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Abstract With the application of the special properties of strongly stationary m−dependent

series, this paper is concerned with the empirical likelihood confidence intervals of density func-

tion under m−dependent series. The limit distribution of empirical likelihood ratio statistics is

given out, and the empirical likelihood confidence intervals of parameters can be constructed. A

simulation study is conducted to show the finite sample performance of the empirical likelihood

based method.
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Empirical likelihood (EL) method is a nonparametric method of inference introduced by

Owen[1−2]. It has been studied extensively because of its generality and effectiveness. The

EL method has been successfully applied in many areas such as linear regression models[3−5],

generalized linear models[6], quantile[7], general estimation equation[8], semiparametric model[9],

dependent process[10], survival analysis[11], amongst others, mixture models[12] and so on. More

references on the EL can be found in the recent monograph of Owen[13]. It should be noted that

the above work seems to focus on independent data, but the actual data are usually dependent.

Chen[14] discussed the empirical likelihood confidence intervals of density function under i.i.d.

samples. As far as the dependent samples are concerned, the situations are more complex. Jiang

and Qin[15] discussed the empirical likelihood confidence intervals of density function under ϕ-

mixing random variables. In this paper, we will use the special properties of strongly stationary

m-dependent series to construct the empirical likelihood confidences intervals of density function

under m-dependent series.

1. Introduction and main result

Let X1, X2, . . . be strongly stationary m−dependent random samples from an unknown den-

sity function f(x). For a fixed x ∈ R, let f(x) = θ1. We refer to [16] for the definitions of
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strongly stationary random series and m−dependent.

To state the main results of this paper, we make the following assumptions:

(i) For i = 1, 2, . . . , m − 1, gi(x, y) is the joint density function of (X1, Xi+1), and gi(x, y)

and f(x) admit continuous rth (r ≥ 2) derivatives in neighbourhoods of the points (x, y) and x,

respectively.

(ii) K(·) is a kernel, K = K(−u), and K(·) is a kernel of order r, that is:
∫

K(y)dy = 1,

∫

yiK(y)dy = 0, i = 1, 2, . . . , r − 1,

∫

yrK(y)dy = k, k 6= 0.

For instance, the Gaussian kernel, K(x) = 1√
2π

e−
x
2

2 is a kernel of order 2.

(iii) h is a bandwidth parameter, which satisfies h = o(n− 1

5 ), nh −→ ∞.

Let

ωi =
1

h
K(

x − Xi

h
) − θ1, i = 1, 2, . . . , n.

The empirical log-likelihood ratio of θ1 is

l(θ1) = 2
n

∑

i=1

log(1 + λωi), (1)

where λ is the solution of
1

n

n
∑

i=1

ωi

1 + λωi
= 0. (2)

Theorem Suppose that Assumptions (i)–(iii) hold, then

l(θ1) −→ χ2(1), as n −→ ∞.

2. Lemmas

Lemma 1 Let X1, X2, . . . , Xn be strongly stationary m-dependent series with E|X1|r < ∞.

For some r ≥ 2, then E|∑n
i=1 Xi|r ≤ Cnr/2E|Xi|r.

The proof can be found in [17].

Lemma 2 Let X1, X2, . . . , Xn be univariate m-dependent r.v.s., EXi = 0, E|Xi|3 < ∞ (i =

1, 2, . . . , n). Then

sup
x

|P (

∑n
i=1 Xi

Bn
< x) − Φ(x)| ≤ C(m + 1)3

∑n
i=1 E|Xi|3

B3
n

,

where Bn =
√

E(
∑n

i=1 Xi)2 and Φ(x) is the distribution function of standard normal random

variable.

The proof can be found in [18].

3. Simulation study

In this section, we carry out some simulations to show the finite sample performance of the

proposed method.
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In our simulation studies, we generate e′is i.i.d. from the standard normal distribution N(0, 1),

and Xi = ei + 0.5ei−1 − 0.3ei−2, so X ′
is are 2−dependent random series. The density function

of Xi is

f(x) =
1√

2π ×
√

1.34
exp {− x2

2 × 1.34
}.

The kernel function K(t) is the Gaussian kernel

K(t) =
1√
2π

e−t2/2.

Also, three different bandwidths of h are selected to be (n log n)−1/2, (n log n)−1/3 and

(n log n)−1/5, respectively. It is easy to check all the conditions (i)–(iii) in the paper are satisfied.

The sample size has been chosen to be 10, 20 and 50, respectively. The coverage probabilities

are calculated for the empirical likelihood method based on 500 simulated data. The nominal

levels are taken to be α = 0.10 and 0.05, respectively. The results are presented in Tables 1 and

2.

From Tables 1 and 2, we see that the empirical likelihood method performs well and the cov-

erage accuracies increase as the size n increases. We choose three bandwidths h = (n log n)−1/2,

(n log n)−1/3 and (n log n)−1/5. Clearly, the bandwidth plays an important role here. However,

we shall not address the problem of how to find the optimal bandwidth.

n h = (n log n)−1/2
h = (n log n)−1/3

h = (n log n)−1/5

10 0.6220 0.7500 0.8400

20 0.6560 0.8220 0.8680

50 0.7400 0.8400 0.9040

Table 1 Coverage probabilities for θ1,α = 0.10

n h = (n log n)−1/2
h = (n log n)−1/3

h = (n log n)−1/5

10 0.6300 0.7900 0.8880

20 0.7080 0.8800 0.9220

50 0.7760 0.8960 0.9420

Table 2 Coverage probabilities for θ1,α = 0.05

4. Proof of main result

Proof of Theorem Put

ω̄ =
1

n

n
∑

i=1

ωi, S =
h

n

n
∑

i=1

ω2
i , Zn = max

1≤i≤n
|ωi|.

Noting that

|ωi| = | 1
h

K(
x − Xi

h
) − θ1| ≤

K(x−Xi

h )

h
+ θ1 ≤ C

h
+ θ1 = O(h−1),
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it is clear to see that

Zn = max
1≤i≤n

|ωi| = O(h−1) a.s. (3)

Let ρ2(K) =
∫

K2(t)dt. Since S − ES = h
n

∑n
i=1(ω

2
i − Eω2

i ), from Lemma 1, we have

E(S − ES)2 ≤ Ch2

n2
n max

1≤i≤n
E(ω2

i − Eω2
i )2 =

Ch2

n
E(ω2

1 − Eω2
1).

Noting that

E(ω2
1 − Eω2

1)
2 ≤ Eω4

1 = E(
1

h
K(

x − X1

h
) − θ1)

4 ≤ CE(
1

h4
K4(

x − X1

h
)) + C

≤ C

h3
E(

1

h
K4(

x − X1

h
)) + C ≤ C

h3
+ C,

we have E(S − ES)2 ≤ C
nh + Ch2

n −→ 0, n −→ ∞. It follows that S = ES + op(1), and

ES = θ1ρ2(K) + o(1), so we have

S = θ1ρ2(K) + op(1). (4)

Let Xni = h/n
1

3 (ωi − Eωi). Then EXni = 0, and Eωi = O(hr). So we get

E|Xni|3 =
h3

n
E|(ωi − Eωi)

3|

≤ h3

n
(O(h−3) + O(h−2)O(hr) + O(h−1)O(h2r) + O(h3r))

= O(n−1) + O(n−1hr+1) + O(n−1h2r+2) + O(n−1h3r+3)

= O(n−1) < +∞.

Let B2
n = Var(

∑n
i=1 Xni) =

∑n
i=1 EX2

ni + 2
∑m−1

i=1 EXn1Xni+1. Noting that

EX2
ni =

h2

n
2

3

E(ωi − Eωi)
2 =

h2

n
2

3

[Eω2
1 − (Eω1)

2]

=
h2

n
2

3

Eω2
1 − h2

n
2

3

O(h2r)

=
h2

n
2

3

(
1

h
θ1

∫

K2(v)dv − θ2
1 + O(hr)) − h2

n
2

3

O(h2r)

=
h

n
2

3

θ1

∫

K2(v)dv + O(n− 2

3 h2) + O(n− 2

3 hr+2) + O(n− 2

3 h2r+2)

=
h

n
2

3

θ1

∫

K2(v)dv + O(n− 2

3 h2),

and

EXn1Xni+1 =
h2

n
2

3

E(ω1 − Eω1)(ωi+1 − Eωi+1)

=
h2

n
2

3

E(
1

h
K(

x − X1

h
) − E

1

h
K(

x − X1

h
))(

1

h
K(

x − Xi+1

h
) − E

1

h
K(

x − Xi+1

h
)),

we write

I = E(
1

h
K(

x − X1

h
))(

1

h
K(

x − Xi+1

h
)) =

∫ +∞

−∞

∫ +∞

−∞

1

h
K(

x − u

h
)
1

h
K(

x − v

h
)gi(u, v)dudv.
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Let
x − u

h
= u′,

x − v

h
= v′.

Then

I =

∫ +∞

−∞

∫ +∞

−∞
K(u′)K(v′)gi(x − hu′, x − hv′)du′dv′.

From Assumption (i), we know

I = gi(x, x) + O(hr).

It follows that

E(ω1 − Eω1)(ωi+1 − Eωi+1) = gi(x, x) − θ2
1 + O(hr).

Therefore
n

∑

i=1

EXn1Xni+1 = O(n− 2

3 h2).

Thus we have

B2
n =

n
∑

i=1

EX2
ni + 2

m−1
∑

i=1

EXn1Xni+1 = n
1

3 hθ1

∫

K2(v)dv + O(n
1

3 h2) + O(n− 2

3 h2),

where n
1

3 h2 = o(1) by the Assumption (iii).

From Lemma 2, we can see
∑n

i=1 Xni

Bn

D−→ N(0, 1), (5)

where “
D−→ ” denotes convergence in distribution. Obviously,

n
∑

i=1

Xni =
h

n
1

3

n
∑

i=1

(ωi − Eωi) = n
2

3 hω̄ + O(n
2

3 hr+1),

which implies that √
nhω̄

√

θ1

∫

K2(v)dv
+ O((nh2r+1)

1

2 )
D−→ N(0, 1).

From Assumption(iii), we see that (nh2r+1)
1

2 = o(1), so we have

ω̄ = Op((nh)−
1

2 ). (6)

By (2) we have

|λ| ≤ ω̄
S
h − Znω̄

=
hω̄

S − hZnω̄
=

Op(n
− 1

2 h
1

2 )

θ1

∫

K2(v)dv + op(1)
= Op(n

− 1

2 h
1

2 ). (7)

Let γi = λωi. Then we get

max
1≤i≤n

|γi| = |λ|Zn = Op(n
− 1

2 h
1

2 )Op(h
−1) = Op((nh)−

1

2 ).

From (2), we also know

0 = hω̄ − λS +
h

n

n
∑

i=1

ωiγ
2
i /(1 + γi).
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Therefore, we may write λ = hs−1ω̄ + τ , where

|τ | ≤ h

n

n
∑

i=1

|ωi|3|λ|2|1 + γi|−1 = Op(h
−1)Op(1)Op(n

−1h)Op(1) = Op(n
−1).

We may expand log(1 + γi) = γi − γ2

i

2 + ηi, where

n
∑

i=1

|ηi| ≤ B|λ|3
n

∑

i=1

|ωi|3 = BOp(n
− 3

2 h
3

2 )Op(h
−2)nOp(1) = op(1).

So we have

l(θ1) = nhS−1ω̄2 − nτ2S

h
+ 2

n
∑

i=1

ηi.

Since
nτ2S

h
= nOp(n

−2)Op(1)h−1 = Op((nh)−1) = op(1),

we get l(θ1) = nhS−1ω̄2 + op(1). This completes the proof. 2
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