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Abstract In this paper we carry out a study of modules over a 3×3 formal triangular matrix

ring

Γ =









T 0 0

M U 0

N ⊗U M N V









,

where T , U , V are rings, M , N are U -T , V -U bimodules, respectively. Using the alternative

description of left Γ-module as quintuple (A,B, C; f, g) with A ∈ modT , B ∈ modU and

C ∈ modV , f : M ⊗T A → B ∈ modU , g : N ⊗U B → C ∈ modV , we shall characterize

uniform, hollow and finitely embedded modules over Γ, respectively. Also the radical as well

as the socle of Γ(A ⊕ B ⊕ C) is determined.
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1. Introduction

All the rings are associative with the identity and all modules are unital modules. Unless

otherwise mentioned, all modules are left modules. For any ring R, we denote by modR the

category of finitely generated left R-module.

Given a 3 × 3 formal triangular matrix ring

Γ =







T 0 0

M U 0

N ⊗U M N V






.

Let Ω be the category whose objects are the quintuple (A, B, C; f, g) with A ∈ modT , B ∈ modU ,

C ∈ modV and f : M ⊗T A → B a U -morphism, g : N ⊗U B → C a V -morphism. The morphism

between two objects (A, B, C; f, g) and (A′, B′, C′; f ′, g′) are triples of morphisms (α, β, γ) where

α : A → A′ is a T -morphism, β : B → B′ is a U -morphism, and γ : C → C′ is a V -morphism

such that the following two diagrams commute.
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M ⊗T A M ⊗T A′

B B′,

-
1M⊗α

?

f

?

f ′

-
β

N ⊗U B N ⊗U B′

C C′.

-
1N⊗β

?

g

?

g′

-
γ

The composition between two morphisms (α, β, γ) and (α′, β′, γ′) is defined by (α′, β′, γ′)(α, β, γ)

= (α′α, β′β, γ′γ). By [1], The category Ω is equivalent to the category modΓ. The equiv-

alent functor F : Ω → modΓ is defined as follows. For (A, B, C; f, g) ∈ ObjΩ we define

F (A, B, C; f, g) := A⊕B⊕C as an abelian group and the Γ-module structure on it is defined as







t 0 0

m u 0

m ⊗ n n v






(a, b, c) = (ta, f(m ⊗ a) + ub, g(n⊗ f(m ⊗ a)) + g(n ⊗ b) + vc)

for t ∈ T , u ∈ U , v ∈ V , m, m ∈ M , n, n ∈ N . If (α, β, γ) : (A, B, C; f, g) → (A′, B′, C′, f ′, g′)

in Ω, then F (α, β, γ) := α ⊕ β ⊕ γ : A ⊕ B ⊕ C → (A′ ⊕ B′ ⊕ C′). Denote by Γ(A ⊕ B ⊕ C)

the left Γ-module associated to (A, B, C; f, g). In Section 2, corresponding to submodules and

quotient modules of Γ(A ⊕ B ⊕ C), we describe subobjects and quotient objects of Ω. We give

some equivalent conditions for a submodule Γ(A′ ⊕ B′ ⊕ C′) of Γ(A ⊕ B ⊕ C) to be essential

(resp. small) in Γ(A⊕B ⊕C). We then use these conditions to characterize uniform and hollow

modules over Γ respectively. In Section 3, the radical as well as the socle of Γ(A ⊕ B ⊕ C) is

determined. Using the description of the socle, we find necessary and sufficient conditions for

Γ-modules to be finitely embedded.

2. Uniform and hollow over Γ respectively

We explain the notations adopted in this paper firstly. Let (A, B, C; f, g) ∈ ObjΩ and

Γ(A ⊕ B ⊕ C) be the associated left Γ-module. We will describe subobjects (resp. quotient ob-

jects) of (A, B, C; f, g) which correspond to submodules (resp. quotient modules) of Γ(A⊕B⊕C).

Assume Γ(A′ ⊕B′⊕C′) ≤Γ (A⊕B ⊕C), where T A′ ≤T A, UB′ ≤U B and V C′ ≤V C satisfying

f(M ⊗T A′) ≤ B′ and g(N ⊗U B′) ≤ C′. Denoting the inclusions A′ →֒ A, B′ →֒ B, C′ →֒ C by

i, j, k, respectively, and writing f ′ = f ◦ (1M ⊗ i), g′ = g ◦ (1N ⊗ j), we have the following two

commutative diagrams
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M ⊗T A′ M ⊗T A

B′ B,

-
1M⊗i

?

f ′

?

f

-
j

N ⊗U B′ N ⊗U B

C′ C.

-
1N⊗j

?

g′

?

g

-
k

.

Thus, we see that (A′, B′, C′; f ′, g′) ∈ ObjΩ and (i, j, k) : (A′, B′, C′; f ′, g′) → (A, B, C; f, g) is

a map in Ω realizing Γ(A′ ⊕ B′ ⊕ C′) as a Γ-submodule of Γ(A ⊕ B ⊕ C). Also it is clear that

every Γ-submodule of Γ(A⊕B⊕C) is obtained in this way. Let T A′′, UB′′ and V C′′ be quotient

modules of T A, UB and V C respectively with η1 : A → A′′, η2 : B → B′′ and η3 : C → C′′ the

canonical quotient maps. Let A′ = kerη1, B′ = kerη2 and C′ = kerη3. Suppose f(M ⊗T A′) ≤ B′

and g(N ⊗U B′) ≤ C′. Denote the inclusions A′ → A, B′ → B and C′ → C by j1, j2 and j3,

respectively. We get two maps f ′′ : M ⊗T A′′ → B′′ and g′′ : N ⊗U B′′ → C′′ rendering the

following two diagrams commutative

M ⊗T A′ M ⊗T A M ⊗ A′′ 0

B′ B B′′ 0,

-
1M⊗j1

?

f ′

?

f

-
1M⊗η1

?

f ′′

-

-
j2

-
η2

-

N ⊗U B′ N ⊗U B N ⊗U B′′ 0

C′ C C′′ 0.

-
1N⊗2

?

g′

?

g

-
1N⊗η2

?

g′′

-

-
j3

-
η3

-

In the two diagrams f ′ = f ◦ (1M ⊗ j1), g′ = g ◦ (1N ⊗ j2) and the rows are exact. It is clear that

(η1, η2, η3) : (A, B, C; f, g) → (A′′, B′′, C′′; f ′′, g′′) is a map in Ω realizing Γ(A′′ ⊕ B′′ ⊕ C′′) as a

quotient of Γ(A⊕B⊕C). When we talk of a submodule Γ(A′⊕B′⊕C′) of Γ(A⊕B⊕C), we have

T A′ ≤T A, UB′ ≤U B, V C′ ≤V C, f ◦ (1M ⊗ j1)(M ⊗T A′) ≤ B′, g ◦ (1N ⊗ j2)(N ⊗U B′) ≤ C′,

and the maps f ′ : M ⊗T A′ → B′ and g′ : N ⊗U B′ → C′ are completely determined, respectively.

They have to be f◦(1M⊗j1) and g◦(1N⊗j2), respectively. Similarly, when we deal with a quotient

Γ(A′′ ⊕B′′ ⊕C′′) of Γ(A⊕B ⊕C), the two maps f ′′ : M ⊗T A′′ → B′′ and g′′ : N ⊗U B′′ → C′′

are completely determined. Because of these facts we will not specifically mention the maps

f ′, g′, f ′′ and g′′ in these situations.

Let (T A,U B,V C; f, g) ∈ ObjΩ, L = {a ∈ A|f(m ⊗ a) = 0, for all m ∈ M} and Q = {b ∈

B|g(n⊗b) = 0, for all n ∈ N}. Then clearly T L ≤T A, UQ ≤U B and Γ(L⊕Q⊕0) ≤Γ (A⊕B⊕C).

Theorem 2.1 Γ(A′ ⊕ B′ ⊕ C′) is essential in Γ(A⊕ B ⊕C) if and only if T (A′ ∩L), U (B′ ∩ Q)

and V C′ are essential in T L, UQ and V C, respectively.

Proof Assume that Γ(A′ ⊕ B′ ⊕ C′) is essential in Γ(A ⊕ B ⊕ C).
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Let 0 6= c ∈ C. Then (0, 0, c) is non-zero in Γ(A ⊕ B ⊕ C). We can find an element






t 0 0

m u 0

n ⊗ m n v






∈ Γ

with

(0, 0, 0) 6=







t 0 0

m u 0

n ⊗ m n v






(0, 0, c) ∈Γ (A′ ⊕ B′ ⊕ C′).

But






t 0 0

m u 0

n ⊗ m n v






(0, 0, c) = (0, 0, vc).

Thus 0 6= vc ∈ C′. This proves that V C′ is essential in V C.

Let 0 6= a ∈T L. Then (a, 0, 0) 6= (0, 0, 0) ∈Γ (A ⊕ B ⊕ C). We can find an element






t 0 0

m u 0

n ⊗ m n v






∈ Γ

with

(0, 0, 0) 6=







t 0 0

m u 0

n ⊗ m n v






(a, 0, 0) ∈Γ (A′ ⊕ B′ ⊕ C′).

But






t 0 0

m u 0

n ⊗ m n v






(a, 0, 0) = (ta, 0, 0) (since f(m ⊗ a) = 0).

Thus 0 6= ta ∈ A′. Since ta ∈T L, we see 0 6= ta ∈ A′ ∩ L, showing that T (A′ ∩ L) is essential in

T L.

Similarly, let 0 6= b ∈U Q. Then (0, 0, 0) 6= (0, b, 0) ∈Γ (A⊕B ⊕C). We can find an element






t 0 0

m u 0

n ⊗ m n v






∈ Γ

with

(0, 0, 0) 6=







t 0 0

m u 0

n ⊗ m n v






(0, b, 0) ∈Γ (A′ ⊕ B′ ⊕ C′).

But






t 0 0

m u 0

n ⊗ m n v






(0, b, 0) = (0, ub, 0) (since g(n ⊗ b) = 0).
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Thus, 0 6= ub ∈ B′. Since ub ∈U Q, we see that 0 6= ub ∈ B′ ∩ Q, showing that U (B′ ∩ Q) is

essential in UQ.

Conversely, assume that T (A′ ∩ L), U (B′ ∩ Q) and V C′ are essential in T L, UQ, and V C,

respectively. We need to prove that Γ(A′ ⊕B′ ⊕C′) is essential in Γ(A⊕B ⊕C). In order to do

so, let (0, 0, 0) 6= (a, b, c) ∈Γ (A ⊕ B ⊕ C). We divide the proof into the following cases.

(1) c 6= 0;

(2) c = 0, b 6= 0 and b /∈ Q;

(3) c = 0, b 6= 0 and b ∈ Q;

(4) c = 0, b = 0, a 6= 0 and a /∈ L;

(5) c = 0, b = 0, a 6= 0 and a ∈ L.

In Case (1), we can find 0 6= vc ∈ C′. It follows that

0 6=







0 0 0

0 0 0

0 0 v






(0, 0, c) = (0, 0, vc) ∈Γ (A′ ⊕ B′ ⊕ C′).

In Case (2), we can find an n ∈ N with 0 6= g(n ⊗ b) ∈ C. Hence there exists a v ∈ V with

0 6= vg(n ⊗ b) ∈ C′. Thus






0 0 0

0 0 0

0 0 v













0 0 0

0 0 0

0 n 0






(0, b, 0) = (0, 0, vg(n ⊗ b))

is a non-zero element of Γ(A′ ⊕ B′ ⊕ C′).

In Case (3), we have g(n⊗ b) = 0 for all n ∈ N . Since U (B′ ∩Q) is essential in UQ, we can

find an element u ∈ U with 0 6= ub ∈U (B′ ∩ Q). Thus

0 6=







0 0 0

0 u 0

0 0 0






(0, b, 0) = (0, ub, 0) ∈Γ3

(A′ ⊕ B′ ⊕ C′).

In Case (4), we can find an m ∈ M with 0 6= f(m⊗a) ∈ B. On the one hand, if f(m⊗a)∈Q,

we can find an n ∈ N with 0 6= g(n ⊗ f(m ⊗ a)) ∈ C. Hence there exists v ∈ V with 0 6=

vg(n ⊗ f(m ⊗ a)) ∈ C′. Thus






0 0 0

0 0 0

0 0 v













0 0 0

0 0 0

n ⊗ m 0 0






(a, 0, 0) = (0, 0, vg(n ⊗ f(m ⊗ a)))

is a non-zero element of Γ(A′ ⊕ B′ ⊕ C′). On the other hand, if f(m ⊗ a) ∈ Q, we have g(n ⊗

f(m ⊗ a)) = 0 for all n ∈ N. Since U (B′ ∩ Q) is essential in UQ, we can find an element u ∈ U

with 0 6= uf(m ⊗ a) ∈U (B′ ∩ Q). In this case






0 0 0

0 u 0

0 0 0













0 0 0

m 0 0

0 0 0






(a, 0, 0) = (0, uf(m⊗ a), 0)
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and (0, 0, 0) 6= (0, uf(m⊗ a), 0) ∈Γ (A′ ⊕ B′ ⊕ C′).

In Case (5), we have f(m ⊗ a) = 0 for all m ∈ M. Since A′ ∩ L is essential in T L, we can

find an element t ∈ T with 0 6= ta ∈ A′ ∩ L. In this case






t 0 0

0 0 0

0 0 0






(a, 0, 0) = (ta, 0, 0)

and (0, 0, 0) 6= (ta, 0, 0) ∈ Γ(A′ ⊕ B′ ⊕ C′). This proves that Γ(A′ ⊕ B′ ⊕ C′) is essential in

Γ(A ⊕ B ⊕ C). �

Definition 2.1[2] A module is said to be uniform if and only if every nonzero submodule is

essential.

Theorem 2.1 enables us to obtain the following.

Corollary 2.1 Γ3
(A ⊕ B ⊕ C) is uniform if and only if one and only one of the following three

conditions holds.

(a) V C = 0 and T L =T A, UQ =U B are uniform.

(b) T L = 0 and V C, UQ =U B are uniform.

(c) UQ = 0 and V C, T L =T A are uniform.

If V ∈ modR and W ≤R V we write W ≪ V to indicate that W is a small (or superfluous)

submodule of V . The following proposition gives a necessary and sufficient condition for Γ3
(A′⊕

B′ ⊕ C′) to be small in Γ3
(A ⊕ B ⊕ C).

Theorem 2.2 Γ3
(A′ ⊕ B′ ⊕ C′) is small in Γ3

(A ⊕ B ⊕ C) if and only if T A′, β(B′) and δ(C′)

are small in T A, B/f(M ⊗T A) and C/g(N ⊗U B), respectively, where β : B → B/f(M ⊗T A)

and δ : C → C/g(N ⊗U B) are the canonical quotient maps.

Proof Assume that Γ(A′ ⊕ B′ ⊕ C′) ≪ Γ(A ⊕ B ⊕ C).

Let T H ≤ T A which satisfies A′ + H = A. If µ : H →֒ A denotes the inclusion map, then

with f ′ = f ◦ (1M ⊗ µ) we have (H, B, C; f ′, g) giving rise to a Γ-submodule Γ(H ⊕ B ⊕ C) of

Γ(A⊕B ⊕C) which satisfies Γ(A′ ⊕B′ ⊕C′)+Γ (H ⊕B ⊕C) = Γ(A⊕B ⊕C). The assumption

Γ(A′ ⊕ B′ ⊕ C′) ≪ Γ(A ⊕ B ⊕ C) yields Γ(H ⊕ B ⊕ C) = Γ(A ⊕ B ⊕ C), hence H = A. Thus

A′ + H = A implies H = A. This proves that A′ ≪ A.

Let UE ≤U (B/f(M ⊗T A)) satisfy β(B′) + E = β(B) = B/f(M ⊗T A) and D = β−1(E).

Then f(M ⊗T A) ⊆ D. Let v : D →֒ B be the inclusion map. Then with g′ = g ◦ (1N ⊗ v)

we have (A, D, C; f, g′) giving rise to a Γ−submodule Γ(A ⊕ D ⊕ C) of Γ(A ⊕ B ⊕ C). From

β(B′)+E = β(B), we get B′ +D = B. Hence Γ(A′⊕B′⊕C′)+ Γ(A⊕D⊕C) = Γ(A⊕B ⊕C).

The assumption Γ(A′ ⊕ B′ ⊕ C′) ≪ Γ(A ⊕ B ⊕ C) yields D = B. Since β−1(E) = B, we get

E = β(B) = B/f(M⊗T A). Thus β(B′)+E = β(B) implies E = β(B). This gives β(B′) ≪ β(B).

Let V F ≤V (C/g(N⊗U B)) satisfy δ(C′)+F = δ(C) = C/g(N⊗U B) and K = δ−1(F ). Then

g(N ⊗U B) ⊆ K. Hence (A, B, K; f, g) gives rise to a Γ-submodule Γ(A⊕B⊕K) of Γ(A⊕B⊕C).

From δ(C′)+F = δ(C) we get C′+K = C. Hence Γ(A′⊕B′⊕C′)+ Γ(A⊕B⊕K) = Γ(A⊕B⊕C).
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The assumption Γ(A′ ⊕ B′ ⊕ C′) ≪ Γ(A ⊕ B ⊕ C) yields K = C. Since δ−1(F ) = C we get

F = δ(C) = C/g(N ⊗U B). Thus δ(C′)+F = δ(C) implies F = δ(C). This proves δ(C′) ≪ δ(C).

Conversely, assume that A′ ≪ A, β(B′) ≪ β(B) and δ(C′) ≪ δ(C).

Let T X ≤T A, UY ≤U B and V Z ≤V C satisfy the conditions f ◦ (1M ⊗ µ)(M ⊗T X) ⊆ Y

and g ◦ (1N ⊗ υ)(N ⊗U Y ) ⊆ Z where µ : X →֒ A and υ : Y →֒ B denote the inclusions. Write

f ′ = f ◦ (1M ⊗µ) and g′ = g ◦ (1N ⊗υ). Suppose (X, Y, Z; f ′, g′) satisfies Γ(A′⊕B′⊕C′)+ Γ(X⊕

Y ⊕Z) = Γ(A⊕B ⊕C). Then A′ + X = A, B′ + Y = B and C′ + Z = C. From A′ ≪ A we get

X = A. Hence µ = 1A, f((M ⊗T A)) ⊆ Y. From B′ + Y = B we get β(B′) + β(Y ) = β(B), and

the hypothesis β(B′) ≪ β(B) yields β(Y ) = β(B). Since f(M ⊗T A) ⊆ Y, we get Y = B.

Thus υ = 1B and g(N ⊗U B) ⊆ Z. From C′ + Z = C we get δ(C′) + δ(Z) = δ(C), the

hypothesis δ(C′) ≪ δ(C) yields δ(Z) = δ(C). Since g(N ⊗U B) ⊆ Z, we get Z = C. Thus

Γ(A′ ⊕ B′ ⊕ C′) + Γ(X ⊕ Y ⊕ Z) = Γ(A ⊕ B ⊕ C) implies X = A, Y = B and Z = C. This

proves that Γ(A′ ⊕ B′ ⊕ C′) ≪ Γ(A ⊕ B ⊕ C). �

Definition 2.2[2] A module is said to be hollow if and only if it is nonzero and in it every proper

submodule is small.

From Theorem 2.2 and Definition 2.2 we get the following.

Corollary 2.2 The left Γ-module Γ(A ⊕B ⊕C) determined by (A, B, C; , f, g) is hollow if and

only if exact one of the following three conditions holds.

(a) T A is hollow and B = f(M ⊗T A), C = g(N ⊗U B).

(b) A = 0, B is hollow and C = g(N ⊗U B).

(c) A = 0, B = 0 and V C is hollow.

Proof Assume Γ(A ⊕ B ⊕ C) is hollow.

Suppose A 6= 0. Then there exists T A′ ≤ T A with T A′ 6= T A. If i : A′ →֒ A denotes the

inclusion and f ′ = f ◦ (1M ⊗ i), the submodule Γ(A′ ⊕ B ⊕ C) corresponding to (A′, B, C; f ′, g)

is a proper submodule of Γ(A ⊕ B ⊕ C). Thus Γ(A′ ⊕ B ⊕ C) ≪ Γ(A ⊕ B ⊕ C). By Theorem

2.2, T A′ ≪ T A, β(B) ≪ β(B) and δ(C) ≪ δ(C). But both β(B) and δ(C) are zero, i.e.,

B = f(M ⊗T A) and C = g(N ⊗U B). Thus if A 6= 0, T A is hollow, B = f(M ⊗T A) and

C = g(N ⊗U B). Therefore, (a) is true when A 6= 0.

In Case A = 0 and B 6= 0, Γ(A ⊕ B ⊕ C) is hollow by assumption. For any UB′ ≤ UB

with UB′ 6= UB. Γ(0 ⊕ B′ ⊕ C) is a proper submodule of Γ(0 ⊕ B ⊕ C). From Theorem 2.2,

we get β(B′) ≪ β(B) and δ(C′) ≪ δ(C). Since A = 0 with f : M ⊗T A → B, f = 0. Since

δ : B → B/f(M ⊗T A), we get δ = 1B. Thus B′ ≪ B and UB is hollow. Also δ(C) ≪ δ(C)

means δ(C) = 0, i.e., C = g(N ⊗U B). Thus if A = 0 and B 6= 0, we get UB is hollow and

C = g(N ⊗U B). (b) is true in this case.

The last case is A = 0 and B = 0. Γ(A⊕B⊕C) is hollow by assumption. For any V C′ ≤V C

with V C′ 6= V C, Γ(0 ⊕ 0 ⊕ C′) is a proper submodule of Γ(0 ⊕ 0 ⊕ C). From Theorem 2.2, we

get V C′ ≪ V C. This means (c) is true.

Conversely assume (a) or (b) or (c) is valid.
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In Case (a), if Γ(A′ ⊕B′⊕C′) is a proper submodule of Γ(A⊕B⊕C) we should necessarily

have A′ ⊂ A. Otherwise, assume A′ = A. Then B′ ⊇ f(M ⊗T A′) = f(M ⊗T A) = B which

implies B = B′ and C′ ⊇ g(N ⊗U B′) = g(N ⊗U B) = C which implies C = C′. Hence

Γ(A′ ⊕ B′ ⊕ C′) = Γ(A ⊕ B ⊕ C) which is a contradiction. Now we need only to prove that

Γ(A′ ⊕ B′ ⊕ C′) ≪ Γ(A ⊕ B ⊕ C). But it follows from Theorem 2.2 immediately since A′ ≪ A,

β(B) = 0 and δ(C) = 0.

In Case (b), for any proper submodule Γ(0⊕B′⊕C′) of Γ(0⊕B⊕C) with B′ ⊂ B. Otherwise,

assume B′ = B. Then C′ ⊇ g(N ⊗U B′) = g(N ⊗U B) = C implies C = C′. Which is contradict

to Γ(0⊕B′⊕C′) 6= Γ(0⊕B⊕C). Thus we need only to prove that Γ(0⊕B′⊕C′) ≪ Γ(0⊕B⊕C).

This follows from Theorem 2.2 immediately since B′ ≪ B and C = g(N ⊗U B).

In Case (c), any proper submodule of Γ(0⊕ 0⊕C) is of the form Γ(0⊕ 0⊕C′) with C′ ⊂ C.

From (c), C′ ≪ C. By Theorem 2.2 Γ(0 ⊕ 0 ⊕ C′) ≪ Γ(0 ⊕ 0 ⊕ C) is gotten immediately. �

We now construct an example to show that Γ(A⊕B⊕C) can be hollow even when UB and

V C have infinite dual Goldie dimensions in the sense of [3].

Example 2.1 Let K be a field. Suppose T = K, U = K, V = K and M, N are infinite

dimensional vector spaces over K regarded as (K − K) bimodules in the usual way. Let







T 0 0

M U 0

N ⊗K M N V






=







K 0 0

M K 0

N ⊗K M N K






.

Let A = K, B = M and C = N ⊗K M. Define f : M ⊗T A → B by f(m ⊗ a) = ma and

g : N ⊗U B → C by g(n ⊗ m) = n ⊗ m. Then from Theorem 2.2 we see that Γ(A ⊕ B ⊕ C)

corresponding to (A, B, C; f, g) is hollow, since T A is hollow and B = f(M⊗T A), C = g(N⊗UB).

However the dual Goldie dimensions of UB and V C are infinite.

3. Determination of Rad Γ(A ⊕ B ⊕ C) and Soc Γ(A ⊕ B ⊕ C)

In this section we will determine the radical RadΓ(A ⊕ B ⊕ C) and SocΓ(A ⊕ B ⊕ C)

of Γ(A ⊕ B ⊕ C). For this purpose we will describe the maximal (resp. simple) submodules of

Γ(A⊕B⊕C) firstly. Let T L = {a ∈ A|f(m⊗a) = 0 for all m ∈ M} and UQ = {b ∈ B|g(n⊗b) = 0

for all n ∈ N}.

Theorem 3.1 Let ℑ1 = {Γ(A′⊕B⊕C)|A′ a maximal submodule of A}, ℑ2 = {Γ(A⊕B′⊕C)|B′

a maximal submodule of B with f(M ⊗T A) ⊆ B′} and ℑ3 = {Γ(A ⊕ B ⊕ C′)|C′ a maximal

submodule of C with g(N ⊗U B) ⊆ C′}. Let Ψ1 = {(L′ ⊕ 0 ⊕ 0)|L′ a simple submodule of L},

Ψ2 = {(0⊕Q′ ⊕ 0)|Q′ a simple submodule of Q} and Ψ3 = {(0⊕ 0⊕C′)|C′ a simple submodule

of C}. Then

(a) The family ℑ of maximal submodules of Γ(A ⊕ B ⊕ C) is precisely ℑ = ℑ1 ∪ ℑ2 ∪ ℑ3.

(b) The family Ψ of minimal submodules of Γ(A ⊕ B ⊕ C) is precisely Ψ = Ψ1 ∪ Ψ2 ∪ Ψ3.

Proof Let Γ(A′ ⊕ B′ ⊕ C′) be any maximal submodule of Γ(A ⊕ B ⊕ C). If A′ ⊂ A, since
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(A′ ⊕ B′ ⊕ C′) ⊆ (A′ ⊕ B ⊕ C) ⊂ (A ⊕ B ⊕ C), we conclude B′ = B and C′ = C. Also from

(A′ ⊕ B ⊕ C) ⊆ (A′′ ⊕ B ⊕C) ⊂ (A⊕ B ⊕ C) for any A′ ⊆ A′′ ⊂ A we see that A′ = A′′. Hence

A′ is a maximal submodule of A, which shows that (A′ ⊕B′⊕C′) = (A′ ⊕B⊕C) is in ℑ1. Now

suppose A′ = A. Then f(M ⊗T A) ⊆ B′. On the one hand, if B′ 6= B, since (A′ ⊕ B′ ⊕ C′) ⊆

(A⊕B′⊕C) ⊂ (A⊕B⊕C), we have C = C′. Also from (A⊕B′⊕C) ⊆ (A⊕B′′⊕C) ⊂ (A⊕B⊕C)

for any B′ ⊆ B′′ ⊂ B we see that B′ = B′′ immediately. Hence B′ is a maximal submodule of B.

Thus (A′⊕B′⊕C′) = (A⊕B′⊕C) is in ℑ2. On the other hand, if B′ = B, then g(N⊗U B) ⊆ C′.

Since Γ(A′ ⊕ B′ ⊕ C′) =Γ (A ⊕ B ⊕ C′) is a maximal submodule of Γ(A ⊕ B ⊕ C), we see that

C′ is a maximal submodule of C immediately. Thus (A′ ⊕ B′ ⊕ C′) = (A ⊕ B ⊕ C′) is in ℑ3.

Conversely, it is straightforward to see that any submodule of Γ(A ⊕ B ⊕ C) belonging to

ℑ1 ∪ ℑ2 ∪ ℑ3 is a maximal submodule of Γ(A ⊕ B ⊕ C). This proves (a).

Let Γ(A′⊕B′⊕C′) be any simple submodule of Γ(A⊕B⊕C). If C′ 6= 0, for any 0 6= C′′ ⊆ C′,

since (0 ⊕ 0 ⊕ C′′) ⊆ (A′ ⊕ B′ ⊕ C′) ⊂ (A ⊕ B ⊕ C), we see that A′ = 0, B′ = 0 and C′ is a

simple submodule of C. If C′ = 0, we have g ◦ (1N ⊗ j)(N ⊗U B) = 0, hence j(B′) ⊆U Q where

j : B′ →֒ B denotes the inclusion. Thus B′ ≤U Q. If B′ 6= 0, for any 0 6= B′′ ⊆ B′, since

(0⊕B′′ ⊕ 0) ⊆ (A′ ⊕B′ ⊕ 0) ⊂ (A⊕B ⊕C), we see that A′ = 0. Thus B′ is a simple submodule

of B. If B′ = 0, we have f ◦ (1M ⊗ i)(M ⊗T A) = 0 and thus i(A′) ⊆T L where i : A′ →֒ A

denotes the inclusion. Thus A′ ≤T L. If 0 6= A′′ ⊆ A′ ⊂T L, we have (A′′ ⊕ 0⊕ 0) ⊂ (A′ ⊕ 0⊕ 0).

Hence A′ is a simple submodule of T L. Therefore, Ψ ⊆ Ψ1 ∪ Ψ2 ∪ Ψ3.

For (c), it is straightforward to see that any submodule of Γ(A ⊕ B ⊕ C) belonging to

Ψ1 ∪ Ψ2 ∪ Ψ3 is a simple submodule of Γ(A ⊕ B ⊕ C). This proves (c). �

Corollary 3.1 Let β : B → B/f(M ⊗T A) and δ : C → C/g(N ⊗U B) denote the canonical

quotient maps. Then

(a) Rad(A ⊕ B ⊕ C) = RadA ⊕ β−1(RadB/f(M ⊗T A)) ⊕ δ−1(RadC/g(N ⊗U B)).

(b) SocΓ(A ⊕ B ⊕ C) =Γ (SocT L ⊕ SocUQ ⊕ SocV C).

Proof These are immediate consequences of Theorem 3.1. �

Definition 3.1[4,5] A module V is said to be finitely embedded (or finitely co-generated) if

SocV is finitely generated and essential in V.

Theorem 3.1 enables us to obtain the following.

Theorem 3.2 (1) SocΓ(A⊕B⊕C) is finitely generated if and only if SocT L, SocUQ and SocV C

are finitely generated.

(2) SocΓ(A⊕B ⊕C) is essential in Γ(A⊕B ⊕C) if and only if SocT L, SocUQ and SocV C

are essential in T L, UQ and V C respectively.

(3) Γ(A⊕B⊕C) is finitely embedded if and only if T L, UQ and V C are finitely embedded.

Proof From Corollary 3.1 (b) we have SocΓ(A ⊕ B ⊕ C) =Γ (SocT L ⊕ SocUQ ⊕ SocV C). Note

that Γ(SocT L ⊕ ⊕SocUQ ⊕ SocV C) corresponds to the quintuple (SocT L, SocUQ, SocV C; 0, 0).

From a well-known result (Exercise 1D(b) on p.7 of [6]) we see that SocΓ(A ⊕ B ⊕ C) is finitely
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generated ⇔ SocT L, SocUQ/(M ⊗ SocT L), SocV C/(N ⊗ SocUQ) are finitely generated. This

proves (1). (2) is an immediate consequence of Theorem 2.1. (3) is immediate from (1) and (2).

Often one is interested in finding conditions implying Rad(V ) ≪ V. In this connection, we

have the following.

Theorem 3.3 RadΓ(A⊕B⊕C) is small in Γ(A⊕B⊕C) if and only if RadT A, RadU (B/f(M⊗T

A)) and RadV (C/g(N ⊗U B)) are small in T A, U (B/f(M ⊗T A)) and V (C/g(N ⊗U B)), respec-

tively.

Proof This is an immediate consequence of Corollary 3.1(a) and Theorem 2.2. �

Definition 3.2[7] Let R be a ring and V ∈ ModR. V is said to be co-hopfian if every injective

endomorphism f : V → V is automatically an isomorphism.

In [7] we know that any quasi-injective finitely embedded module V is co-hopfian. Using

(3) of Theorem 3.2 which characterizes finitely embedded modules over 3 × 3 formal triangular

matrix rings, we will construct an example of a finitely embedded module which is not co-hopfian,

thus showing that quasi-injectivity of V cannot be dispensed with for the validity of the above

result.

Example 3.1 Let

Γ =







Z 0 0

Zp∞ Z 0

Zp∞ Zp∞ Z






,

where p is a prime. Consider the Γ-module Γ(Z ⊕ Zp∞ ⊕ Zp∞) associated to the quintuple

(Z, Zp∞ , Zp∞ ; f, g) where f : Zp∞ ⊗ Z → Zp∞ by x ⊗ k → xk and g : Zp∞ ⊗ Zp∞ → Zp∞ by

x ⊗ y → xy for all k ∈ Z and x, y ∈ Zp∞ . In this case Zp∞ is finitely embedded in Mod Z.

Also L = {k ∈ Z | xk = 0 for all x ∈ Zp∞} is finitely embedded in ModZ, Q = {x ∈ Zp∞ |

yx = 0 for all y ∈ Zp∞} is finitely embedded in ModZ. From (3) of Theorem 3.2 we see that

Γ(Z ⊕ Zp∞ ⊕ Zp∞) is finitely embedded. Let n be an integer ≥ 2 and relatively prime to p. Let

σ1 : Z → Z, σ2 : Zp∞ → Zp∞ , σ3 : Zp∞ → Zp∞ be given by multiplication by n. Clearly

Zp∞ ⊗ Z Zp∞ ⊗ Z

Zp∞ Zp∞ ,

-
1Zp∞

⊗σ1

?

f

?

f

-
σ2

Zp∞ ⊗ Zp∞ Zp∞ ⊗ Zp∞

Zp∞ Zp∞

-
1Zp∞

⊗σ2

?

g

?

g

-
σ3

are two commutative diagrams. The map σ = (σ1, σ2, σ3) :Γ (Z⊕Zp∞⊕Zp∞) →Γ (Z⊕Zp∞⊕Zp∞)

is an injective endomorphism. This is because σ1 is injective, σ2 and σ3 are isomorphisms (since

(p, n) = 1). However σ is not surjective, because σ1 is not. Thus Γ(Z ⊕ Zp∞ ⊕ Zp∞) is not

co-hopfian.
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