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Abstract A Mendelsohn (directed, or hybrid) triple system of order v, denoted by MTS(v, λ)

(DTS(v, λ), or HTS(v, λ)), is a pair (X,B) where X is a v-set and B is a collection of some cyclic

(transitive, or cyclic and transitive) triples on X such that every ordered pair of X belongs

to λ triples of B. In this paper, a relation between three types of oriented triple systems was

discussed. We conjecture: the block-incident graph of MTS(v, λ) is 3-edge colorable. Then we

obtain three disjoint DTS(v, λ)s and four disjoint HTS(v, λ)s from a given MTS(v, λ).
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1. Introduction

Let X be a finite set. In what follows, an ordered pair of X will always be an ordered pair

(x, y) where x 6= y ∈ X . A cyclic triple on X is a set of three ordered pairs (x, y), (y, z) and

(z, x) of X , which is denoted by 〈x, y, z〉 (or 〈y, z, x〉, or 〈z, x, y〉). A transitive triple on X is a

set of three ordered pairs (x, y), (y, z) and (x, z) of X , which is denoted by (x, y, z).

An oriented triple system of order v is a pair (X, B), where X is a v-set and B is a collection

of cyclic or transitive triples on X , called blocks, such that each ordered pair of X is contained in

exactly λ triples of B. If B consists of only cyclic triples, the system is called Mendelsohn triple

system and denoted by MTS(v, λ). If B consists of only transitive triples, the system is called

directed triple system and denoted by DTS(v, λ). But, if there are both cyclic and transitive

triples in B, then the system is called hybrid triple system and denoted by HTS(v, λ). It is easy

to see that if (X,B) is an MTS(v, λ) (resp. DTS(v, λ) or HTS(v, λ)), then | B |= λv(v − 1)/3.

Thus, a necessary condition for the existence of an MTS(v, λ) (resp. DTS(v, λ) or HTS(v, λ)) is

λv(v − 1) ≡ 0 (mod 3). Usually, MTS(v, 1) (resp. DTS(v, 1) or HTS(v, 1)) is briefly written as

MTS(v) (resp. DTS(v) or HTS(v)).

For a v-set X , some cyclic (or transitive, or cyclic and transitive) triples on X are said

to be a parallel class if their elements form a partition of X . Some cyclic (or transitive, or
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cyclic and transitive) triples on X are said to be an almost parallel class if they form a par-

tition of X\{x} for some x ∈ X . An MTS(v, λ) (or DTS(v, λ), or HTS(v, λ)) is resolvable,

denoted by RMTS(v, λ) (or RDTS(v, λ), or RHTS(v, λ)), if its block set can be partitioned into

parallel classes. An MTS(v, λ) (or DTS(v, λ), or HTS(v, λ)) is almost resolvable, denoted by

ARMTS(v, λ) (or ARDTS(v, λ), or ARHTS(v, λ)), if its block set can be partitioned into almost

parallel classes.

An oriented triple system is called simple if there are no repeat blocks in its block set. A

simple MTS(v, λ) (X,B) is called pure and denoted by PMTS(v, λ), if 〈x, y, z〉 ∈ B implies

〈z, y, x〉 /∈ B. Similarly, a PDTS(v, λ) (X,B) is a simple DTS(v, λ) in which (x, y, z) ∈ B implies

(z, y, x) /∈ B. A PHTS(v, λ) (X,B) is a simple HTS(v, λ) in which 〈x, y, z〉 (or (x, y, z)) ∈ B

implies 〈z, y, x〉 (or (z, y, x)) /∈ B.

Two oriented triple system (X,A) and (X,B) are called disjoint if A ∩ B = φ. A large

set of pairwise disjoint Mendelsohn triple systems of order v and denoted by LMTS(v, λ), is

a collection {(X,Bi) : 1 ≤ i ≤ v−2
λ

}, where each (X,Bi) is an MTS(v, λ) and all Bi’s form a

partition of all cyclic triples on X . A large set of pairwise disjoint directed triple systems of order

v and denoted by LDTS(v, λ), is a collection {(X,Br
i ) : 1 ≤ i ≤ v−2

λ
, r = 1, 2, 3}, where each

(X,Br
i ) is a DTS(v, λ) and all Br

i ’s form a partition of all transitive triples on X . A large set

of pairwise disjoint hybrid triple systems of order v and denoted by LHTS(v, λ), is a collection

{(X,Ar
i ) : 1 ≤ i ≤ v−2

λ
, r = 0, 1, 2, 3}, where each (X, Ar

i ) is an HTS(v, λ) and all Ar
i ’s form

a partition of all cyclic and transitive triples on X . Corresponding to the above definitions,

we can define LRMTS(v, λ), LARMTS(v, λ), LPMTS(v, λ), and LRDTS(v, λ), LARDTS(v, λ),

LPDTS(v, λ), LRHTS(v, λ), LARHTS(v, λ), LPHTS(v, λ), respectively.

Let Y be a (v+1)-set. An overlarge set of pairwise disjoint Mendelsohn triple systems of order

v and denoted by OLMTS(v), is a collection {(Y \{y},By) : y ∈ Y }, where each (Y \{y},By) is an

MTS(v), and all By’s form a partition of all cyclic triples on Y . An overlarge set of pairwise dis-

joint directed triple systems of order v and denoted by OLDTS(v), is a collection {(Y \{y},Br
y) :

y ∈ Y, r = 1, 2, 3}, where each (Y \{y},Br
y) is a DTS(v) and all By’s form a partition of all tran-

sitive triples on Y . Similarly, an overlarge set of pairwise disjoint hybrid triple systems of order

v and denoted by OLHTS(v), is a collection {(Y \{y},Ar
y) : y ∈ Y, r = 0, 1, 2, 3}, where each (Y,

Ar
y) is an HTS(v) and all Ar

y’s form a partition of all cyclic and transitive triples on Y . Cor-

responding to the above definitions, we can define OLRMTS(v), OLARMTS(v), OLPMTS(v),

and OLRDTS(v), OLARDTS(v), OLPDTS(v), OLRHTS(v), OLARHTS(v), OLPHTS(v), re-

spectively.

Example 1 LMTS(10) = {({a, b} ∪ Z8,Bx) : x ∈ Z8}, where

B0 : 〈0 1 2〉 〈7 0 2〉 〈3 4 7〉 〈5 6 2〉 〈6 7 4〉 〈7 1 3〉 〈6 0 3〉

〈2 4 3〉 〈1 4 2〉 〈5 0 7〉 〈5 1 6〉 〈4 0 6〉 〈1 5 4〉 〈3 0 5〉

〈a 1 0〉 〈a 2 6〉 〈a 3 1〉 〈a 4 5〉 〈a 5 7〉 〈a 6 3〉 〈a 7 2〉 〈a b 4〉

〈b 0 4〉 〈b 1 7〉 〈b 2 3〉 〈b 3 5〉 〈b 5 2〉 〈b 6 1〉 〈b 7 6〉 〈b a 0〉

and Bx = B0 + x, x ∈ Z8.



A conjecture on the relation between three types of oriented triple systems 771

Example 2 LDTS(10) = {({a, b} ∪ Z8,B
r
x) : x ∈ Z8, r = 1, 2, 3}, where

B1
0 : (0 1 2) (2 7 0) (3 4 7) (6 2 5) (7 4 6) (7 1 3) (6 0 3)

(4 3 2) (2 1 4) (5 0 7) (5 1 6) (0 6 4) (4 1 5) (3 0 5)

(1 0 a) (2 6 a) (a 3 1) (5 a 4) (7 a 5) (3 a 6) (a 7 2) (b 4 a)

(4 b 0) (1 7 b) (2 3 b) (5 b 3) (b 5 2) (b 6 1) (6 b 7) (a 0 b)

B2
0 : (2 0 1) (7 0 2) (7 3 4) (2 5 6) (4 6 7) (1 3 7) (0 3 6)

(2 4 3) (1 4 2) (0 7 5) (1 6 5) (6 4 0) (5 4 1) (5 3 0)

(a 1 0) (6 a 2) (3 1 a) (a 4 5) (5 7 a) (a 6 3) (2 a 7) (4 a b)

(b 0 4) (7 b 1) (3 b 2) (b 3 5) (5 2 b) (6 1 b) (b 7 6) (0 b a)

B3
0 : (1 2 0) (0 2 7) (4 7 3) (5 6 2) (6 7 4) (3 7 1) (3 6 0)

(3 2 4) (4 2 1) (7 5 0) (6 5 1) (4 0 6) (1 5 4) (0 5 3)

(0 a 1) (a 2 6) (1 a 3) (4 5 a) (a 5 7) (6 3 a) (7 2 a) (a b 4)

(0 4 b) (b 1 7) (b 2 3) (3 5 b) (2 b 5) (1 b 6) (7 6 b) (b a 0)

and Br
x = Br

0 + x, x ∈ Z8, r = 1, 2, 3.

Example 3 LHTS(10) = {({a, b} ∪ Z8,A
r
x) : x ∈ Z8, r = 0, 1, 2, 3}, where

A0
0 : 〈0 1 2〉 〈2 7 0〉 (3 4 7) (6 2 5) (7 4 6) (7 1 3) (6 0 3)

(4 3 2) (2 1 4) (5 0 7) (5 1 6) (0 6 4) (4 1 5) (3 0 5)

(1 0 a) (2 6 a) (a 3 1) (5 a 4) (7 a 5) (3 a 6) (a 7 2) (b 4 a)

(4 b 0) (1 7 b) (2 3 b) (5 b 3) (b 5 2) (b 6 1) (6 b 7) (a 0 b)

A1
0 : (2 0 1) (7 0 2) 〈7 3 4〉 (2 5 6) 〈4 6 7〉 (1 3 7) (0 3 6)

(2 4 3) (1 4 2) (0 7 5) (1 6 5) (6 4 0) (5 4 1) (5 3 0)

(a 1 0) (6 a 2) (3 1 a) (a 4 5) (5 7 a) (a 6 3) (2 a 7) (4 a b)

(b 0 4) (7 b 1) (3 b 2) (b 3 5) (5 2 b) (6 1 b) (b 7 6) (0 b a)

A2
0 : (1 2 0) (0 2 7) (4 7 3) (5 6 2) (6 7 4) (3 7 1) 〈3 6 0〉

(3 2 4) (4 2 1) (7 5 0) (6 5 1) (4 0 6) (1 5 4) 〈0 5 3〉

(0 a 1) (a 2 6) (1 a 3) (4 5 a) (a 5 7) (6 3 a) (7 2 a) (a b 4)

(0 4 b) (b 1 7) (b 2 3) (3 5 b) (2 b 5) (1 b 6) (7 6 b) (b a 0)

A3
0 : (0 1 2) (2 7 0) (7 3 4) 〈5 6 2〉 (4 6 7) 〈7 1 3〉 (3 6 0)

〈2 4 3〉 〈1 4 2〉 〈5 0 7〉 〈5 1 6〉 〈4 0 6〉 〈1 5 4〉 (0 5 3)

〈a 1 0〉 〈a 2 6〉 〈a 3 1〉 〈a 4 5〉 〈a 5 7〉 〈a 6 3〉 〈a 7 2〉 〈a b 4〉

〈b 0 4〉 〈b 1 7〉 〈b 2 3〉 〈b 3 5〉 〈b 5 2〉 〈b 6 1〉 〈b 7 6〉 〈b a 0〉

and Ar
x = Ar

0 + x, x ∈ Z8, r = 0, 1, 2, 3.

Observe Examples 1, 2 and 3, it is easy to see that if we replace every transitive triple

(a, b, c) with cyclic triple 〈a, b, c〉 in DTS(v), then Br
x(r = 1, 2, 3) turns into Bx. i.e., three

DTS(v)’s correspond to the same MTS(v). Similarly, if we replace every transitive triple (a, b, c)

with cyclic triple 〈a, b, c〉 in HTS(v), then Ar
x(r = 0, 1, 2, 3) turns into Bx, i.e., four HTS(v)’s
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correspond to the same MTS(v). Here, the “correspondence relation” satisfies two properties:

(1) these oriented triples have the same underlying points; (2) three relevant transitive triples

correspond to three different cyclic shifts of a cyclic triple. Now, the problem is that whether the

“correspondence relation” suits any MTS? If this is true, then the discussion about three types

of oriented triple system may incorporate into Mendelsohn triple system. This will simplify the

research of oriented triple systems. In this paper, we will study the “correspondence relation”.

2. Theorems and conjecture

In what follows, we call the transitive triple (a, b, c) (or (b, c, a), or (c, a, b)) a cyclic shift of

the cyclic triple 〈a, b, c〉. If the cyclic shifts of all blocks in MTS(v, λ) can be partitioned into

three families, such that each family can form a block set of a DTS(v, λ), then we call the three

DTS(v, λ)’s cyclic shifts of the MTS(v, λ).

Given an MTS(v, λ) = (X,B), |X | = v, we write the cyclic triples which can form some

subsystems MTS(3) as B. Define a block-incident graph G(B), where the vertex set is B\B, and

the vertices B and B′ are joint if and only if there are two common elements in B and B′. The

edge joining B = 〈a, b, x〉 and B′ = 〈b, a, y〉 is written as {a, b}. Evidently, G(B) is a 3-regular

graph. Suppose that the edges of G(B) can be partitioned into three pairwise disjoint 1-factors

G1, G2 and G3, then G(B) is 3-edge colorable. On the other hand, if G(B) is 3-edge colorable,

then G(B) is 1-factorization. For the definitions of edge coloring, factor and factorization, we

refer to [1].

Theorem 1 If the block-incident graph of an MTS(v, λ) is 3-edge colorable, then there exist

three cyclic shifts of the MTS(v, λ) (i.e., three pairwise disjoint DTS(v, λ)’s).

Proof Let the block-incident graph G(B) of an MTS(v, λ) be 3-edge colorable. Then the edges

of G(B) can be partitioned into three pairwise disjoint 1-factors G1, G2 and G3. Now, we use

the following “method” to construct three transitive triple sets D1,D2 and D3.

“ Let the edge which joins the points B = 〈a, b, x〉 and B′ = 〈b, a, y〉 be {a, b} in G(B).

If {a, b} ∈ Gi, then the transitive triples (b, x, a) and (a, y, b) ⊆ Di, i = 1, 2, 3.”

For each point 〈a, b, c〉 of the graph G(B), there exist three elements x, y, z ∈ X such that the

three points joining 〈a, b, c〉 are 〈b, a, x〉, 〈c, b, y〉, 〈a, c, z〉 in G(B). Without loss of generality, we

let the three edges {a, b}, {b, c}, {c, a} belong to G1, G2, G3, respectively.

s
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〈b, a, x〉

〈a, b, c〉

〈c, b, y〉 〈a, c, z〉

{a, b} ∈ G1

{b, c} ∈ G2 {c, a} ∈ G3
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From the above “method”, the three edges will derive that (b, c, a), (a, x, b) ∈ D1; (c, a, b),

(b, y, c) ∈ D2; (a, b, c), (c, z, a) ∈ D3. So, we have the following conclusion:

(∗) The six ordered pairs contained in the two cyclic triples 〈a, b, x〉 and 〈b, a, y〉 are the same

as those contained in the two transitive triples (b, x, a) and (a, y, b).

(∗∗) The three transitive triples corresponding to the same cyclic triple (a point in G(B))

are exactly the three cyclic shifts of the cyclic triple, and belong to three distinct Di, i = 1, 2, 3,

respectively.

Further, when B is nonempty, we define three subsystems DTS(3): {(u, v, w), (w, v, u)},

{(v, w, u), (u, w, v)}, {(w, u, v), (v, u, w)} for each subsystem MTS(3) = {〈u, v, w〉, 〈w, v, u〉}, and

add them into D1,D2,D3, respectively. By the conclusion (∗), the ordered pairs contained in the

transitive triples of Di are the same as those contained in the cyclic triples of B. Hence, each

(X,Di) is a DTS(v, λ) and D1,D2,D3 are the three cyclic shifts of B. 2

Example 4 MTS(7) = (Z7,B), where

B = {〈0 3 4〉, 〈1 3 5〉, 〈2 3 6〉, 〈0 1 2〉, 〈0 2 5〉, 〈0 5 6〉, 〈0 6 1〉,

〈4 3 0〉, 〈5 3 1〉, 〈6 3 2〉, 〈4 6 5〉, 〈4 1 6〉, 〈4 2 1〉, 〈4 5 2〉}.

B = {〈0 3 4〉, 〈1 3 5〉, 〈2 3 6〉, 〈4 3 0〉, 〈5 3 1〉, 〈6 3 2〉}.

The block-incident graph G(B) is

〈4, 2, 1〉

〈4, 1, 6〉

〈0, 6, 1〉

〈0, 5, 6〉

〈0, 1, 2〉

〈0, 2, 5〉

〈4, 5, 2〉

〈4, 6, 5〉

Obviously, G(B) is a 3-regular graph and its 3-edge coloring is displayed as above. The three

1-factors are:

G1 G2 G3

〈0, 1, 2〉
{0,2}
−− 〈0, 2, 5〉 〈0, 1, 2〉

{1,2}
−− 〈4, 2, 1〉 〈0, 1, 2〉

{0,1}
−− 〈0, 6, 1〉

〈4, 5, 2〉
{4,5}
−− 〈4, 6, 5〉 〈0, 2, 5〉

{2,5}
−− 〈4, 5, 2〉 〈0, 2, 5〉

{0,5}
−− 〈0, 5, 6〉

〈0, 5, 6〉
{0,6}
−− 〈0, 6, 1〉 〈4, 6, 5〉

{5,6}
−− 〈0, 5, 6〉 〈4, 5, 2〉

{4,2}
−− 〈4, 2, 1〉

〈4, 1, 6〉
{4,1}
−− 〈4, 2, 1〉 〈0, 6, 1〉

{1,6}
−− 〈4, 1, 6〉 〈4, 6, 5〉

{4,6}
−− 〈4, 1, 6〉

At last, we get three cyclic shifts of B:
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D1 : (0 1 2) (5 2 4) (0 5 6) (1 6 4) | (0 3 4) (1 3 5) (2 3 6)

(2 5 0) (4 6 5) (6 1 0) (4 2 1) | (4 3 0) (5 3 1) (6 3 2)

D2 : (2 0 1) (5 0 2) (5 4 6) (1 0 6) | (3 4 0) (3 5 1) (3 6 2)

(1 4 2) (2 4 5) (6 0 5) (6 4 1) | (0 4 3) (1 5 3) (2 6 3)

D3 : (1 2 0) (0 2 5) (4 5 2) (6 5 4) | (4 0 3) (5 1 3) (6 2 3)

(0 6 1) (5 6 0) (2 1 4) (4 1 6) | (3 0 4) (3 1 5) (3 2 6)

It is easy to see that (Z7,Di) is a DTS(7),1 ≤ i ≤ 3, and they are pairwise disjoint.

Conjecture For any MTS(v, λ) (X,B), the block-incident graph G(B) is 3-edge colorable.

Theorem 2 If the block-incident graph of an MTS(v, λ) is 3-edge colorable, then there exist

four pairwise disjoint HTS(v, λ)’s, v ≥ 6.

Proof First, an MTS(v, λ) = (X,B) exists if and only if[2]:
{

λ ≡ 0 (mod 3), v ≥ 3;

λ ≡ 1, 2 (mod 3), v ≡ 0, 1 (mod 3), v ≥ 3 � (v, λ) 6= (6, 1).

So, |B| = λv(v−1)
3 is even. Secondly, from Theorem 1, if the block-incident graph of an MTS(v, λ)

(X,B) is 3-edge colorable, then we can get three disjoint DTS(v, λ) (X,Di), i = 1, 2, 3. And the

blocks of the DTS satisfy: “if (a, x, b) ∈ Di, then there exists y ∈ X such that (b, y, a) ∈ Di”,

i.e., the ordered pairs (a, b), (b, a) which consist of both side elements of the two transitive triples

are of negative direction each other. Since |B| is even, the transitive triples are in pairs, and the

six ordered pairs contained in transitive triples (a, x, b), (b, y, a) are the same as those in cyclic

triples 〈a, x, b〉, 〈b, y, a〉. Hence, if we replace a pair of transitive triples (u, w, v), (v, z, u) in each

Di (i = 1, 2, 3) with cyclic triples 〈u, w, v〉, 〈v, z, u〉 (the six transitive triples must correspond to

different cyclic triples. Since v ≥ 6, |B| ≥ 10, the number of blocks satisfies the condition), we

will get three HTS(v, λ)’s. At last, the six transitive triples together with the other cyclic triples

in MTS(v, λ) will form an HTS(v, λ). It is not difficult to check that the four HTS(v, λ)’s are

pairwise disjoint. 2

Example 5 Another MTS(7) = (Z7,B) (which is not isomorphic with Example 4), where

B = {〈4 7 3〉, 〈3 6 4〉, 〈4 6 1〉, 〈7 1 6〉, 〈1 7 2〉, 〈2 3 1〉, 〈6 3 2〉,

〈2 5 6〉, 〈6 5 7〉, 〈3 7 5〉, 〈5 1 3〉, 〈1 5 4〉, 〈4 5 2〉, 〈2 7 4〉}.

This MTS(7) has no MTS(3). The block-incident graph G(B) and its 3-edge coloring are dis-

played as follows:

The three cyclic shifts of B are:

D1 : (4 7 3) (3 6 4) (1 4 6) (6 7 1) (1 7 2) (2 3 1) (6 3 2)

(2 5 6) (7 6 5) (5 3 7) (1 3 5) (5 4 1) (4 5 2) (2 7 4)
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〈4, 7, 3〉
〈2, 7, 4〉

〈4, 5, 2〉

〈1, 5, 4〉

〈5, 1, 3〉

〈3, 7, 5〉
〈6, 5, 7〉

〈3, 6, 4〉
〈4, 6, 1〉

〈7, 1, 6〉

〈1, 7, 2〉

〈2, 3, 1〉

〈6, 3, 2〉
〈2, 5, 6〉

D2 : (7 3 4) (4 3 6) (6 1 4) (1 6 7) (7 2 1) (3 1 2) (2 6 3)

(6 2 5) (5 7 6) (3 7 5) (5 1 3) (4 1 5) (5 2 4) (4 2 7)

D3 : (3 4 7) (6 4 3) (4 6 1) (7 1 6) (2 1 7) (1 2 3) (3 2 6)

(5 6 2) (6 5 7) (7 5 3) (3 5 1) (1 5 4) (2 4 5) (7 4 2)

Furthermore, let

A0 : 〈4 7 3〉 〈3 6 4〉 (1 4 6) (6 7 1) (1 7 2) (2 3 1) (6 3 2)

(2 5 6) (7 6 5) (5 3 7) (1 3 5) (5 4 1) (4 5 2) (2 7 4)

A1 : (7 3 4) (4 3 6) (6 1 4) 〈1 6 7〉 〈7 2 1〉 (3 1 2) (2 6 3)

(6 2 5) (5 7 6) (3 7 5) (5 1 3) (4 1 5) (5 2 4) (4 2 7)

A2 : (3 4 7) (6 4 3) (4 6 1) (7 1 6) (2 1 7) 〈1 2 3〉 (3 2 6)

(5 6 2) (6 5 7) (7 5 3) 〈3 5 1〉 (1 5 4) (2 4 5) (7 4 2)

A3 : (4 7 3) (3 6 4) 〈4 6 1〉 (1 6 7) (7 2 1) (1 2 3) 〈6 3 2〉

〈2 5 6〉 〈6 5 7〉 〈3 7 5〉 (3 5 1) 〈1 5 4〉 〈4 5 2〉 〈2 7 4〉

Then (Z7,Di) is a DTS(7), i = 1, 2, 3, and (Z7,Aj) is an HTS(7), j = 0, 1, 2, 3.

3. Constructions for large set and overlarge set

In this part, the notion “some type” means: (1) resolvable; (2) almost resolvable; (3) pure;

(4) no limitation.

Theorem 3 If there exists “some type” large set or overlarge set of MTS(v, λ), and the block-

incident graph corresponding to each MTS(v, λ) is 3-edge colorable, then there exists the same

type large set or overlarge set of DTS(v, λ) and HTS(v, λ).

Proof First, if the block-incident graph corresponding to each MTS(v, λ) is 3-edge colorable,

then each MTS(v, λ) corresponds to three pairwise disjoint DTS(v, λ)’s from Theorem 1. And

when some MTS(v, λ)’s are pairwise disjoint, the corresponding DTS(v, λ)’s are pairwise disjoint.

Secondly, an LMTS(v, λ) has (v − 2)/λ MTS(v, λ)’s, each MTS(v, λ) has three cyclic shifts. So,

there exist 3(v−2)/λ disjoint DTS(v, λ)’s. An OLMTS(v) has v+1 MTS(v)’s, and each MTS(v)
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has three cyclic shifts. Then there exist 3(v + 1) disjoint DTS(v)’s. The number of small design

fits the demand. On the other hand, an cyclic triple corresponds to three transitive triples, the

number of all blocks satisfies the condition. At last, when MTS(v, λ) is resolvable (or almost

resolvable, or pure), its three cyclic shifts are also resolvable (or almost resolvable, or pure).

Similarly, LHTS(v, λ) (or OLHTS(v)) exists from Theorem 2. 2

Corollary 4 If “some type” large set or overlarge set of MTS(v, λ) can be generated from one

or several base MTS(v, λ) under the action of a group of automorphisms, and the block-incident

graphs corresponding to each base MTS(v, λ) are 3-edge colorable, then there exists the same

type large set or overlarge set of DTS(v, λ) and HTS(v, λ).

Example 6 LARMTS(4) = {(Z4,Bi) : i = 1, 2}, where

B1 = {〈0, 1, 2〉, 〈2, 1, 3〉, 〈2, 3, 0〉, 〈0, 3, 1〉};

B2 = {〈0, 2, 1〉, 〈2, 3, 1〉, 〈2, 0, 3〉, 〈0, 1, 3〉}.

The block-incident graph and 3-edge coloring are displayed as follows:

G(B1): 〈0, 3, 1〉 〈0, 1, 2〉

〈2, 3, 0〉 〈2, 1, 3〉

G(B2): 〈0, 1, 3〉 〈0, 2, 1〉

〈2, 0, 3〉 〈2, 3, 1〉

@
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The three cyclic shifts of B1 are:

D1 = {(2, 0, 1), (1, 3, 2), (0, 2, 3), (3, 1, 0)};

D2 = {(1, 2, 0), (0, 3, 1), (3, 0, 2), (2, 1, 3)};

D3 = {(0, 1, 2), (2, 3, 0), (3, 2, 1), (1, 0, 3)}.

The three cyclic shifts of B2 are:

C1 = {(1, 0, 2), (2, 3, 1), (3, 2, 0), (0, 1, 3)};

C2 = {(0, 2, 1), (1, 3, 0), (2, 0, 3), (3, 1, 2)};

C3 = {(2, 1, 0), (0, 3, 2), (1, 2, 3), (3, 0, 1)}.

Then {(Z4,Di) : i = 1, 2, 3} ∪ {(Z4, Ci) : i = 1, 2, 3} is an LARDTS(4).

Next, when we display the block-incident graph G(B) and its 3-edge coloring of an MTS(v, λ)

(X,B), we can only write the 2-factor formed by some even cycles. The two sets which consist

of adjacent edges in even cycles will give transitive triple sets D1,D2, and the remainder cyclic

shift for all cyclic triples will give D3.

Example 7 OLRMTS(9) = {(Z10\{x},Bx) : x ∈ Z10}, where Bx = B0 + x, x ∈ Z10,

B0 : 〈2 4 1〉 〈5 4 7〉 〈8 4 5〉 〈6 7 3〉 〈3 7 4〉 〈6 5 2〉 〈2 3 8〉 〈8 7 2〉

〈3 5 6〉 〈6 9 8〉 〈2 7 6〉 〈9 4 2〉 〈8 1 6〉 〈4 8 3〉 〈4 9 6〉 〈6 1 4〉

〈7 8 9〉 〈1 3 2〉 〈3 1 9〉 〈5 1 8〉 〈2 5 9〉 〈9 1 7〉 〈7 1 5〉 〈9 5 3〉
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The 2-factor of G(B0) is:

(〈2 4 1〉 - 〈1 3 2〉 - 〈3 1 9〉 - 〈9 5 3〉 - 〈2 5 9〉 - 〈9 4 2〉 - 〈4 9 6〉 - 〈6 1 4〉);

(〈6 9 8〉 - 〈8 1 6〉 - 〈5 1 8〉 - 〈8 4 5〉 - 〈5 4 7〉 - 〈7 1 5〉 - 〈9 1 7〉 - 〈7 8 9〉);

(〈6 7 3〉 - 〈3 5 6〉 - 〈6 5 2〉 - 〈2 7 6〉 - 〈8 7 2〉 - 〈2 3 8〉 - 〈4 8 3〉 - 〈3 7 4〉).

The three cyclic shifts of B0 are:

D1
0 : (2 4 1) (5 4 7) (8 4 5) (6 7 3) (3 7 4) (6 5 2) (2 3 8) (8 7 2)

(3 5 6) (6 9 8) (2 7 6) (9 4 2) (8 1 6) (4 8 3) (4 9 6) (6 1 4)

(7 8 9) (1 3 2) (3 1 9) (5 1 8) (2 5 9) (9 1 7) (7 1 5) (9 5 3)

D2
0 : (4 1 2) (7 5 4) (4 5 8) (7 3 6) (4 3 7) (2 6 5) (3 8 2) (7 2 8)

(5 6 3) (9 8 6) (6 2 7) (2 9 4) (6 8 1) (8 3 4) (6 4 9) (1 4 6)

(8 9 7) (2 1 3) (9 3 1) (1 8 5) (5 9 2) (1 7 9) (5 7 1) (3 9 5)

D3
0 : (1 2 4) (4 7 5) (5 8 4) (3 6 7) (7 4 3) (5 2 6) (8 2 3) (2 8 7)

(6 3 5) (8 6 9) (7 6 2) (4 2 9) (1 6 8) (3 4 8) (9 6 4) (4 6 1)

(9 7 8) (3 2 1) (1 9 3) (8 5 1) (9 2 5) (7 9 1) (1 5 7) (5 3 9)

Then {(Z10\{x},D
r
x) : x ∈ Z10, r = 1, 2, 3} is an OLRDTS(9), where Dr

x = Dr
0 + x, x ∈

Z10, r = 1, 2, 3.

Moreover, let

A0
0 : (1 2 4) (4 7 5) (5 8 4) (3 6 7) (7 4 3) (5 2 6) (8 2 3) 〈2 8 7〉

(6 3 5) (8 6 9) 〈7 6 2〉 (4 2 9) (1 6 8) (3 4 8) (9 6 4) (4 6 1)

(9 7 8) (3 2 1) (1 9 3) (8 5 1) (9 2 5) (7 9 1) (1 5 7) (5 3 9)

A1
0 : 〈2 4 1〉 (5 4 7) (8 4 5) (6 7 3) (3 7 4) (6 5 2) (2 3 8) (8 7 2)

(3 5 6) (6 9 8) (2 7 6) (9 4 2) (8 1 6) (4 8 3) (4 9 6) (6 1 4)

(7 8 9) 〈1 3 2〉 (3 1 9) (5 1 8) (2 5 9) (9 1 7) (7 1 5) (9 5 3)

A2
0 : (4 1 2) 〈7 5 4〉 (4 5 8) (7 3 6) 〈4 3 7〉 (2 6 5) (3 8 2) (7 2 8)

(5 6 3) (9 8 6) (6 2 7) (2 9 4) (6 8 1) (8 3 4) (6 4 9) (1 4 6)

(8 9 7) (2 1 3) (9 3 1) (1 8 5) (5 9 2) (1 7 9) (5 7 1) (3 9 5)

A3
0 : (2 4 1) (7 5 4) 〈8 4 5〉 〈6 7 3〉 (4 3 7) 〈6 5 2〉 〈2 3 8〉 (2 8 7)

〈3 5 6〉 〈6 9 8〉 (7 6 2) 〈9 4 2〉 〈8 1 6〉 〈4 8 3〉 〈4 9 6〉 〈6 1 4〉

〈7 8 9〉 (1 3 2) 〈3 1 9〉 〈5 1 8〉 〈2 5 9〉 〈9 1 7〉 〈7 1 5〉 〈9 5 3〉

Then {(Z10\{x},A
r
x) : x ∈ Z10, r = 0, 1, 2, 3} is an OLRHTS(9), where Ar

x = Ar
0 + x, x ∈

Z10, r = 0, 1, 2, 3.
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