
Journal of Mathematical Research & Exposition

Nov., 2008, Vol. 28, No. 4, pp. 779–788

DOI:10.3770/j.issn:1000-341X.2008.04.005

Http://jmre.dlut.edu.cn

The Regularity of the Weak Solutions for the
N-Dimensional Quasilinear Elliptic Equations with

Discontinuous Coefficients

TAN Qi Jian1, LENG Zhong Jian2

(1. Department of Mathematics, Sichuan College of Education, Sichuan 610041, China;

2. College of Mathematics, Sichuan University, Sichuan 610064, China)

(E-mail: tanqjxxx@yahoo.com.cn)

Abstract The n-dimensional quasilinear elliptic equations with discontinuous coefficients are

studied. Using estimate and difference approach methods, we prove that the first derivatives of

the weak solutions are continuous in the sense of Hölder up to the inner boundary on which the
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1. Introduction

The problems about elliptic equations with discontinuous coefficients are also known as the

diffraction problems. The coefficients of the equations are discontinuous on inner boundary. The

papers[1−4] studied the existence and the regularity of the solutions for the linear equations with

discontinuous coefficients. The regularity results are very important for the linear diffraction

problems and some porus medium problems[5,6]. Therefore, the regularity results of the semi-

linear and quasilinear equations are also useful and important for us. In 2005, the paper[7]

considered the regularity of the solutions of a special semi-linear second order elliptic equations

with discontinuous coefficients that is derived from the electric field. In this paper, we are going

to study the regularity of the weak solutions for the n-dimensional quasilinear elliptic equations

with discontinuous coefficients.

We first introduce some notations:

Notation 1.1 (a1) Rn is the n-dimensional Euclidean space, n ≥ 2, with points x =

(x1, x2, . . . , xn). p := (p1, p2, . . . , pn), wx := (wx1 , wx2 , . . . , wxn) ∈ Rn, where wxi := ∂w
∂xi

.

Let Ω be an open bounded domain in Rn. It satisfies Ω = D(1) ∪D(2), where D(1) and D(2) are

two subdomains which are separated by inner boundary Γ := {x : xn = 0}. Kρ is an arbitrary

open ball in Rn of radius ρ and K2ρ is concentric with Kρ.
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(a2) Function ai(x,w, p) = a
(k)
i (x,w, p) if x ∈ D(k) and f(x,w, p) = f (k)(x,w, p) if x ∈ D(k),

k = 1, 2.

(a3) Everywhere pairs of equal indices imply a summation from 1 to n. For example,
d

dxi
ai(x,w,wx) =

∑n
i=1

d
dxi

ai(x,w,wx). “A := B” is the definition of A by means of the expres-

sion B.

This paper considers the regularity of the following n-dimensional quasilinear elliptic equa-

tions with discontinuous coefficients:

Problem 1.1 Find function w = w(x), such that

−
d

dxi

ai(x,w,wx) + f(x,w,wx) = 0 in D(k), k = 1, 2, (1.1)

[w]Γ = 0,
[ dw

dN

]

Γ
= 0, (1.2)

w(x) = g(x) on ∂Ω, (1.3)

where dw
dN

:= ai(x,w,wx) cos(n, xi), n is the outward (from D(k)) unit normal to Γ, and [·]Γ

represents the jump across the inner boundary Γ.

Definition 1.1 By a bounded weak solution w(x) of problem 1.1 we will mean a function w(x)

from W 1
2 (Ω) with M := varimaxΩ |w| <∞ that satisfies the integral identity

∫

Ω

{

ai(x,w,wx)ηxi + f(x,w,wx)η
}

dx = 0 (1.4)

for any function η(x) ∈
◦

W 1
2(Ω) with varimaxΩ |η| <∞.

Suppose that the following hypotheses are satisfied throughout this paper.

Hypotheses 1.1 (H1) There exists at least one bounded weak solution for Problem 1.1. The

solution is represented by w(x). The bound of the solution is denoted by M .

(H2) Although functions ai(x,w, p), f(x,w, p) may be discontinuous for x ∈ Ω, they have

partial derivatives for all variables if x belongs to the same subdomain D(k) and (w, p) belongs

to [−M,M ] × R, and they satisfy the conditions

ν

n
∑

i=1

ζ2
i ≤

∂

∂pj

ai(x,w, p)ζiζj ≤ µ

n
∑

i=1

ζ2
i , |ai(x,w, p)| ≤ µ(1 + |p|),

∣

∣

∣

∂ai(x,w, p)

∂xj

∣

∣

∣
≤ ψ0(x) + µ|p|,

∣

∣

∣

∂ai(x,w, p)

∂w

∣

∣

∣
≤ ψ1(x) + µ|p|,

|f(x,w, p)| +
∣

∣

∣

∂f(x,w, p)

∂xj

∣

∣

∣
≤ ϕ1 + µ|p|2,

∣

∣

∣

∂f(x,w, p)

∂w

∣

∣

∣
≤ ϕ2(x) + µ|p|2,

∣

∣

∣

∂f(x,w, p)

∂pj

∣

∣

∣
≤ ϕ3(x) + µ|p|,

where k = 1, 2, ‖ψ2
0 , ψ

2
1 , ϕ

2
1, ϕ2, ϕ

2
3‖L q

2
(Ω) + ||ψ1||L4(Ω) ≤ µ1, ν, µ, µ1, q > 0 and q > n.

Remark 1.1 The hypotheses about the inner boundary ({x|xn = 0}) and the coefficients are
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suitable for application, because we can transform the general inner boundary into the form

{x| xn = 0} by a transformation (see [3, Chapter 3, Section 16], [5, 6]).

The main result of this paper is the following theorem:

Theorem 1.1 Suppose Hypotheses 1.1 is satisfied. Then any bounded weak solution w(x) of

Problem 1.1 belongs to the classes Cα(Ω′) and W 2
2 (Ω′

⋂

D(k)), where Ω′ is an arbitrary strictly

interior subdomain of the domain Ω, k = 1, 2, and α > 0 is determined only by ν, µ, µ1, q and

M . Furthermore, the solution w(x) has first derivatives that belong to the class Cβ(Ω′
⋂

D(k))

and has the estimates
∫

Ω′∩D(k)

|wxx|
2dx ≤ C, (1.5)

max
Kρ

|wxi | + ρ−βosc{wxi ,Kρ ∩D(k)} ≤ C (1.6)

for 1 ≤ i ≤ n, k = 1, 2, Kρ ⊂ Ω′, where C and β are positive constants depending only on ν, µ,

µ1, q, M and the distance from Ω′ to ∂Ω. In addition, the solution w(x) satisfies the equation

(1.1) for almost all x ∈ Ω′ and the inner boundary condition (1.2) for almost all x ∈ Γ
⋂

Ω′.

2. The proof of the main theorem

In order to prove Theorem 1.1, we need some lemmas. First, in addition to notation 1.1 we

introduce another notation:

Notation 2.1 (A1) Let Ω′ be any given strictly interior subdomain of the domain Ω and Ωi

be a series of subdomains, such that Ω3 = Ω′, Ω1 ⊂ Ω, Ω2 ⊂ Ω1 and Ω3 ⊂ Ω2. Without loss of

generality, assume that for i = 1, 2, the distance from Ωi+1 to ∂Ωi equals to the distance from

Ω1 to ∂Ω which is denoted by d.

(A2) C, C1, C2, . . . , α, α0, α1, . . . are constants which depend on parameters ν, µ, µ1, q and

M . It is convenient that we only list the other parameters except ν, µ, µ1, q, M .

(A3) G := 1 + ψ2
0 + ϕ2

1 and G1 := 1 + ψ2
1 + ϕ2

3 + ϕ2.

The following two useful inequalities can be easily gotten from the hypotheses:

ai(x,w, p)pi ≥
ν

2
|p|2 − µ2, (2.1)

∫

Kρ

(G+G1)dx ≤ ‖G+G1‖L q
2
(Kρ)

(

∫

Kρ

dx
)1− 2

q

≤ Cρn−2+2α0 , α0 = 1 −
n

q
. (2.2)

Lemma 2.1 There exist constants α, ρ0, 0 < α ≤ 1, ρ0 > 0 such that
∫

Ω1

|wx|
2dx ≤ C(d); ρ−αosc{w,Kρ} ≤ C(d) if Kρ ⊂ Ω1; (2.3)

∫

Kρ

(1 + |wx|)
2ζ2(x)dx ≤ Cρα1

∫

Kρ

|ζx|
2dx if Kρ ⊂ Ω1, ρ ≤ ρ0, (2.4)

where ζ(x) is an arbitrary bounded function in
◦

W 1
2(Kρ). Here and below, α1 equals to

min(α, 2α0).
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Proof First, applying the hypotheses and integral identity (1.4), we can get the two estimates

of (2.3) from the similar proof to that of [3, Chapter 4, Lemma 1.1 and Theorem 1.1].

Next, we take η = [w(x) −w(x0)]ζ
2(x) in identity (1.4), where x0 is any point in Kρ. Then,

by [2, Chapter 2, Lemma 5.2] and inequalities (2.1), (2.2) we get from Cauchy’s inequality that
∫

Kρ

|wx|
2ζ2(x)dx ≤ C

∫

Kρ

{

|w(x) − w(x0)|
[

|wx|
2ζ2 + |ζx|

2
]

+
[

1 + ϕ1)
]

ζ2
}

dx

≤ C1ρ
α

∫

Kρ

{

|wx|
2ζ2(x) + |ζx|

2
}

dx + Cρ2α0

∫

Kρ

|ζx|
2dx.

If ρ0 satisfies the condition

ρα
0C1 =

1

2
,

it follows that estimate (2.4) holds. The lemma is proved. 2

Lemma 2.2 The bounded weak solution w belongs to the class W 2
1 (Ω2

⋂

D(k)). Moreover,

weak derivatives wxjxs belong to the class L2(Ω2

⋂

D(k)) for 1 ≤ i, j ≤ n, 1 ≤ s ≤ n − 1 and

have the estimate
∫

Ω2
⋂

D(k)

{

n
∑

j=1

n−1
∑

s=1

w2
xjxs

+ |wxnxn |
}

dx ≤ C(d). (2.5)

Proof For an arbitrary sphere Kρ, K2ρ ⊂ Ω1, let ξ = ξ(x) be a smooth function of compact

support on Kρ taking values in [0, 1], such that |ξx| ≤
C
ρ

in Kρ and ξ = 1 in K ρ
2
. Let

x+ ∆xs := (x1, ..., xs−1, xs + ∆xs, ..., xn), w(s) :=
∆w

∆xs

=
w(x + ∆xs) − w(x)

∆xs

,

where s ≤ n− 1. Then taking

η =
∆

∆xs

(∆w(x − ∆xs)

∆xs

ξ2(x − ∆xs)
)

=
(

w(s)(x− ∆xs)ξ
2(x− ∆xs)

)

(s)

in the integral identity (1.4) and applying [2, Chapter 2, formula (4.9)] gives
∫

Ω1

{

−
(

ai(x,w,wx)
)

(s)
(w(s)ξ

2)xi + (f)(s)w(s)ξ
2
}

dx = 0.

Note that
(

ai(x,w,wx)
)

(s)
=w(s)xj

∫ 1

0

∂ai(x
t, wt, wt

x)

∂wt
xj

dt+

w(s)

∫ 1

0

∂ai(x
t, wt, wt

x)

∂wt
dt+

∫ 1

0

∂ai(x
t, wt, wt

x)

∂xt
s

dt,

where xt := (1 − t)x + t(x + ∆xs), w
t(x) := (1 − t)w(x) + tw(x + ∆xs). And (f)(s) has similar

equality. Therefore, by Hypotheses 1.1 and Cauchy’s inequality we deduce

ν

2

∫

Ω1

|w(s)x|
2ξ2dx ≤ε

∫

Ω1

|w(s)x|
2ξ2dx+ C(ε)

∫

Ω1

{[

1 + |w(s)(x)|
2
]

ξ2
∫ 1

0

|wt
x|

2dt+

w2
(s)

∫ 1

0

[

G1(x
t)ξ2(x) + |ξx(x)|2

]

dt+

∫ 1

0

[

G(xt)ξ2(x) + |ξx(x)|2
]

dt
}

dx.



The regularity of weak solutions for quasilinear elliptic equations with discontinuous coefficients 783

Choose ε = ν/4. From definition of ξ(x) it follows that

ν

4

∫

Kρ

|w(s)x|
2ξ2dx ≤C

∫

Kρ

{[(

|wx(x)|2 + |wx(x+ ∆xs)|
2
)(

1 + w2
(s)

)

ξ2
]

+

[(

G1(x) +G1(x+ ∆xs)
)

w2
(s)ξ

2
]

+
[(

G(x) +G(x + ∆xs)
)

ξ2
]

+ (w2
(s) + 1)|ξx|

2
}

dx. (2.6)

It is easy to know that the function w(x + ∆xs) has the similar property to inequality (2.4) of

the function w(x). For the right of inequality (2.6), if applying (2.4) with ζ(x) = (1 + w2
(s))

1
2 ξ

to the first item [· · · ] and applying [2, Chapter 2, Lemma 5.2] to the second item [· · · ] and the

third item [· · · ], we obtain
∫

Kρ

|w(s)x|
2ξ2dx ≤ C3

∫

Kρ

{

ρα1

[

|w(s)x|
2ξ2 + (1 + w2

(s))|ξx|
2
]

+ (w2
(s) + 1)|ξx|

2
}

dx.

Hence, choosing ρ1 := (4C3)
− 1

α1 , from Lemma 2.1 we deduce that if ρ ≤ ρ1,
∫

Kρ

|w(s)x|
2ξ2dx ≤ C(d, ρ). (2.7)

This estimate and [3, Chapter 2, Lemma 4.6] give the existence of weak derivatives wxixs in

L2(Ω2

⋂

D(k)) for k = 1, 2, 1 ≤ i ≤ n and s ≤ n− 1. In addition, the integral identity (1.4) and

the equation 1.1 imply that wxnxn exists in L1(Ω2

⋂

D(k)) and has the estimate

|wxnxn | ≤ C
{

n
∑

i=1

n−1
∑

s=1

|wxixs | + (1 + ψ0 + ϕ1 + ψ1|wx| + |wx|
2)

}

. (2.8)

Consequently, estimate (2.5) is concluded from inequalities (2.7) and (2.8). Function w belongs

to W 2
1 (Ω2

⋂

D(k)), k = 1, 2. The lemma is proved. 2

Here and below,
∫

Kρ
|wxx|dx represents

∫

Kρ

⋂

D(1) |wxx|dx+
∫

Kρ

⋂

D(2) |wxx|dx.

Lemma 2.3 There exist positive constants δ0, ρ2, such that wx belongs to the class L4(K ρ
2
) if

0 < δ ≤ δ0, ρ ≤ ρ2 and Kρ ⊂ Ω2. In addition, w belongs to the class W 2
2 (Ω3

⋂

D(k)), k = 1, 2,

and

‖wx‖L4(K ρ
2

) ≤ C(d, ρ)/δ, ||wxx||L2(Ω3

⋂

D(k)) ≤ C(d)/δ. (2.9)

If ξ(x) is a smooth function of compact support on K ρ
2

taking values between 0 and 1, then the

following inequality is satisfied for any l ≥ 0
∫

K ρ
2

{

|wx|
2hl+1ξ2 + ψ2

1h
l+1ξ2 + δψ2

1 |wx|
2hlξ2 +Ghlξ2

}

dx

≤ C(d) · ρα1

∫

K ρ
2

{

(|wx|
4 +

n
∑

j=1

n−1
∑

s=1

w2
xjxs

)hlξ2+

l2|hx|
2hl−1ξ2 + (1 + |wx|

2)hl|ξx|
2
}

dx, (2.10)

where function h := min{σ,N}, σ := 1 + δa2
n +

∑n−1
s=1 w

2
xs

, in which N , δ are constants and N

is large enough.
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Proof Since the functions h and σ coincide when σ ≤ N , the function h and σ satisfy inequalities

h, δa2
n, σ ≤ C(w2

x + 1); |hx|(δa
2
n + w2

xs
) ≤ |hx|h, s ≤ n− 1. (2.11)

Cauchy’s inequality shows

δa2
n = δ

(

wxj

∫ 1

0

∂

∂pj

an(x,w, p)
∣

∣

∣

p=twx

dt+ an(x,w, 0)
)2

≥
δ

2
ν2w2

xn
− δ[C4

n−1
∑

s=1

w2
xs

+ 1].

Therefore, if 0 < δ ≤ δ0 := min{1, (C4 + ν2

4 )−1}, then

σ ≥ max{
δν2

4
|wx|

2, 1}; |hx||wx| ≤
2

νδ
1
2

|hx|h
1
2 ; (h+ δ|wx|

2)σ−1 ≤ C. (2.12)

In order to prove the lemma, first, let θ(x) be an arbitrary bounded function in
◦

W 1
2(Kρ).

In view of (2.8), since h and σ coincide when σ ≤ N , we deduce from the second inequality of

(2.11) and (2.12) that
∫

Kρ

|(h
1
2 θ)x|

2dx ≤C

∫

Kρ

{

h−1|hx|
2θ2 + h|θx|

2
}

dx

=C
{

∫

Kρ

⋂

{x|σ≤N}

h−1|hx|
2θ2dx+

∫

Kρ

h|θx|
2dx

}

≤C
{

∫

Kρ
⋂

{x|σ≤N}

h2σ−3
[

δ2a2
n

(

G+ ψ2
1 |wx|

2 + |wx|
4+

n
∑

j=1

n−1
∑

s=1

w2
xjxs

)

+

n
∑

j=1

n−1
∑

s=1

|w2
xs
|wxjxs |

]

θ2dx+

∫

Kρ

h|θx|
2dx

}

≤C5,1

∫

Kρ

{(

G+

n
∑

j=1

n−1
∑

s=1

w2
xjxs

+ ψ2
1h+ |wx|

2h
)

θ2 + h|θx|
2
}

dx

<+ ∞. (2.13)

Then this inequality and inner boundary condition (1.2) give us h
1
2 θ ∈

◦

W 1
2(Kρ). Next, applying

[2, Chapter 2, Lemma 5.2] to
∫

Kρ
ψ2

1hθ
2dx and

∫

Kρ
(1 + ψ2

0 + ϕ2
1)θ

2dx and applying inequality

(2.4) with ζ = h
1
2 θ to

∫

Kρ
|wx|

2hθ2dx, from inequality (2.13) we have

∫

Kρ

(ψ2
1 + |wx|

2)hθ2dx ≤ C
(

ρ2α0 + ρα1

)

∫

Kρ

|(h
1
2 θ)x|

2dx

≤ C5,1ρ
α1

∫

Kρ

{(

G+

n
∑

j=1

n−1
∑

s=1

w2
xjxs

+ ψ2
1h+ |wx|

2h
)

θ2 + h|θx|
2
}

dx, (2.14)

∫

Kρ

Gθ2dx ≤ Cρ2α0

∫

Kρ

|θx|
2dx. (2.15)

Let ρ2,1 := min{ρ0, ρ1, [2C5,1]
− 1

2α1 }. It follows that for ρ ≤ ρ2,1,

∫

Kρ

(ψ2
1 + |wx|

2)hθ2dx ≤ Cρα1

∫

Kρ

{

n
∑

j=1

n−1
∑

s=1

w2
xjxs

θ2 + (1 + h)|θx|
2
}

dx. (2.16)
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Next, let θ be smooth function, such that |θx| ≤
C
ρ

for all x and θ = 1 in K ρ
2
, and let

N → ∞ in inequality (2.16). Lemma 2.2 and the first inequality of (2.11) and (2.12) imply that

wx belongs to the class L4(K ρ
2
) and the first estimate of (2.9) holds. Hence from inequalities

(2.5) and (2.8) it follows that w belongs to the class W 2
2 (Ω3

⋂

D(k)) and the second estimate of

(2.9) also holds.

Next let θ be h
l
2 ξ, where ξ(x) is a smooth function of compact support on K ρ

2
taking values

between 0 and 1. The similar proof to that of estimate (2.13) shows θ(x) ∈
◦

W 1
2(K ρ

2
), which

implies that estimate (2.16) is also true.

Since wx ∈ L4(K ρ
2
), the similar proof to that of estimate (2.13) also shows

∫

K ρ
2

⋂

D(k)

(

σ
1
2h

l
2 ξ

)2

x
dx

≤ C

∫

K ρ
2

⋂

D(k)

(

ψ2
0 + ψ4

1 + |wx|
4 + |wxx|

2
)

hlξ2dx+

∫

K ρ
2

⋂

D(k)
⋂

{x|σ≤N}

σ|(h
l
2 )x|

2ξ2dx+

∫

K ρ
2

⋂

D(k)

σhl|ξx|
2dx

≤ CN l

∫

K ρ
2

⋂

D(k)

(

ψ2
0 + ψ4

1 + |wx|
4 + |wxx|

2
)

dx+

CN l

∫

K ρ
2

⋂

D(k)

l2h−1|hx|
2ξ2dx+ CN l

∫

K ρ
2

⋂

D(k)

(

1 + |wx|
2
)

|ξx|
2dx

< +∞.

Then inner boundary condition (1.2) gives that σ
1
2 θ belongs to the class

◦

W 1
2(K ρ

2
). Then by [2,

Chapter 2, Lemma 5.2] and the similar proof to inequality (2.14), we have
∫

K ρ
2

δψ2
1 |wx|

2θ2 ≤ C

∫

K ρ
2

ψ2
1σθ

2 ≤ Cρα1

∫

K ρ
2

|(σ
1
2 θ)x|

2dx

≤ C5,2ρ
α1

∫

K ρ
2

{

δψ2
1 |wx|

2θ2 +
[

G+ |wx|
4 +

n
∑

j=1

n−1
∑

s=1

w2
xjxs

]

θ2+

(1 + |wx|
2)|θx|

2
}

dx. (2.17)

Finally, inequalities (2.17) and (2.14)–(2.16) yield that when ρ ≤ ρ2 := min{ρ2,1, [2C5,2]
− 1

2α1 },

we have
∫

K ρ
2

[

(ψ2
1 + |wx|

2)h+ δψ2
1 |wx|

2
]

θ2dx

≤ Cρα1

∫

K ρ
2

{(

|wx|
4 +

n
∑

j=1

n−1
∑

s=1

w2
xjxs

)

θ2 + (1 + σ)|θx|
2
}

dx (2.18)

with θ = h
l
2 ξ, which gives inequality (2.10). The lemma is proved. 2

On the basis of Lemma 2.3, we are going to estimate |wx|Lp .
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Lemma 2.4 There exist positive constants ρ3, δ, such that if 0 < ρ ≤ ρ3, Kρ ⊂ Ω2, then
∫

K ρ
4

(|wxx|
2σr + |wx|

2r+4)dx ≤ C(r, δ, 1/ρ), (2.19)

where r := [ q2+qn
2(q−n) − 2] + 1, σ = 1 + δa2

n +
∑n−1

s=1 w
2
xs

.

Proof Just as above, let h also be min{σ,N} and ξ(x) be a smooth function of compact support

on K ρ
2

taking values between 0 and 1. We shall show that there exists ρ3,1 > 0, such that for

ρ ≤ ρ3,1,

∫

K ρ
2

{

n−1
∑

s=1

n
∑

j=1

w2
xjxs

hlξ2 + l|hx|
2hl−1ξ2

}

dx

≤
C(d, r)

δ2

∫

ρ
2

{

|wx|
4hlξ2 + (|wx|

2 + 1)hl|ξx|
2
}

dx. (2.20)

Suppose 0 < δ ≤ δ0, s ≤ n − 1 and ηs(x) is a smooth function of compact support on K ρ
2

taking values in [0, 1]. Then integral identity (1.4) and integral by parts yield the equality

n−1
∑

s=1

∫

K ρ
2

{[

−
∂

∂pj

ai(x,w, p)wxjxs −
∂

∂xs

ai(x,w, p)−

∂

∂w
ai(x,w, p)wxs

]∣

∣

∣

p=wx

ηsxi + fηsxs

}

dx = 0. (2.21)

It is right to choose ηs = wxsh
lξ2(l ≥ 0) (see [3, page 213]). Since

n−1
∑

s=1

∫

K ρ
2

∂ai

∂pj

∣

∣

∣

p=wx

lwxjxswxsh
l−1hxiξ

2dx =
l

2

∫

K ρ
2

∂ai

∂pj

[

hxj − 2δan

dan

dxj

]

hxih
l−1ξ2dx,

from inequalities (2.8), (2.11) we can get that

I :=

∫

K ρ
2

{

ν
n−1
∑

s=1

n
∑

j=1

w2
xjxs

hlξ2 +
l

2
|hx|

2hl−1ξ2
}

dx

≤

∫

K ρ
2

{ ∂

∂pj

ai

∣

∣

∣

p=wx

[

− 2δan

(∂an

∂pk

wxkxj +
∂an

∂xj

+
∂an

∂w
wxj

)
∣

∣

∣

p=wx

hxih
l−1ξ2−

2

n−1
∑

s=1

wxswxjxsh
lξξxj

]

+ f
(

wxsxsh
lξ2 + lwxsh

l−1hxsξ
2 + 2wxsh

lξξxs

)}

dx

≤C

∫

K ρ
2

{

n−1
∑

s=1

n
∑

j=1

|wxjxs |
[

|wx|h
lξ|ξx| + lδ

1
2 |hx|h

l− 1
2 ξ2 + (ϕ1 + |wx|

2)hlξ2
]

+

lδ
1
2

[

(ψ0 + ϕ1 + |wx|
2)|hx|h

l− 1
2 ξ2 + lψ1|hx|h

lξ2
]

+

(ϕ1 + |wx|
2)(l|wx||hx|h

l−1ξ2 + |wx|h
lξ|ξx|)

}

dx. (2.22)

Besides, from the second inequality of (2.12) it follows

l(ϕ1 + |wx|
2)|wx||hx|h

l−1ξ2 ≤
2

νδ
1
2

lϕ1|hx|h
l− 1

2 ξ2 +
4l

ν2δ
|wx||hx|h

lξ2. (2.23)
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Then applying Cauchy’s inequality and inequalities (2.22), (2.23), (2.8), (2.11) and (2.12) we get

I ≤
{

ε1

∫

K ρ
2

n−1
∑

s=1

n
∑

j=1

w2
xjxs

hlξ2dx+ l
[

δ
1
2C6(ε1) + ε2 + ε3

]

∫

K ρ
2

|hx|
2hl−1ξ2dx+

C(ε1, ε2, ε3, r)

δ2

{

∫

K ρ
2

[

G+ ψ2
1h+ |wx|

4
]

hlξ2 +

∫

K ρ
2

|wx|
2hl|ξx|

2dx
}

, (2.24)

where ε1 = ν
8 , ε2 = ε3 = 1

8 , δ = min{δ0, [8C6(
ν
8 )]−2}. Together with inequality (2.10), it gives

I ≤
C7(d, r) · ρ

α1

δ2
I +

C(d, r)

δ2

∫

K ρ
2

{

|wx|
4hlξ2 + (1 + |wx|

2)|hl|ξx|
2
}

dx.

Consequently, setting ρ3,1 := min{ρ2, [
δ2

2C7(d,r) ]
1

α1 }, we see that inequality (2.20) holds for ρ ≤

ρ3,1.

Next, we are going to estimate
∫

K ρ
2

|wx|
4hlξ2. If l ≥ 0 and x0 is any point in K ρ

2
, we conclude

from inequalities (2.1), (2.12) and Young’s inequality that

J :=

∫

K ρ
2

ai · (w(x) − w(x0))xiσh
lξ2dx ≥

∫

K ρ
2

{δν3

16
|wx|

4 −
C

δ

}

hlξ2dx. (2.25)

On the other hand, using (2.11), (2.12), integral by part and the similar proof to that of

(2.24) gives

J = −

∫

K ρ
2

(w(x) − w(x0))
{dai

dxi

σwhlξ2 + aiσxih
lξ2 + aiσlhxih

l−1ξ2 + 2aiσh
lξξxi

}

dx

≤C(d, r)ρα

∫

K ρ
2

{

|wx|
4hlξ2 +

(

G+ ψ2
1 |wx|

2 +

n
∑

j=1

n−1
∑

s=1

w2
xjxs

)

hlξ2+

l|hx|
2hl−1ξ2 + (1 + |wx|

2)hl|ξx|
2
}

dx. (2.26)

Then, substituting estimates (2.10), (2.20) into inequality (2.26), together with (2.25), we know

that there exists 0 < ρ3 ≤ ρ3,2, such that for ρ ≤ ρ3,
∫

K ρ
2

|wx|
4hlξ2dx ≤ C(δ)

∫

K ρ
2

hlξ2dx+ C(d, r, δ) · ρα

∫

K ρ
2

(1 + |wx|
2)|hl|ξx|

2dx. (2.27)

Finally, to prove estimate (2.19), let ρ∗l := ρ
2 − l

4(r+1)ρ for l = 0, 1, 2, . . . , r and ξl(x) be

smooth function of compact support on Kρ∗

l
taking values between 0 and 1, such that |(ξl)x| ≤

C
ρ

in Kρ∗

l
and ξl = 1 in Kρ∗

l+1
. We replace Kρ and ξ by Kρ∗

l
and ξl respectively in inequalities (2.20)

and (2.27). By considering in succession the inequality (2.20) and (2.27) for l = 1, 2, . . . , r and

letting N → ∞, we can get the estimate (2.19). 2

The Proof of Theorem 1.1 Lemma 2.1 gives us the Hölder estimate of w and Lemma 2.3

gives us that w(x) has weak derivatives wxixj in L2((Ω
′ ∩D(k)) for 1 ≤ i, j ≤ n, which have the

estimate (1.5). Furthermore, we can get that w satisfies the equation (1.1) for almost all x ∈ Ω′

and the inner boundary condition (1.2) for almost all x ∈ Γ
⋂

Ω′ (see [2, Chapter 3, Section 13]).

To complete the proof, we need to estimate the bound and Hölder bound of the derivative wx.
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In the identity (2.21), we set ηs = ξ2 max{wxs(x) − τ, 0}, where s ≤ n− 1, τ is an arbitrary

number and ξ(x) is a smooth function of compact support on Kρ taking values in [0, 1]. If we

substitute the function ηs into (2.21) and make the elementary estimates, as we have done several

times before, we obtain
∫

Aτ,ρ

|wxsx|
2ξ2dx ≤ C

∫

Aτ,ρ

{[

G+ ψ2
1 |wx|

2 + |wx|
4
]

ξ2 + (wxs − τ)2|ξx|
2
}

dx

≤ ||G||L q
2
(Kρ)mes

1− 2
q (Aτ,ρ) + ||ψ2

1 ||L q
2
(Kρ)

∥

∥

∥
|wx|

2
∥

∥

∥

Lqq′/(2(q−q′))

mes
1− 2

q′ (Aτ,ρ)+

∥

∥

∥
|wx|

4
∥

∥

∥

Ls′(Kρ)
mes1−

1
s′ (Aτ,ρ) + C

∫

Aτ,ρ

(wxs − τ)2|ξx|
2dx

≤ C

∫

Aτ,ρ

(wxs − τ)2|ξx|
2 + Cmes

1− 2
q′′ (Aτ,ρ), (2.28)

where ρ ≤ ρ3/4, Aτ,ρ := {x : x ∈ Kρ, wxs > τ}, q′ := (2r+4)q
q+2r+4 , s′ := r

2 + 1 and q′′ :=

min{q, q′, 2s′}. Since r = [ q2+qn
2(q−n) − 2] + 1, we have 2r + 4 > q2+qn

q−n
= { q+n

2 · q} ÷ {q − q+n
2 },

qq′

q−q′
= 2r + 4, q > q′ > q+n

2 > n, 1
s′
< 2

n
and q′′ > n. Analogous inequalities hold for the

sets Bτ,ρ, where wxs < τ . Consequently, together with above inequality and estimate (2.8), the

estimate (1.6) follows from the similar proof to that of [3]. The theorem is proved. 2
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