} = e^{1/\alpha_1} \quad a.s.$$

Remark 1.1 If $\alpha_1 = \alpha_2$, Corollary 1.1 extends the results of [4] and [2].

Theorem 1.2 Let $\{X_n, n \ge 1\}$ be given as in Theorem 1.1 with $\varphi(1) < 1$, and $\{a_n, n \ge 1\}$ be a subsequence of positive integers with $\limsup_{n\to\infty} a_n/n < +\infty$. Let f > 0 be a nondecreasing function. Then with probability one

$$\limsup_{n \to \infty} \frac{|T_n|}{n^{1/\alpha_2} (f(n))^{1/\alpha_1}} = \begin{cases} 0, \\ +\infty, \end{cases} \Leftrightarrow \int_1^{+\infty} \frac{\mathrm{d}\,x}{x f(x)} \begin{cases} < +\infty, \\ = +\infty. \end{cases}$$

Corollary 1.2 Let $\{X_n, n \ge 1\}$ and $\{a_n, n \ge 1\}$ be given as in Theorem 1.2. Then for every $\delta > 0$, we have

$$\limsup_{n \to \infty} \frac{|T_n|}{n^{1/\alpha_2} (\log n)^{(1+\delta)/\alpha_1}} = 0 \quad a.s.$$

and

$$\limsup_{n \to \infty} \frac{|T_n|}{n^{1/\alpha_2} (\log n)^{1/\alpha_1}} = +\infty \quad a.s$$

In particular

$$\limsup_{n \to \infty} \left| \frac{T_n}{n^{1/\alpha_2}} \right|^{1/\log \log n} = e^{1/\alpha_1} \quad a.s$$

Corollary 1.3 Let $\{X_n, n \ge 1\}$ and $\{a_n, n \ge 1\}$ be given as in Theorem 1.2.

(i) If $\lim_{n\to\infty} \log(n/a_n) / \log \log n = +\infty$, then

$$\limsup_{n \to \infty} |\frac{T_n}{a_n^{1/\alpha_2}}|^{1/\gamma_n} = e^{1/\alpha_2} \quad a.s.$$

(ii) If $\lim_{n\to\infty} \log(n/a_n) / \log\log n = 0$, then

$$\limsup_{n \to \infty} |\frac{T_n}{a_n^{1/\alpha_2}}|^{1/\gamma_n} = e^{1/\alpha_1} \quad a.s.$$

(iii) If $\lim_{n\to\infty} \log(n/a_n)/\log\log n = s (\in (0, +\infty))$, then

$$\limsup_{n \to \infty} \left| \frac{T_n}{a_n^{1/\alpha_2}} \right|^{1/\gamma_n} = \exp\{\frac{\alpha_1 s + \alpha_2}{(s+1)\alpha_1 \alpha_2}\} \quad a.s.$$

Remark 1.2 Corollary 1.3 extents and complements Theorem A.

Corollary 1.4 Let $\{X_n, n \ge 1\}$ and $\{a_n, n \ge 1\}$ be given as in Theorem 1.2. If $\alpha_1 = \alpha_2 = \alpha$, then

$$\limsup_{n \to \infty} |\frac{T_n}{a_n^{1/\alpha}}|^{1/\gamma_n} = e^{1/\alpha} \quad a.s$$

Remark 1.3 Corollary 1.4 extends the results of [2] and [10].

In above results, the distributions are in the normal domain of attractions of stable laws. For general case, we have:

Theorem 1.3 Let $\{X_n, n \geq 1\}$ be a φ -mixing sequence, F_1 and F_2 be in the domain of attractions of stable laws with exponents α_1 and α_2 respectively, $0 < \alpha_1 \leq \alpha_2 < 2$, $\tau_1 = [n^{\alpha_1/\alpha_2}]$ and $EX_n = 0$ if $E|X_n|$ exists. If $1 \leq \alpha_2 < 2$, additionally assume that

$$\sum_{n=1}^{\infty} \varphi^{1/2}(2^n) < \infty.$$

Then there exists B(n) > 0 such that for every $\delta > 0$,

$$\limsup_{n \to \infty} \frac{|S_n|}{B(n)(\log n)^{(1+\delta)/\alpha_1}} = 0 \quad a.s.$$

and

$$\limsup_{n \to \infty} \frac{|S_n|}{B(n)(\log n)^{1/\alpha_1}} = +\infty \quad \text{a.s.}$$

In particular

$$\limsup_{n \to \infty} \left| \frac{S_n}{B(n)} \right|^{1/\log \log n} = e^{1/\alpha_1} \quad \text{a.s.}$$

Theorem 1.4 Let $\{X_n, n \ge 1\}$ be given as in Theorem 1.3 with $\varphi(1) < 1$ and $\{a_n, n \ge 1\}$ as in Theorem 1.2. Then there exists B(n) > 0 such that for every $\delta > 0$,

$$\limsup_{n \to \infty} \frac{|T_n|}{B(n)(\log n)^{(1+\delta)/\alpha_1}} = 0 \quad a.s$$

and

$$\limsup_{n \to \infty} \frac{|T_n|}{B(n)(\log n)^{1/\alpha_1}} = +\infty \quad a.s.$$

In particular

$$\limsup_{n \to \infty} \left| \frac{T_n}{B(n)} \right|^{1/\log \log n} = e^{1/\alpha_1} \quad a.s$$

Corollary 1.5 Let $\{X_n, n \ge 1\}$ and $\{a_n, n \ge 1\}$ be given as in Theorem 1.4. Then there exists B(n) > 0 such that

(i) If $\lim_{n\to\infty} \log(n/a_n) / \log \log n = +\infty$, then

$$\limsup_{n \to \infty} \left| \frac{T_n}{B(a_n)} \right|^{1/\gamma_n} = e^{1/\alpha_2} \quad a.s.$$

(ii) If $\lim_{n\to\infty} \log(n/a_n) / \log\log n = 0$, then

$$\limsup_{n \to \infty} \left| \frac{T_n}{B(a_n)} \right|^{1/\gamma_n} = e^{1/\alpha_1} \quad a.s.$$

(iii) If $\lim_{n\to\infty} \log(n/a_n)/\log\log n = s(\in (0, +\infty))$, then

$$\limsup_{n \to \infty} \left| \frac{T_n}{B(a_n)} \right|^{1/\gamma_n} = \exp\{\frac{\alpha_1 s + \alpha_2}{(s+1)\alpha_1 \alpha_2}\} \quad a.s$$

2. Proofs

We need the following lemmas.

Lemma 2.1 (see Lemma 2 of [14]) Let $\{W_n, n \ge 1\}$ and $\{Z_n, n \ge 1\}$ be two sequences of random variables. Define $\mathcal{H}_1^n = \sigma(W_i, 1 \le i \le n)$ and assume

$$\varphi = \sup_{n \ge 1} \sup \{ |P(B|A) - P(B)| : A \in \mathcal{H}_1^n, P(A) \neq 0, B \in \sigma(Z_n) \} < 1.$$

Then $W_n + Z_n \to 0$ a.s. and $Z_n \to 0$ in probability imply $W_n \to 0$ a.s. and $Z_n \to 0$ a.s.

In the rest of the paper, C will be used to denote various positive constant whose exact values are irrelevant. For the sake of simplicity, we denote by Y_1 the random variable with distribution function F_1 .

Proof of Theorem 1.1 First assume that $\int_{1}^{\infty} \frac{dx}{xf(x)} < \infty$. By Theorem 1.1 of [2], we have

$$\limsup_{n \to \infty} \frac{|U_{\tau_1(n)}|}{(\tau_1(n)f(\tau_1(n)))^{1/\alpha_1}} = 0 \quad \text{a.s.}$$

Limiting behavior of delayed sums of φ -mixing under a non-identical distribution setup

and

$$\limsup_{n \to \infty} \frac{|U_{\tau_2(n)}|}{(\tau_2(n)f(\tau_2(n)))^{2/\alpha_2}} = 0 \quad \text{a.s.}$$

It is easy to show that

$$\lim_{n \to \infty} \frac{(\tau_1 f(\tau_1))^{1/\alpha_1}}{n^{1/\alpha_2} (f(n))^{1/\alpha_1}} = \lim_{n \to \infty} \frac{(\tau_2 f(\tau_2))^{1/\alpha_2}}{n^{1/\alpha_2} (f(n))^{1/\alpha_1}} = 0.$$

Hence

$$\limsup_{n \to \infty} \frac{|S_n|}{n^{1/\alpha_2} (f(n))^{1/\alpha_1}} = 0 \quad \text{a.s}$$

Now we assume that $\int_1^\infty \frac{\mathrm{d} x}{xf(x)} = +\infty$. If

$$\sum_{n=1}^{\infty} P(|X_n| \ge M n^{1/\alpha_2} (f(n))^{1/\alpha_1}) = +\infty, \quad \forall M > 0$$
(2.1)

holds, then by the Borel-Cantelli lemma for φ -mixing sequence (see Theorem 8.2.1 in [15]), we have

$$\limsup_{n \to \infty} \frac{|X_n|}{n^{1/\alpha_2} (f(n))^{1/\alpha_1}} = +\infty \text{ a.s.}$$

Noticing

$$\limsup_{n \to \infty} \frac{|X_n|}{n^{1/\alpha_2} (f(n))^{1/\alpha_1}} \\
\leq \limsup_{n \to \infty} \frac{|S_n|}{n^{1/\alpha_2} (f(n))^{1/\alpha_1}} + \limsup_{n \to \infty} \frac{B_{n-1} (f(n-1))^{1/\alpha_1}}{n^{1/\alpha_2} (f(n))^{1/\alpha_1}} \cdot \frac{|S_{n-1}|}{(n-1)^{1/\alpha_2} (f(n-1))^{1/\alpha_1}} \\
\leq 2\limsup_{n \to \infty} \frac{|S_n|}{n^{1/\alpha_2} (f(n))^{1/\alpha_1}},$$

we have

$$\limsup_{n \to \infty} \frac{|S_n|}{n^{1/\alpha_2} (f(n))^{1/\alpha_1}} = +\infty \quad \text{a.s.}$$

Now we prove (2.1). The following inequalities

$$\sum_{n=1}^{\infty} P(|X_n| \ge Mn^{1/\alpha_2}(f(n))^{1/\alpha_1})$$

$$= \sum_{k=0}^{\infty} \sum_{n=2^k}^{2^{k+1}-1} P(|X_n| \ge Mn^{1/\alpha_2}(f(n))^{1/\alpha_1})$$

$$\ge \sum_{k=0}^{\infty} \sum_{n=2^k}^{2^{k+1}-1} P(|X_n| \ge M2^{(k+1)/\alpha_2}(f(2^{k+1}))^{1/\alpha_1})$$

$$\ge \sum_{k=0}^{\infty} (\tau_1(2^{k+1}-1) - \tau_1(2^k-1))P(|Y_1| \ge M2^{(k+1)/\alpha_2}(f(2^{k+1}))^{1/\alpha_1})$$

$$\ge C \sum_{k=0}^{\infty} (\tau_1(2^{k+1}-1) - \tau_1(2^k-1))(2^{k+1})^{-\alpha_1/\alpha_2}(f(2^{k+1}))^{-1}$$

$$\ge C \sum_{k=0}^{\infty} (f(2^{k+1}))^{-1}$$

633

and
$$\int_{1}^{\infty} \frac{dx}{xf(x)} = +\infty$$
 imply $\sum_{k=0}^{\infty} (f(2^{k+1}))^{-1} = +\infty$, i.e., (2.1) holds.

Proof of Theorem 1.2 Assume that $\int_1^\infty \frac{dx}{xf(x)} < \infty$. By Lemma 2.3 of [2], without loss of generality, we can assume that $\limsup_{x\to\infty} f(2x)/f(x) < \infty$. By Theorem 1.1, we have

$$\limsup_{n\to\infty} \frac{|S_n|}{n^{1/\alpha_2}(f(n))^{1/\alpha_1}}=0 \quad \text{a.s.}$$

and

$$\limsup_{n \to \infty} \frac{|S_{n+a_n}|}{(n+a_n)^{1/\alpha_2} (f(n+a_n))^{1/\alpha_1}} = 0 \quad \text{a.s.}$$

Notice that $\limsup_{n\to\infty} \frac{a_n}{n} < \infty$ implies $\limsup_{n\to\infty} \frac{(n+a_n)^{1/\alpha_2} (f(n+a_n))^{1/\alpha_1}}{n^{1/\alpha_2} (f(n))^{1/\alpha_1}} < \infty$, hence

$$\begin{split} &\limsup_{n \to \infty} \frac{|T_n|}{n^{1/\alpha_2} (f(n))^{1/\alpha_1}} \\ &\leq \limsup_{n \to \infty} \frac{|S_{n+a_n}|}{n^{1/\alpha_2} (f(n))^{1/\alpha_1}} + \limsup_{n \to \infty} \frac{|S_n|}{n^{1/\alpha_2} (f(n))^{1/\alpha_1}} \\ &= \limsup_{n \to \infty} \frac{(n+a_n)^{1/\alpha_2} (f(n+a_n))^{1/\alpha_1}}{n^{1/\alpha_2} (f(n))^{1/\alpha_1}} \cdot \frac{|S_{n+a_n}|}{(n+a_n)^{1/\alpha_2} (f(n+a_n))^{1/\alpha_1}} \\ &= 0 \quad \text{a.s.} \end{split}$$

Now we assume that $\int_1^\infty \frac{\mathrm{d} x}{xf(x)} = +\infty$. Suppose

$$\limsup_{n \to \infty} \frac{|T_n|}{n^{1/\alpha_2} (f(n))^{1/\alpha_1}} = +\infty \quad \text{a.s.}$$

does not hold. Then by 0-1 law for φ -mixing sequence^[15], there exists a constant $c_0 \in [0, \infty)$ such that

$$\limsup_{n \to \infty} \frac{|T_n|}{n^{1/\alpha_2} (f(n))^{1/\alpha_1}} = c_0 \text{ a.s.}$$

Hence

$$\lim_{n \to \infty} \frac{T_n}{n^{1/\alpha_2} (f(n)h(n))^{1/\alpha_1}} = 0 \text{ a.s}$$

where h(x) is determined by Lemma 2.4 of [2]. It is easy to show that

$$\frac{X_{n+1}}{n^{1/\alpha_2}(f(n)h(n))^{1/\alpha_1}} \to 0 \quad \text{in probability.}$$

Hence

$$\frac{T_n - X_{n+1}}{n^{1/\alpha_2} (f(n)h(n))^{1/\alpha_1}} \to 0 \quad \text{in probability.}$$

By Lemma 2.1, we have

$$\frac{X_{n+1}}{n^{1/\alpha_2}(f(n)h(n))^{1/\alpha_1}} \to 0 \quad \text{a.s.}$$
(2.2)

Hence by the Borel-Cantelli lemma for φ -mixing sequence^[15], (2.2) implies that

$$\sum_{n=1}^{\infty} P(|X_n| \ge n^{1/\alpha_2} (f(n)g(n))^{1/\alpha_1}) < \infty.$$

But by the same argument as (2.1), we have

$$\sum_{n=1}^{\infty} P(|X_n| \ge n^{1/\alpha_2} (f(n)g(n))^{1/\alpha_1}) = \infty.$$

This leads to a contradiction. So we complete the proof.

Proof of Corollary 1.3 By Theorem 1.2, we have

$$\limsup_{n \to \infty} \frac{|T_n|}{n^{1/\alpha_2} (\log n)^{(1+\delta)/\alpha_1}} = 0 \text{ a.s. } \forall \delta > 0$$

and

$$\limsup_{n \to \infty} \frac{|T_n|}{n^{1/\alpha_2} (\log n)^{1/\alpha_1}} = +\infty \quad \text{a.s}$$

Hence we have

$$P(|T_n| \ge n^{1/\alpha_2} (\log n)^{(1+\delta)/\alpha_1}, \text{ i.o.}) = 0, \ \forall \ \delta > 0$$

and

$$P(|T_n| \ge n^{1/\alpha_2} (\log n)^{1/\alpha_1}, \text{ i.o.}) = 1.$$

So we have

$$P(\log |\frac{T_n}{a_n^{1/\alpha_2}}| \ge (1/\alpha_2)\log(n/a_n) + ((1+\delta)/\alpha_1)\log\log n, \text{ i.o.}) = 0, \quad \forall \ \delta > 0$$

and

$$P(\log |\frac{T_n}{a_n^{1/\alpha_2}}| \ge (1/\alpha_2)\log(n/a_n) + (1/\alpha_1)\log\log n, \text{ i.o.}) = 1.$$

If $\lim_{n\to\infty} \log(n/a_n) / \log\log n = \infty$, then

$$P(\log |\frac{T_n}{a_n^{1/\alpha_2}}| \ge (1+\delta_1)\gamma_n/\alpha_2, \text{ i.o.}) = 0, \ \forall \ \delta_1 > 0$$

and

$$P(\log |\frac{T_n}{a_n^{1/\alpha_2}}| \ge (1 - \delta_2)\gamma_n/\alpha_2, \text{ i.o.}) = 1, \quad \forall \ \delta_2 > 0.$$

Hence we have

$$\limsup_{n \to \infty} \left| \frac{T_n}{a_n^{1/\alpha_2}} \right|^{1/\gamma_n} = e^{1/\alpha_2} \quad \text{a.s.}$$

If $\lim_{n\to\infty} \log(n/a_n) / \log\log n = 0$, then

$$P(\log |\frac{T_n}{a_n^{1/\alpha_2}}| \ge (1+\delta_3)\gamma_n/\alpha_1, \text{ i.o.}) = 0, \quad \forall \ \delta_3 > 0$$

and

$$P(\log |\frac{T_n}{a_n^{1/\alpha_2}}| \ge (1 - \delta_4)\gamma_n/\alpha_1, \text{ i.o.}) = 1, \quad \forall \ \delta_4 > 0.$$

Hence we have

$$\limsup_{n \to \infty} \left| \frac{T_n}{a_n^{1/\alpha_2}} \right|^{1/\gamma_n} = e^{1/\alpha_1} \quad \text{a.s.}$$

If $\lim_{n\to\infty} \log(n/a_n)/\log\log n = s(\in (0,\infty))$, then

$$P(\log |\frac{T_n}{a_n^{1/\alpha_2}}| \ge (\frac{\alpha_1 s + \alpha_2}{\alpha_1 \alpha_2 (s+1)} + \delta_5)\gamma_n, \text{ i.o.}) = 0, \quad \forall \ \delta_5 > 0$$

635

and

$$P(\log \left|\frac{T_n}{a_n^{1/\alpha_2}}\right| \ge \left(\frac{\alpha_1 s + \alpha_2}{\alpha_1 \alpha_2 (s+1)} - \delta_6\right) \gamma_n, \text{ i.o.}) = 1, \quad \forall \ \delta_6 > 0.$$

Hence we have

$$\limsup_{n \to \infty} \left| \frac{T_n}{a_n^{1/\alpha_2}} \right|^{1/\gamma_n} = \exp(\frac{\alpha_1 s + \alpha_2}{\alpha_1 \alpha_2 (s+1)}) \quad \text{a.s.} \qquad \Box$$

The Proofs of Theorems 1.3, 1.4 and Corollary 1.5 are similar, so we omit them.

References

- VASUDEVA R, DIVANJI G. LIL for delayed sums under a non-identically distributed setup [J]. Teor. Veroyatnost. i Primenen, 1992, 37(3): 534–542.
- [2] CHEN Pingyan, CHEN Qingping. LIL for φ-mixing sequence of random variables [J]. Acta Math. Sinica (Chin. Ser.), 2003, 46(3): 571–580. (in Chinese)
- [3] LAI T L. Limit theorems for delayed sums [J]. Ann. Probability, 1974, 2: 432–440.
- [4] CHOVER J. A law of the iterated logarithm for stable summands [J]. Proc. Amer. Math. Soc., 1966, 17: 441–443.
- [5] CHEN Pingyan. Limiting behavior of weighted sums with stable distributions [J]. Statist. Probab. Lett., 2002, 60(4): 367–375.
- [6] CHEN Pingyan, HUANG Lihu. On the law of the iterated logarithm for geometric series of stable distribution
 [J]. Acta Math. Sinica, 2000, 43(6): 1063-1070 (in Chinese).
- [7] CHEN Pingyan, LIU Xiangdong. A Chover-type law of iterated logarithm for the weighted partial sums [J]. Acta Math. Sinica (Chin. Ser.), 2003, 46(5): 999–1006. (in Chinese)
- [8] CHEN Pingyan, SHAN Zhiyong. On the Chover's LIL for stable random fields [J]. J. Math. (Wuhan), 2000, 20(2): 227–230.
- CHEN Pingyan, YU Jinghu. On Chover's LIL for the weighted sums of stable random variables [J]. Acta Math. Sci. Ser. B Engl. Ed., 2003, 23(1): 74–82.
- [10] ZINCHENKO N M. A modified law of iterated logarithm for stable random variables [J]. Theory Probab. Math. Statist., 1994, 49: 69–76.
- [11] CHEN Bin. On Chover's law of the iterated logarithm [J]. Gaoxiao Yingyong Shuxue Xuebao Ser. A, 1993, 8(2): 197–202. (in Chinese)
- [12] QI Yongcheng, CHENG Ping. A law of the iterated logarithm for partial sums in the field of attraction of a stable law [J]. Chinese Ann. Math. Ser. A, 1996, 17(2): 195–206. (in Chinese)
- [13] PETROV V V. Limit Theorems for Sums of Independent Random Variables [M]. Translated by Su Chun and Huang keming from Russian to Chinese, Hefei, USTC Press, 1991.
- [14] KIESEL R. Strong laws and summability for φ-mixing sequences of random variables [J]. J. Theoret. Probab., 1998, 11(1): 209–224.
- [15] LU Cuanrong, LIN Zhenyan. The Limit Theory for Mixing Dependent Random Variables [M]. Bejing: Science Press, 1997 (in Chinese)
- [16] WANG Yuebao. A 0-1 law for mixing sequences and its application to complete convergence [J]. J. Systems Sci. Math. Sci., 1993, 13(1): 42–52. (in Chinese)

636