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1. Introduction

The problems about elliptic equations with discontinuous coefficients are also known as the
diffraction problems. The coefficients of the equations are discontinuous on inner boundary. The
papers!! =4 studied the existence and the regularity of the solutions for the linear equations with
discontinuous coefficients. The regularity results are very important for the linear diffraction
problems and some porus medium problems!®®. Therefore, the regularity results of the semi-
linear and quasilinear equations are also useful and important for us. In 2005, the paper!”
considered the regularity of the solutions of a special semi-linear second order elliptic equations
with discontinuous coefficients that is derived from the electric field. In this paper, we are going
to study the regularity of the weak solutions for the n-dimensional quasilinear elliptic equations
with discontinuous coefficients.

We first introduce some notations:

Notation 1.1 (al) R™ is the n-dimensional Euclidean space, n > 2, with points x =

(1,22, ., &n). P = (P1,D2,---+Dn);, Wy = (Wg,Way,..., Wy, ) € R, where w,, = 68;;’

Let © be an open bounded domain in R™. It satisfies @ = D1 U D@ where D) and D® are

two subdomains which are separated by inner boundary I' := {z : , = 0}. K, is an arbitrary

open ball in R™ of radius p and K>, is concentric with K,,.
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(a2) Function a;(z,w,p) = agk) (z,w,p) ifz € D® and f(x,w,p) = f¥) (z,w,p) ifz € DF),
k=1,2.

(a3) Everywhere pairs of equal indices imply a summation from 1 to n. For example,
d%iai(x,w,wm) =3, d‘; a;(z, w,wy). “A:= B” is the definition of A by means of the expres-
sion B.

This paper considers the regularity of the following n-dimensional quasilinear elliptic equa-

tions with discontinuous coefficients:

Problem 1.1 Find function w = w(x), such that

d
—d—ai(x,w,wm) + f(z,w,w,) =0 in D® k=172, (1.1)
X
dw
wir =0, [T =0, (1.2)
w(z) =g(x) on 0Q, (1.3)
where 9% := q;(z, w,w,)cos(n, z;), n is the outward (from D)) unit normal to T, and []r

represents the jump across the inner boundary I'.

Definition 1.1 By a bounded weak solution w(x) of problem 1.1 we will mean a function w(x)

from W3 (Q) with M := varimaxq |w| < oo that satisfies the integral identity
/ {ai(x,w,wm)nmi + f(:v,w,ww)n}d:v =0 (1.4)
Q

for any function n(x) ew 3(Q) with varimaxg |n| < co.
Suppose that the following hypotheses are satisfied throughout this paper.

Hypotheses 1.1 (H1) There exists at least one bounded weak solution for Problem 1.1. The
solution is represented by w(zx). The bound of the solution is denoted by M.
(H2) Although functions a;(z,w,p), f(x,w,p) may be discontinuous for x € 2, they have
partial derivatives for all variables if x belongs to the same subdomain D®) and (w, p) belongs
o [-M, M] x R, and they satisfy the conditions

9 n
3 =1
80,1'(:17,11),]))

‘8az(x w, p)
ow

> | < oaa) + plpl

\<wo>+um ‘

of(x,w
)+ | 2 < ot i

8.][‘('1:7 w7p)

)| < =

+ plpl?, ‘ ’Swd@+um,

where k = 1727 ||1/137¢%a¢%7§02790§”L%(Q) + ||w1||L4(Q) < B, v, fy f1, ¢ > 0 and q>n.

Remark 1.1 The hypotheses about the inner boundary ({z|z,, = 0}) and the coefficients are
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suitable for application, because we can transform the general inner boundary into the form
{z| ,, = 0} by a transformation (see [3, Chapter 3, Section 16], [5, 6]).

The main result of this paper is the following theorem:

Theorem 1.1 Suppose Hypotheses 1.1 is satisfied. Then any bounded weak solution w(x) of
Problem 1.1 belongs to the classes C*(SY) and W(Q' () D®)), where ' is an arbitrary strictly
interior subdomain of the domain ), k = 1,2, and « > 0 is determined only by v, u, pu1, g and
M. Furthermore, the solution w(z) has first derivatives that belong to the class CP (€Y (| D))

and has the estimates

/ |wee |*dx < C, (1.5)

@ND®)

max lwy, | + p~Posc{w,,, K,NnD®} < C (1.6)
P

for1<i<n, k=12 K, C, where C' and 3 are positive constants depending only on v, p,
t1, g, M and the distance from ' to 9. In addition, the solution w(x) satisfies the equation
(1.1) for almost all z € Q' and the inner boundary condition (1.2) for almost all x € T' (Y.

2. The proof of the main theorem

In order to prove Theorem 1.1, we need some lemmas. First, in addition to notation 1.1 we

introduce another notation:

Notation 2.1 (A1) Let Q' be any given strictly interior subdomain of the domain Q and Q;
be a series of subdomains, such that Qs =, Q; C Q, Qs C Q4 and Q3 C Qy. Without loss of
generality, assume that for i = 1,2, the distance from ;1 to 9; equals to the distance from
Q1 to 0N which is denoted by d.

(A2) C,Cq, Co, ..., a, ag, v, ... are constants which depend on parameters v, i, ji1,q and
M. It is convenient that we only list the other parameters except v, u, pu1, q, M.

(A3) G =1+ Y2+ ¢? and Gy := 1 +¢? + @2 + .

The following two useful inequalities can be easily gotten from the hypotheses:

14
a’i(wivp)p’i 2 §|p|2 — M2, (21)

/ (G + Gy)da < HG+G1|\L£(K0)(/ dx) o0 g =11 (2.2)
K, 2 K, q

Lemma 2.1 There exist constants «, pg, 0 < a < 1, pg > 0 such that

/ lw,|*dz < C(d); p “osc{w,K,} < C(d) if K,C Q; (2.3)

Q1

/ (1 + |we])?¢(z)dx < Cp™ / |Ce|?d if K, C Q4, p < po, (2.4)
p K,

where ((x) is an arbitrary bounded function in V?/ 3(K,). Here and below, oy equals to

min(a, 2a).
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Proof First, applying the hypotheses and integral identity (1.4), we can get the two estimates
of (2.3) from the similar proof to that of [3, Chapter 4, Lemma 1.1 and Theorem 1.1].

Next, we take n = [w(z) — w(z0)]¢*(z) in identity (1.4), where x is any point in K,. Then,
by [2, Chapter 2, Lemma 5.2] and inequalities (2.1), (2.2) we get from Cauchy’s inequality that

[ twap@as < [ {ute) wtan [l + 16 + 14 00] s

K,

<G [ (P + 6P e+ [P
K, K,

If pg satisfies the condition

1
poCr = bk
it follows that estimate (2.4) holds. The lemma is proved. O

Lemma 2.2 The bounded weak solution w belongs to the class W(Qy (D*)). Moreover,
weak derivatives wy ., belong to the class La(Q22 ﬂD(k)) for1 <i,7<n,1<s<n-—1and

have the estimate
n n—1

/92 N D { XX uke. + lr,a, l}do < O(a) (2.5)

j=1s=1

Proof For an arbitrary sphere K,, Ko, C {1, let £ = £(z) be a smooth function of compact
support on K, taking values in [0, 1], such that || < % in K and { =1in Kg. Let
Aw  w(z+ Azs) —w(x)

T4 Axg = (L1, .00, T 1, Ts + Ay, oy Ty ), W(s) 1= A = s )

where s < n — 1. Then taking

A (Aw(x—A:z:S)
Az, YAV

in the integral identity (1.4) and applying [2, Chapter 2, formula (4.9)] gives

/Ql { B (ai(x,w,wz))(s) (w(8)52)xi + (f)(s)w(s)§2}dx =0.

7 (x — Axs)) = (w(s) (x — Ax,)E* (x — Azs))

()

Note that
1
Ba;(xt, wh, w?)
i s , Wy = Sz #dt
(a (x,w,w ))(S) W) J/o D, +

1 £t ot 1 £t ot

Oa;(xt,wh wt) Oa;(zt, wh, wt)
o L) g, GOT LW W) gy
w< >/0 dur +/0 dal

where 2 := (1 — t)x + t(z + Ax,), w'(z) := (1 — t)w(x) + tw(x + Az,). And (f)(s) has similar
equality. Therefore, by Hypotheses 1.1 and Cauchy’s inequality we deduce

1
14
2 [ ol <e [ o Peansce) [ {1 wg@Ple [ utPae
1971 Q1 0

Qq
1

wly) /0 1 (G1(@")€%(@) + I&a(@)]?] at + /0 (G (@) + (@) dt }da.
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Choose & = v/4. From definition of £(z) it follows that
1/ fugal'ede <C /| [ (@ + s+ 22 P) (14 uty )]+
[(G1(@) + Gz + Azy) Jud, €]+
(G@) + Gla + A2,))€2] + (Wl + DIl paa. (2.6)

It is easy to know that the function w(x + Az,) has the similar property to inequality (2.4) of
the function w(x). For the right of inequality (2.6), if applying (2.4) with ((z) = (1 + w?s))%f
to the first item [---] and applying [2, Chapter 2, Lemma 5.2] to the second item [---] and the

third item [- - -], we obtain
| twnPear < ey [ {0 [lwenl€ + 0wt IE] + () + il .

Hence, choosing p; := (403)7711, from Lemma 2.1 we deduce that if p < pq,

| twwnfeae < ca.p). (2.7)

P

This estimate and [3, Chapter 2, Lemma 4.6] give the existence of weak derivatives wy,,, in
Ly(Qe N D®) for k=1,2,1 <i <nand s <n— 1. In addition, the integral identity (1.4) and
the equation 1.1 imply that w,, . exists in L;(s () D®*)) and has the estimate

n n—1

| < OL S P+ (Lt + 1+ ] + ) . 28)

i=1 s=1
Consequently, estimate (2.5) is concluded from inequalities (2.7) and (2.8). Function w belongs
to W2(Q2 N D™), k =1,2. The lemma is proved. O

Here and below, pr |wz.|dz represents prﬂ ) |Wae|d + prﬂ ) |Wee|d.

Lemma 2.3 There exist positive constants dg, pa, such that w, belongs to the class Ly(K %) if
0 <6<y, p<peand K, C Q. In addition, w belongs to the class W (3 ND®), k=1,2,
and

lwallrarg) < C(d,p) /8, lwasllL, @0 Dy < C(d)/6. (2.9)

If £(x) is a smooth function of compact support on K 2 taking values between 0 and 1, then the
following inequality is satisfied for any | > 0

| {wnPrie v gt 1 outu, P + G o
Kp

N

n n—1
<c@ - [ {udt+ 303k, me
Ke j=1 s=1
Plha PRI ER 4 (14 )62 faa, (2.10)

where function h := min{o, N}, o := 1 + da2 + Z;:ll w2 _, in which N, § are constants and N

is large enough.
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Proof Since the functions i and ¢ coincide when o < N, the function i and o satisfy inequalities

h, daz, 0 < C(w2+1);  |he|(6ar +w2)) < |halh, s <n—1. (2.11)

n7

Cauchy’s inequality shows

20 9 w2 2
Sa? —(5 wwj/ 9 (x,w,p) dt—i—an(x,w,O)) > 5[042“}%"'1]'

p=tw, 5 1
Therefore, if 0 < § < §p := min{1, (Cy + ”72)*1}, then

K} 2
o 2 max{ w1 ol € =l bt (B du et <C (21

In order to prove the lemma, first, let 6(z) be an arbitrary bounded function in I/(I)/' HK,).
In view of (2.8), since h and o coincide when o < N, we deduce from the second inequality of
(2.11) and (2.12) that

/ (1 0),2dz gc/ [ PO + o
K K

fo/ h’1|hz|292dx+/ h|01|2dx}
K, N{zlo<N} K,
K

«f [ n2o 3 [0%a3 (G + v wa + fw, |+
N{z|lc<N}

n—1 n n—1
S )+ D00 e |70+ [ nloac)
=1s=1 j=1 s=1 K,

{
{

J
§O5,1/K {(G+zn:z:lw§jms+¢fh+|wz|2h)92+h|oz|2}dx

4 7j=1s=1
< + oo. (2.13)

Then this inequality and inner boundary condition (1.2) give us hz EV?/ UK ). Next, applying
[2, Chapter 2, Lemma 5.2] to pr Y?hH%dx and pr(l + 12 + ¢3)0*dx and applying inequality
(2.4) with ¢ = hz6 to pr |w, |?h0?dz, from inequality (2.13) we have

| @t pingas < (g o) [ ndo)Pas
KP

KP
n n—1
< Csap™ / {(G+3D wl,, + 03+ [w.[2h)0% + hjo|? b, (2.14)
K, j=1 s=1
GO?dx < szo‘”/ 0, 2da. (2.15)
K, K,

Let pa,1 := min{po, p1, [2C571]_ﬁ}. It follows that for p < pa 1,

n n—1

/Kp(warlwmIQ)h@?dwéCp“l/ {ZZM + (1 + h)|6,]? } z. (2.16)

K, j=1s=1
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Next, let 6 be smooth function, such that |0,| < % for all z and § = 1 in K¢, and let
N — oo in inequality (2.16). Lemma 2.2 and the first inequality of (2.11) and (2.12) imply that
w, belongs to the class L4(K %) and the first estimate of (2.9) holds. Hence from inequalities
(2.5) and (2.8) it follows that w belongs to the class W3 (Q3 () D™*)) and the second estimate of
(2.9) also holds.

Next let 0 be héf , where £(z) is a smooth function of compact support on K s taking values

between 0 and 1. The similar proof to that of estimate (2.13) shows 6(x) ew %(Kg), which
implies that estimate (2.16) is also true.

Since w, € La(Ks), the similar proof to that of estimate (2.13) also shows

1 L 2
/ (afhag) de
Kp N D® r
2
<c/ (08 + 03 + fwal® + el B2 dat
Kp N D®
2

o|(h%)m|2§2dx+/ ohl|é, |2

/Ké:_ﬂD(k)ﬂ{;dUSN} Kéz_ﬂD(k)

< ONZ/ . (1/;3 ot 4wt |wm|2)dx+
KpND

ON! / 12h~1 k2622 + ON! / (1 + |wm|2) 1€, dz
KgﬂD(k) Kng(k)

< +o00.

Then inner boundary condition (1.2) gives that 026 belongs to the class W %(Kg) Then by [2,
Chapter 2, Lemma 5.2] and the similar proof to inequality (2.14), we have

/ 52 lw,|20% < O/ P2ob? < Cpal/ (026),)2da
Kp Kp
2 2

Kp
2
n n—1
< Cs2p™ / {51/)f|wz|292 + {G + Jw.|* + Z Z ngws}92+
Kp j=1s=1
(1+ uw, )16 }da. (2.17)

Finally, inequalities (2.17) and (2.14)—(2.16) yield that when p < pg := min{pa 1, [20512]_ﬁ },

we have

/ [w%‘ + |we[*)h + 63w, ﬂ 62dx
K

L
2

n n—1
< Op / {(|wm|4 +3 % wim)w +(1+ J)|91|2}d:1: (2.18)
Kg j=1 s=1
with @ = k3¢, which gives inequality (2.10). The lemma is proved. O

On the basis of Lemma 2.3, we are going to estimate |w;|r, .
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Lemma 2.4 There exist positive constants ps, §, such that if 0 < p < p3, K, C 0, then

[ Qo + s Pr+4)de < O(r8.1/p) (2.19)
K

4

where r := [5(2;_‘11?)—2]—#1 o=1+68a2+> 1" 1w

Proof Just as above, let h also be min{o, N} and £(x) be a smooth function of compact support

on K taking values between 0 and 1. We shall show that there exists p3;1 > 0, such that for

/m

P < p3a,

ni: i wh,a, hE + llhml2h’_1€2}dx

s=1 j=1

R R Rt (2.20)

/—/H

A

Suppose 0 < 6 < dp, s < n — 1 and n,(z) is a smooth function of compact support on Kg
taking values in [0, 1]. Then integral identity (1.4) and integral by parts yield the equality

n—1 9 5
; /KE {[_ @ai(ﬂc,w,p)wmﬂs — a—xsai({[;’w7p)_
0

%ai(x7wap)wwsj| New; T fnsws}dx =0. (2'21)

p=we

It is right to choose 1, = w, h'¢2(1 > 0) (see [3, page 213]). Since
l

n—1
da; da; dan
Z/ a Iy, 0, W, W By 2 = _/ ai [ — 26a, S } he, h'~1€2dx,
17Ky Opj lp=w. 2 Ky 81)3 dz;
from inequalities (2.8), (2.11) we can get that
n—1 n
— ! -
1._/ {y Sow?, hle? + |hm|2h 152}da:
Keg » s=1j=1
0 oa oa oa
< {—ai [ 26an( Wy + — + —nww)‘ hyhi=1E2—
‘/Kl% 8pj P=wWy 8pk kg aiEj 8w ’ P=Wg 5
n—1
23" ey W€, |+ f (0, WER b B Ry 2 4 200, HIEE,, ) b
s=1

n—1 n
<O [ {303 [l + 15 3 4 (o o POER) ¢

Kp " s=1j=1
15% (o + 1 + [ ) ha ' 3E2 + 141 [ 12+
(o1 + s ) (U 1ol €2 + g B€l ) (2.22)
Besides, from the second inequality of (2.12) it follows

_ _1 4l
(s + s s |hg 112 < holh™2¢%+ Cogluelihalbie®. — (223)
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Then applying Cauchy’s inequality and inequalities (2.22), (2.23), (2.8), (2.11) and (2.12) we get

n—1 n

IS{El/ Zzwi-mshlfdxﬂ[ﬁ%(&)+€2+sg]/ |he| A 12 da+
Kg s=1j=1 ’ Kp
w{/ {G+¢fh+|wm|4}hl§2+/ wafPile, ), (2.24)
] Ky K,

where 61 = ¥, g3 =3 = £, § = min{do, [8Cs(%)]~2}. Together with inequality (2.10), it gives

Cr(d,r) - p C(d,r) 470,02 211l[e |2
< .
1< 52 I+ 52 /Kﬁ {|wm| hE* + (1 + |we|?)|h' €] }dx

T(zdr)]a%}, we see that inequality (2.20) holds for p <

Consequently, setting ps 1 := min{pa, [
P3,1-
Next, we are going to estimate pr |w,|*R'€2. Tf I > 0 and g is any point in Kg, we conclude

2
from inequalities (2.1), (2.12) and Young’s inequality that

— _ . s O,
J = /Kg a; - (w(z) — w(xg))s,oh'dx > /Kg {W“"f' _ E}h 2da. (2.25)

On the other hand, using (2.11), (2.12), integral by part and the similar proof to that of

(2.24) gives
da

7=~ [ @) - uE@){g

£
2

Lowh!€? + a,0,5,HE? + a0ty h' 1€ + 20,0 hHECs, }dx

n n—1

<@ [ {udWe+ (G + vttt + 30 S ud,, )it
L j=1 s=1

he PRI1E2 (1 w26 b (2.26)

Then, substituting estimates (2.10), (2.20) into inequality (2.26), together with (2.25), we know
that there exists 0 < p3 < p3.2, such that for p < ps,

/ lw, [*hle3dr < 0(5)/ hl¢2dx 4 C(d, r, 0) .pa/ (1 + |we]?)|ht|€, |2 d. (2.27)
Kp Kp Kp

2 2 2
Finally, to prove estimate (2.19), let pf := § — mp for 1 =0,1,2,...,r and &(x) be

)
smooth function of compact support on K+ taking values between 0 and 1, such that [(§).| < %
in Ky and § = 1in K, . We replace K, and { by K,y and § respectively in inequalities (2.20)
and (2.27). By considering in succession the inequality (2.20) and (2.27) for I =1, 2, ..., r and

letting N — oo, we can get the estimate (2.19). O

The Proof of Theorem 1.1 Lemma 2.1 gives us the Holder estimate of w and Lemma 2.3
gives us that w(z) has weak derivatives wy,, in Lo((Q' N D®) for 1 <4, j < n, which have the
estimate (1.5). Furthermore, we can get that w satisfies the equation (1.1) for almost all x € &/
and the inner boundary condition (1.2) for almost all z € T'[’ (see [2, Chapter 3, Section 13]).

To complete the proof, we need to estimate the bound and Hélder bound of the derivative w,,.
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In the identity (2.21), we set ns = £ max{w,,(z) — 7,0}, where s <n — 1, 7 is an arbitrary
number and £(z) is a smooth function of compact support on K, taking values in [0, 1]. If we
substitute the function 7, into (2.21) and make the elementary estimates, as we have done several

times before, we obtain

[ P <c [ {6+ vthwa + )€ + o, - 2l o
A, A,

1—2
mes 4 (Ar )+
Lo’ /20"

e

_2
< ||G||L%(K,J)m€$1 i (Arp) + ||¢%||L%(Kp)

1

sl o mest ™ CAnp 4 [, —rPleads
L (K,) Arp

<c / (we, — 7)2[Ea]? + Cmes'™ 7 (A,,), (2.28)

TP

@r+d)g

where p < p3/4, A;, ={z : © € K,, wy, > T}, ¢ = =5+ 1and ¢" =

q+2r+4°
min{gq, ¢’, 2s’}. Since r = [g(zqt‘f) — 2]+ 1, we have 2r + 4 > q;f—fln = {42 . g} + {g— &2},
q‘ﬂ;, =2r+4,¢>q¢ >4 >n L < 2 and ¢” > n. Analogous inequalities hold for the
sets B; ,, where w,, < 7. Consequently, together with above inequality and estimate (2.8), the
estimate (1.6) follows from the similar proof to that of [3]. The theorem is proved. O
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