2-Harmonic Submanifolds in a Complex Space Form

ZHU Ye Cheng ${ }^{1}$, SONG Wei Dong ${ }^{2}$
(1. College of Mathematics and Physics, Anhui Industry University, Anhui 243002, China;
2. College of Mathematics and Computer Science, Anhui Normal University, Anhui 241000, China)
(E-mail: zhuyecheng929@sina.com)

Abstract

In the present paper, the authors study totally real 2-harmonic submanifolds in a complex space form and obtain a Simons' type integral inequality of compact submanifolds as well as some relevant conclusions.

Keywords 2-harmonic; minimal; totally geodesic; complex space form.
Document code A
MR(2000) Subject Classification 53C42
Chinese Library Classification O186.12

1. Introduction

Following the tentative ideas of Eell and Lemaire, Jiang ${ }^{[1,2]}$ studied 2-harmonic map on Riemannian manifolds. After that, many new results concerning 2-harmonic submanifolds come out in succession. In 1999, Sun and Zhong ${ }^{[3]}$ discussed real 2-harmonic hypersurface in a complex projective space. In this paper, we study totally real 2-harmonic submanifolds in a complex space form, generalize the conclusion in [3], and obtain a series of results.

2. Preliminaries

Let $C N_{c}^{n}$ be a complex space form ${ }^{[4]}$, of complex dimension n, with the Fubini-study metric of constant holomorphic sectional curvature c, and J be the complex structure of $C N_{c}^{n}$. Among all submanifolds of $C N_{c}^{n}$, there are two typical classes: one is the class of holomorphic submanifolds and the other is the class of totally real submanifolds. A submanifold M^{n} in $C N_{c}^{n}$ is called holomorphic (resp. totally real) if each tangent space of M^{n} is mapped into itself (resp. the normal space) by the complex structure J. In this paper we study totally real submanifolds in $C N_{c}^{n}$ and use the following convention on the ranges of indices unless otherwise stated:

$$
A, B, C \ldots=1, \ldots, n, 1^{*}, \ldots, n^{*} ; i, j, \ldots=1, \ldots, n
$$

We choose local field of orthonormal frames $e_{1}, \ldots, e_{n}, e_{1^{*}}=J e_{1}, \ldots, e_{n^{*}}=J e_{n}$ in $C N_{c}^{n}$, in such a way that, restricted to $M^{n}, e_{1}, \ldots e_{n}$ are tangent to M^{n}. Let $\left\{\omega_{n}\right\}$ be the field of dual frames.

Received date: 2006-05-07; Accepted date: 2007-03-23
Foundation item: Natural Science Foundation of Education Department of Anhui Province (No. 2004kj166zd).

Then the structure equations of $C N_{c}^{n}$ are given by

$$
\begin{gather*}
\mathrm{d} \omega_{A}=-\sum_{B} \omega_{A B} \wedge \omega_{B}, \quad \omega_{A B}+\omega_{B A}=0 \tag{2.1}\\
\mathrm{~d} \omega_{A B}=-\sum_{C} \omega_{A C} \wedge \omega_{C B}+\frac{1}{2} \sum_{C, D} K_{A B C D} \omega_{C} \wedge \omega_{D} \tag{2.2}\\
K_{A B C D}=\frac{c}{4}\left(\delta_{A C} \delta_{B D}-\delta_{A D} \delta_{B C}+J_{A C} J_{B D}-J_{A D} J_{B C}+2 J_{A B} J_{C D}\right) \tag{2.3}
\end{gather*}
$$

where $J_{A B}$ is the component of complex structure J of $C N_{c}^{n}$ with the following form

$$
J_{A B}=\left(\begin{array}{ccc}
0 & \vdots & -I_{n} \tag{2.4}\\
\cdots & \ldots & \cdots \\
\underbrace{}_{n} & \vdots & 0
\end{array}\right) \underbrace{\underbrace{}_{j}}_{j^{*}}\} i
$$

Restricting these formulas to M^{n}, we have

$$
\begin{gather*}
\omega_{k^{*}}=0 ; \quad \omega_{i j}=\omega_{i^{*} j^{*}} ; \quad \omega_{i^{*} j}=\omega_{j^{*}} ; \tag{2.5}\\
\omega_{k^{*} i}=\sum_{j} h_{i j}^{k^{*}} \omega_{j} ; \quad h_{i j}^{k^{*}}=h_{j i}^{k^{*}}=h_{j k}^{i^{*}}=h_{i k}^{j^{*}} ; \tag{2.6}\\
R_{i j k l}=K_{i j k l}+\sum_{m^{*}}\left(h_{i k}^{m^{*}} h_{j l}^{m^{*}}-h_{i l}^{m^{*}} h_{j k}^{m^{*}}\right) \tag{2.7}\\
R_{i^{*} j^{*} k l}=K_{i^{*} j^{*} k l}+\sum_{m}\left(h_{k m}^{i^{*}} h_{l m}^{j^{*}}-h_{k m}^{j^{*}} h_{l m}^{i^{*}}\right) . \tag{2.8}
\end{gather*}
$$

Let $B\left(=\sum_{m^{*}, i, j} h_{i j}^{m^{*}} \omega_{i} \otimes \omega_{j} \otimes e_{m^{*}}\right)$ be the second fundamental form of M^{n} and $\tau\left(=\sum_{m^{*}, i} h_{i i}^{m^{*}} e_{m^{*}}=\right.$ $n \eta$) be tensile field of M^{n}, where η is the mean curvature vector of M^{n}.

Let $h_{i j k}^{m^{*}}$ and $h_{i j k l}^{m^{*}}$ be the first and second covariant derivatives of $h_{i j}^{m^{*}}$. Then we get

$$
\begin{gather*}
h_{i j k}^{m^{*}}=h_{i k j}^{m^{*}} \tag{2.9}\\
h_{i j k l}^{m^{*}}-h_{i j l k}^{m^{*}}=\sum_{p} h_{i p}^{m^{*}} R_{p j k l}+\sum_{p} h_{j p}^{m^{*}} R_{p i k l}-\sum_{p^{*}} h_{i j}^{p^{*}} R_{m^{*} p^{*} k l} \tag{2.10}
\end{gather*}
$$

Let the Laplacian of $h_{i j}^{m^{*}}$ be as follows:

$$
\triangle h_{i j}^{m^{*}}=\sum_{k} h_{i j k k}^{m^{*}}
$$

Then we have

$$
\begin{equation*}
\triangle h_{i j}^{m^{*}}=\sum_{k} h_{k k i j}^{m^{*}}+\sum_{k, l}\left(h_{k l}^{m^{*}} R_{l i j k}+h_{l i}^{m^{*}} R_{l k j k}\right)-\sum_{l^{*}, k} h_{i k}^{l^{*}} R_{m^{*} l^{*} j k} \tag{2.11}
\end{equation*}
$$

From (2.11) and other relevant formulas, we can get

$$
\frac{1}{2} \triangle\|B\|^{2}=\sum_{m^{*}, i, j, k}\left(h_{i j k}^{m^{*}}\right)^{2}+\sum_{m^{*}, i, j, k} h_{i j}^{m^{*}} h_{k k i j}^{m^{*}}+\frac{c}{4}(n+1)\|B\|^{2}-
$$

$$
\begin{align*}
& \frac{c}{2}\|\tau\|^{2}+2 \sum_{i^{*}, j^{*}}\left[\operatorname{tr}\left(H_{i^{*}} H_{j^{*}}\right)^{2}-\operatorname{tr}\left(H_{i^{*}}^{2} H_{j^{*}}^{2}\right)\right]+ \\
& \sum_{i^{*}, j^{*}} \operatorname{tr}\left(H_{i^{*}}^{2} H_{j^{*}}\right) \operatorname{tr} H_{j^{*}}-\sum_{i^{*}, j^{*}}\left[\operatorname{tr}\left(H_{i^{*}} H_{j^{*}}\right)\right]^{2} . \tag{2.12}
\end{align*}
$$

From (2.3), (2.4) and [2], we have
Lemma 1 Let M^{n} be a totally real submanifold in a complex space form $C N_{c}^{n}$. Then M^{n} is a 2-harmonic submanifold if and only if M^{n} satisfies the following conditions.

$$
\begin{gather*}
\sum_{m^{*}, i, k}\left(2 h_{i i k}^{m^{*}} h_{j k}^{m^{*}}+h_{i i}^{m^{*}} h_{k k j}^{m^{*}}\right)=0, \quad \forall j \tag{2.13}\\
\sum_{i, k} h_{i i k k}^{m^{*}}-\sum_{p^{*}, i, j, k} h_{i i}^{p^{*}} h_{j k}^{p^{*}} h_{j k}^{m^{*}}+\frac{c}{4}(n+3) \sum_{i} h_{i i}^{m^{*}}=0, \quad \forall m^{*} \tag{2.14}
\end{gather*}
$$

Lemma $2^{[5]}$ Let $A_{1}, A_{2}, \ldots, A_{m}$ be $(n \times n)$-symmetric matrices $(m \geq 2)$. Then

$$
\begin{equation*}
\sum_{\alpha, \beta=1}^{m} \operatorname{tr}\left(A_{\alpha} A_{\beta}-A_{\beta} A_{\alpha}\right)^{2}-\sum_{\alpha, \beta=1}^{m}\left(\operatorname{tr}\left(A_{\alpha} A_{\beta}\right)\right)^{2} \geqslant-\frac{3}{2}\left(\sum_{\alpha=1}^{m} \operatorname{tr}\left(A_{\alpha}^{2}\right)\right)^{2} \tag{2.15}
\end{equation*}
$$

Lemma 3 Let M^{n} be a totally real submanifold in a complex space form $C N_{c}^{n}$, then we have
(1) $2 \sum_{i^{*}, j^{*}}\left[\operatorname{tr}\left(H_{i^{*}} H_{j^{*}}\right)^{2}-\operatorname{tr}\left(H_{i^{*}}^{2} H_{j^{*}}^{2}\right)\right]-\sum_{i^{*}, j^{*}}\left[\operatorname{tr}\left(H_{i^{*}} H_{j^{*}}\right)\right]^{2} \geqslant-\frac{3}{2}\|B\|^{4}$;
(2) $\sum_{i^{*}, j^{*}} \operatorname{tr}\left(H_{i^{*}} H_{j^{*}}\right) \operatorname{tr} H_{i^{*}} \operatorname{tr} H_{j^{*}} \geqslant 0$;
(3) $\sum_{i^{*}, j^{*}} \operatorname{tr}\left(H_{i^{*}}^{2} H_{j^{*}}\right) \operatorname{tr} H_{j^{*}} \geqslant-\|\tau\| \cdot\|B\|^{3}$.

Proof From Lemma 2, (1) is clear.
(2) Obviously, $\sum_{i^{*}, j^{*}} \operatorname{tr}\left(H_{i^{*}} H_{j^{*}}\right) \operatorname{tr} H_{i^{*}} \operatorname{tr} H_{j^{*}}=\sum_{l, m}\left(\sum_{j^{*}}\left(\sum_{k} h_{k k}^{j^{*}}\right) h_{l m}^{j^{*}}\right)^{2} \geqslant 0$.
(3) For fixed i^{*}, let $h_{k l}^{i^{*}}=\lambda_{k}^{i^{*}} \delta_{k l}$. By Schwarz inequality, we have

$$
\begin{aligned}
\operatorname{tr}\left(H_{i^{*}}^{2} H_{j^{*}}\right) & =\sum_{k}\left(\lambda_{k}^{i^{*}}\right)^{2} h_{k k}^{j^{*}} \leqslant \sqrt{\sum_{k}\left(\lambda_{k}^{i^{*}}\right)^{2} \sum_{l}\left(\lambda_{l}^{i^{*}}\right)^{2}\left(h_{l l}^{j^{*}}\right)^{2}} \\
& \leqslant \sqrt{\sum_{k}\left(\lambda_{k}^{i^{*}}\right)^{2} \sum_{l}\left(\lambda_{l}^{i^{*}}\right)^{2} \sum_{k, l}\left(h_{k l}^{j^{*}}\right)^{2}} \\
& =\operatorname{tr}\left(H_{i^{*}}^{2}\right) \cdot \sqrt{\operatorname{tr}\left(H_{j^{*}}^{2}\right)}
\end{aligned}
$$

Then

$$
\begin{aligned}
\left|\sum_{i^{*}, j^{*}} \operatorname{tr}\left(H_{i^{*}}^{2} H_{j^{*}}\right) \operatorname{tr} H_{j^{*}}\right| & \leqslant \sqrt{\sum_{j^{*}}\left(\sum_{i^{*}} \operatorname{tr}\left(H_{i^{*}}^{2} H_{j^{*}}\right)\right)^{2} \cdot \sum_{k^{*}}\left(\operatorname{tr} H_{k^{*}}\right)^{2}} \\
& \leqslant \sqrt{\sum_{j^{*}}\left[\sum_{i^{*}} \operatorname{tr}\left(H_{i^{*}}^{2}\right) \sqrt{\operatorname{tr}\left(H_{j^{*}}^{2}\right)}\right]^{2} \cdot \sum_{k^{*}}\left(\operatorname{tr} H_{k^{*}}\right)^{2}} \\
& =\|\tau\| \cdot\|B\|^{3}
\end{aligned}
$$

3. Main results

Firstly, we study the relations between the totally real 2-harmonic submanifold and the minimal submanifold in $C N_{c}^{n}$.

Theorem 1 Let M^{n} be a totally real 2-harmonic submanifold in a complex space form $C N_{c}^{n}(c<$ $0)$. If the mean curvature vector of M^{n} is parallel, then M^{n} is minimal.

Proof Since the mean curvature vector of M^{n} is parallel, we have

$$
\sum_{i} h_{i i k}^{m^{*}}=0, \quad \sum_{i} h_{i i k j}^{m^{*}}=0, \quad m^{*}=1^{*}, \ldots, n^{*}
$$

Multiplying $\sum_{l} h_{l l}^{m^{*}}$ on the both sides of (2.14) and summing up with respect to m^{*}, we get

$$
\begin{aligned}
0 & =\sum_{m^{*}, p^{*}, i, j, k, l} h_{l l}^{m^{*}} h_{i i}^{p^{*}} h_{j k}^{p^{*}} h_{j k}^{m^{*}}-\frac{c}{4}(n+3) \sum_{m^{*}, i, l} h_{i i}^{m^{*}} h_{l l}^{m^{*}} \\
& =\sum_{j, k}\left(\sum_{p^{*}}\left(\sum_{i} h_{i i}^{p^{*}}\right) h_{j k}^{p^{*}}\right)^{2}-\frac{c}{4}(n+3) \sum_{i}\left(\sum_{i i}^{m^{*}}\right)^{2} \\
& \geqslant-\frac{c}{4}(n+3)\|\tau\|^{2} .
\end{aligned}
$$

From $c<0$, we have $\|\tau\|^{2}=0$. Therefore M is minimal submanifold.
Theorem 2 Let M^{n} be a totally real 2-harmonic submanifold in a complex space form $C N_{c}^{n}(c>$ 0). If the mean curvature vector of M^{n} is parallel and $\|B\|^{2}<\frac{c}{4}(n+3)$, then M^{n} is minimal.

Proof Similarly to the proof of Theorem 1, we have

$$
\begin{aligned}
0 & =\sum_{j, k}\left(\sum_{p^{*}}\left(\sum_{i} h_{i i}^{p^{*}}\right) h_{j k}^{p^{*}}\right)^{2}-\frac{c}{4}(n+3) \sum_{m^{*}}\left(\sum_{i} h_{i i}^{p^{*}}\right)^{2} \\
& \leqslant \sum_{j, k}\left(\sum_{p^{*}}\left(\sum_{i} h_{i i}^{p^{*}}\right)^{2} \sum_{m^{*}}\left(h_{j k}^{m^{*}}\right)^{2}\right)-\frac{c}{4}(n+3) \sum_{m^{*}}\left(\sum_{i} h_{i i}^{m^{*}}\right)^{2} \\
& =\|\tau\|^{2}\left(\|B\|^{2}-\frac{c}{4}(n+3)\right) .
\end{aligned}
$$

From $\|B\|^{2}<\frac{c}{4}(n+3)$, it follows that $\|\tau\|^{2}=0$.
Theorem 3 Let M^{n} be a totally real 2-harmonic submanifold in a complex space form $C N_{c}^{n}(c \geqslant$ 0). If the mean curvature vector η of M^{n} is parallel and $S_{\eta} \neq \frac{c}{4}(n+3)$, then M^{n} is minimal. Where S_{η} is the square of the second fundamental form of M^{n} with respect to η.

Proof Suppose M^{n} is not a minimal submanifold. Then $\eta \neq 0$. Choosing $e_{1^{*}}$ which has the same direction as η, we have

$$
\eta=\frac{1}{n} \sum_{i} h_{i i}^{1^{*}} e_{1^{*}} ; \quad \sum_{i} h_{i i}^{1^{*}}=n\|\eta\|, \quad \sum_{i} h_{i i}^{m^{*}}=0, \quad m^{*} \neq 1^{*}
$$

Since the mean curvature vector of M^{n} is parallel, from (2.14) we get

$$
\begin{equation*}
\sum_{i, j, k} h_{i i}^{1^{*}} h_{j k}^{1^{*}} h_{j k}^{m^{*}}=0, \quad m^{*} \neq 1^{*} \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i, j, k} h_{i i}^{1^{*}} h_{j k}^{1^{*}} h_{j k}^{1^{*}}-\frac{c}{4}(n+3) \sum_{i} h_{i i}^{1^{*}}=0 \tag{3.2}
\end{equation*}
$$

Since $\eta \neq 0$, from (3.2), we have

$$
\sum_{j, k}\left(h_{j k}^{1^{*}}\right)^{2}-\frac{c}{4}(n+3)=0
$$

Hence $S_{\eta}=\frac{c}{4}(n+3)$, which results in a contradiction.
Secondly, we discuss the relation between $\|B\|$ and $\|\tau\|$ in the totally real 2-harmonic submanifold and obtain a J.Simons's type integral inequality.

Theorem 4 Let M^{n} be a compact totally real 2-harmonic submanifold in a complex space form $C N_{c}^{n}$. Then we have

$$
\int_{M^{n}}\left(\frac{c}{4}(n+5)\|\tau\|^{2}+\|\tau\|\|B\|^{3}-\frac{c}{4}(n+1)\|B\|^{2}-\frac{3}{2}\|B\|^{4}\right) \mathrm{d} v_{M} \geqslant 0
$$

Proof Taking the covariant derivative with respect to j on the both sides of (2.13), and summing up with respect to j, we have

$$
\sum_{m^{*}, i, j, k}\left(2 h_{i i k j}^{m^{*}} h_{k j}^{m^{*}}+2 h_{i i k}^{m^{*}} h_{k j j}^{m^{*}}+h_{k k j}^{m^{*}} h_{i i j}^{m^{*}}+h_{k k j j}^{m^{*}} h_{i i}^{m^{*}}\right)=0
$$

Adjusting the indices of upper formula properly gives

$$
\begin{align*}
\sum_{m^{*}, i, j, k} h_{i j}^{m^{*}} h_{k k j j}^{m^{*}} & =-\frac{1}{2} \sum_{m^{*}, i, j, k}\left(3 h_{i i k}^{m^{*}} h_{j j k}^{m^{*}}+h_{i i}^{m^{*}} h_{j j k k}^{m^{*}}\right) \\
& =-\frac{3}{2} \sum_{m^{*}, i, j, k}\left(h_{i i k}^{m^{*}} h_{j j k}^{m^{*}}+h_{i i}^{m^{*}} h_{j j k k}^{m^{*}}\right)+\sum_{m^{*}, i, j, k} h_{i i}^{m^{*}} h_{j j k k}^{m^{*}} \tag{3.3}
\end{align*}
$$

Since

$$
\begin{equation*}
\frac{1}{2} \triangle\|\tau\|^{2}=\sum_{m^{*}, i, j, k}\left(h_{i i k}^{m^{*}} h_{j j k}^{m^{*}}+h_{i i}^{m^{*}} h_{j j k k}^{m^{*}}\right) \tag{3.4}
\end{equation*}
$$

From (2.14), we have

$$
\begin{equation*}
\sum_{m^{*}, i, j, k} h_{i i}^{m^{*}} h_{j j k k}^{m^{*}}=\sum_{m^{*}, p^{*}} \operatorname{tr} H_{m^{*}} \operatorname{tr} H_{p^{*}} \operatorname{tr}\left(H_{m^{*}} H_{p^{*}}\right)-\frac{c}{4}(n+3)\|\tau\|^{2} \tag{3.5}
\end{equation*}
$$

Substituting (3.4) and (3.5) into (3.3), we obtain

$$
\begin{equation*}
\sum_{m^{*}, i, j, k} h_{i j}^{m^{*}} h_{k k i j}^{m^{*}}=-\frac{3}{4} \triangle\|\tau\|^{2}+\sum_{m^{*}, p^{*}} \operatorname{tr} H_{m^{*}} \operatorname{tr} H_{p^{*}} \operatorname{tr}\left(H_{m^{*}} H_{p^{*}}\right)-\frac{c}{4}(n+3)\|\tau\|^{2} \tag{3.6}
\end{equation*}
$$

From (2.12) and (3.6), we have

$$
\begin{align*}
\frac{1}{2} \triangle\|B\|^{2}+\frac{3}{4} \triangle\|\tau\|^{2}= & \sum_{m^{*}, i, j, k}\left(h_{i j k}^{m^{*}}\right)^{2}+\sum_{m^{*}, p^{*}} \operatorname{tr} H_{m^{*}} \operatorname{tr} H_{p^{*}} \operatorname{tr}\left(H_{m^{*}} H_{p^{*}}\right)-\frac{c}{4}(n+5)\|\tau\|^{2}+ \\
& \frac{c}{4}(n+1)\|B\|^{2}+2 \sum_{i^{*}, j^{*}}\left[\operatorname{tr}\left(H_{i^{*}} H_{j^{*}}\right)^{2}-\operatorname{tr}\left(H_{i^{*}}^{2} H_{j^{*}}^{2}\right)\right]+ \\
& \sum_{i^{*}, j^{*}} \operatorname{tr}\left(H_{i^{*}}^{2} H_{j^{*}}\right) \operatorname{tr} H_{j^{*}}-\sum_{i^{*}, j^{*}}\left[\operatorname{tr}\left(H_{i^{*}} H_{j^{*}}\right)\right]^{2} \tag{3.7}
\end{align*}
$$

Noting Lemma 3, we get

$$
\begin{equation*}
\frac{1}{2} \triangle\|B\|^{2}+\frac{3}{4} \triangle\|\tau\|^{2} \geqslant-\frac{c}{4}(n+5)\|\tau\|^{2}+\frac{c}{4}(n+1)\|B\|^{2}-\frac{3}{2}\|B\|^{4}-\|\tau\|\|B\|^{3} . \tag{3.8}
\end{equation*}
$$

Since M^{n} is compact, we have

$$
\int_{M^{n}}\left(\frac{c}{4}(n+5)\|\tau\|^{2}+\|\tau\|\|B\|^{3}+\frac{3}{2}\|B\|^{4}-\frac{c}{4}(n+1)\|B\|^{2}\right) \mathrm{d} v_{M} \geqslant 0
$$

At last, we study the relations between the totally real 2-harmonic submanifold and the totally geodesic submanifold in $C N_{c}^{n}$.

Theorem 5 Let M^{n} be a compact totally real 2-harmonic submanifold in a complex space form $C N_{c}^{n}(c<0)$. If the mean curvature vector of M^{n} is parallel, then M^{n} is totally geodesic.

Proof From Theorem 1, we know M^{n} is minimal. Therefore $\|\tau\|=0$. Since M^{n} is compact, from Theorem 4, we have

$$
\begin{equation*}
\int_{M^{n}} \frac{3}{2}\|B\|^{2}\left(\|B\|^{2}-\frac{c}{6}(n+1)\right) \mathrm{d} V_{M} \geqslant 0 \tag{3.9}
\end{equation*}
$$

From $c<0$ and (3.9), we have

$$
\|B\|^{2}=0
$$

Hence M^{n} is totally geodesic.
Theorem 6 Let M^{n} be a compact totally real 2-harmonic submanifold in a complex space form $C N_{c}^{n}(c>0)$. If the mean curvature vector of M^{n} is parallel and $\|B\|^{2} \leqslant \frac{c}{6}(n+1)$, then M^{n} is totally geodesic, or $\|B\|^{2}=\frac{c}{6}(n+1)$.

Proof Since $\|B\|^{2} \leqslant \frac{c}{6}(n+1)<\frac{c}{4}(n+3)$, from Theorem 2, we know M^{n} is minimal. Then $\|\tau\|=0$. Since M^{n} is compact, from Theorem 4, we have

$$
\int_{M^{n}} \frac{3}{2}\|B\|^{2}\left(\|B\|^{2}-\frac{c}{6}(n+1)\right) \mathrm{d} v_{M} \geqslant 0
$$

Noting $\|B\|^{2} \leqslant \frac{c}{6}(n+1)$, we know M^{n} is totally geodesic, or $\|B\|^{2}=\frac{c}{6}(n+1)$.

References

[1] JIANG Guoying. 2-harmonic maps and their first and second variational formulas [J]. Chinese Ann. Math. Ser. A, 1986, 7(4): 389-402. (in Chinese)
[2] JIANG Guoying. 2-harmonic isometric immersions between Riemannian manifolds [J]. Chinese Ann. Math. Ser. A, 1986, 7(2): 130-144. (in Chinese)
[3] SUN Hong'an, ZHONG Dingxing. Real 2-harmonic hypersurfaces in complex projective spaces [J]. J. Math. Res. Exposition, 1999, 19(2): 431-436. (in Chinese)
[4] CHEN Bangyen, OGIUE K. On totally real submanifolds [J]. Trans. Amer. Math. Soc., 1974, 193: $257-266$.
[5] LI Anmin, LI Jimin. An intrinsic rigidity theorem for minimal submanifolds in a sphere [J]. Arch. Math. (Basel), 1992, 58(6): 582-594.

