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Abstract Let G be a simple graph. Let f be a mapping from V (G) ∪ E(G) to {1, 2, . . . , k}.

Let Cf (v) = {f(v)} ∪ {f(vw)|w ∈ V (G), vw ∈ E(G)} for every v ∈ V (G). If f is a k-proper-

total-coloring, and for u, v ∈ V (G), uv ∈ E(G), we have Cf (u) 6= Cf (v), then f is called a k-

adjacent-vertex-distinguishing total coloring (k-AV DTC for short). Let χat(G) = min{k|G have

a k-adjacent-vertex-distinguishing total coloring}. Then χat(G) is called the adjacent-vertex-

distinguishing total chromatic number (AV DTC number for short). The AV DTC numbers for

Pm × Pn, Pm × Cn and Cm × Cn are obtained in this paper.
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1. Introduction

The graphs considered in this paper are connected, finite, undirected and simple graphs.

In [1, 2, 3, 5] the vertex-distinguishing proper edge coloring (i.e. strong coloring), proper edge

coloring of a graph in which no two of its vertices is incident to edges colored with the same set of

colors, was introduced and investigated. In [7] the adjacent strong edge coloring (i.e. adjacent-

vertex-distinguishing proper edge coloring), proper edge coloring of a graph G in which no two

adjacent vertices of G is incident to edges colored with the same set of colors, was introduced

and studied by ZHANG Zhongfu et al. These concepts can be generalized. The adjacent-vertex-

distinguishing total coloring was introduced in [8]. A k-proper-total-coloring f of a graph G is a

mapping from V (G) ∪ E(G) to {1, 2, . . . , k} such that the following 3 conditions are valid:

1) ∀u, v ∈ V (G), if uv ∈ E(G), then f(u) 6= f(v);

2) ∀e1, e2 ∈ E(G), e1 6= e2 , if e1, e2 have a common end vertex, then f(e1) 6= f(e2);

3) ∀u ∈ V (G), e ∈ E(G), if u is an end vertex of e, then f(u) 6= f(e).
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Suppose f is a k-proper-total-coloring of a graph G. Let Cf (u) = {f(u)} ∪ {f(uw)|w ∈

V (G), uw ∈ E(G)} and f(u) = {1, 2, . . . , k}\Cf(u) for every u ∈ V (G). If ∀u, v ∈ V (G), uv ∈

E(G), we have Cf (u) 6= Cf (v), i.e., Cf (u) 6= Cf (v), then f is called a k-adjacent-vertex-

distinguishing total coloring (k-AV DTC for short). The number min{k|G has a k-adjacent-

vertex-distinguishing total-coloring} is called the adjacent-vertex-distinguishing total chromatic

number (AV DTC number for short) of G and is denoted by χat(G). The adjacent-vertex-

distinguishing total chromatic numbers of cycles, complete graphs, complete bipartite graphs,

fans, wheels and trees are obtained[8]. From these results, the authors in [8] proposed the fol-

lowing conjecture.

Conjecture 1[8] For every graph G with order at least 2, we have χat(G) ≤ ∆(G) + 3.

Note that for complete graph G with order odd and at least 3, we have χat(G) = ∆(G) + 3.

Let G and H be graphs. Suppose that V (G) = {u1, u2, . . . , um}, V (H) = {v1, v2, . . . , vn}.

The Cartesian product of G and H , denoted by G×H , is defined as follows: V (G×H) = {wij |i =

1, 2, . . . , m, j = 1, 2, . . . , n}, E(G × H) = {wijwrs|i = r, vjvs ∈ E(H)orj = s, vivr ∈ E(G)}. Let

Pn be a path with n vertices and Cn be a cycle with n vertices. The adjacent-vertex-distinguishing

total coloring on Pm × Pn, Pm × Cn and Cm × Cn are studied and the corresponding chromatic

numbers are obtained by constructing 4, 5, 6-AV DTC in this paper. Theorems 1, 2 and 3 in

this paper will indicate that Conjecture 1 is valid for Pm × Pn, Pm × Cn and Cm × Cn. For the

graph-theoretic terminology the reader is referred to [4, 6]. The following lemma is obvious.

Lemma 1 If arbitrary two distinct vertices of maximum degree in G are not adjacent, then

χat(G) ≥ ∆(G) + 1; If G has two distinct vertices of maximum degree which are adjacent, then

χat(G) ≥ ∆(G) + 2.

2. The AVDTC number for Pm × Pn

Theorem 1 Let 2 ≤ m ≤ n. Then χat(Pm × Pn) =











4, m = n = 2;

5, m = 2, n ≥ 3 or m = n = 3;

6, m = 3, n ≥ 4 or n ≥ m ≥ 4.

Proof Assume that Pm = u1u2 · · ·um, Pn = v1v2 · · · vn, and V (Pm×Pn) = {wij |i = 1, 2, . . . , m, j =

1, 2, . . . , n}, E(Pm × Pn) = {wijwrs|i = r, vjvs ∈ E(Pn) or j = s, vivr ∈ E(Pm)}. There are 4

cases to be considered.

Case 1 m = n = 2.

In this case, P2 × P2 = C4. Obviously, we have that χat(P2 × P2) = χat(C4) = 4.

Case 2 m = 2, n ≥ 3.

In this case, there exist two adjacent vertices of degree 3. So χat(P2 × Pn) ≥ 5. In order to

prove χat(P2 × Pn) = 5, we only prove that P2 × Pn has a 5-AV DTC. we construct a mapping

f from V (P2 × Pn) ∪ E(P2 × Pn) to {1, 2, 3, 4, 5} as follows:

f(wij) ∈ {1, 2, 3, 4}, and f(wij) ≡ i + j − 1 (mod 4), i = 1, 2, j = 1, 2, . . . , n;
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f(wijwi,j+1) ∈ {1, 2, 3, 4}, and f(wijwi,j+1) ≡ i + j + 1 (mod 4), i = 1, 2, j = 1, 2, . . . , n − 1;

f(w1jw2j) = 5, j = 1, 2, . . . , n.

Obviously, f is a 5-proper-total-coloring. For j = 2, 3, . . . , n − 1, we have

Cf (w1j) = {1}, j ≡ 2 (mod 4); Cf (w1j) = {2}, j ≡ 3 (mod 4); Cf (w1j) = {3}, j ≡ 0 (mod 4);

Cf (w1j) = {4}, j ≡ 1 (mod 4). Cf (w2j) = {2}, j ≡ 2 (mod 4); Cf (w2j) = {3}, j ≡ 3 (mod 4);

Cf (w2j) = {4}, j ≡ 0 (mod 4); Cf (w2j) = {1}, j ≡ 1 (mod 4).

And Cf (w11) 6= Cf (w21), Cf (w1n) 6= Cf (w2n). So f is a 5-AV DTC.

Case 3 m = n = 3.

In this case, there exists only one vertex of maximum degree (=4). So χat(P3 × P3) ≥ 5. To

prove χat(P3 × P3) = 5, we only prove that P3 × P3 has a 5-AV DTC. we construct a mapping

f from V (P3 × P3) ∪ E(P3 × P3) to {1, 2, 3, 4, 5} as follows:

f(wij) ∈ {1, 2, 3}, and f(wij) ≡ i + j − 1 (mod 3), i = 1, 2, 3; j = 1, 2, 3;

f(wijwi,j+1) ∈ {1, 2, 3}, and f(wijwi,j+1) ≡ i + j + 1 (mod 3), i = 1, 2, 3; j = 1, 2;

f(w1jw2j) = 4, f(w2jw3j) = 5, j = 1, 2, 3.

Obviously, f is a 5-proper-total-coloring. For every xy ∈ E(P3 × P3), we have d(x) 6= d(y).

So f is a 5-AV DTC.

Case 4 m = 3, n ≥ 4 or 4 ≤ m ≤ n.

In this case, there exist two adjacent vertices of maximum degree (=4). So χat(Pm×Pn) ≥ 6.

To prove χat(Pm×Pn) = 6, we only prove that Pm×Pn has a 6-AV DTC. we construct a mapping

f from V (Pm × Pn) ∪ E(Pm × Pn) to {1, 2, 3, 4, 5, 6} as follows:

f(wij) ∈ {1, 2, 3, 4}, and f(wij) ≡ i + j − 1 (mod 4), i = 1, 2, . . . , m, j = 1, 2, . . . , n;

f(wijwi,j+1) ∈ {1, 2, 3, 4}, and f(wijwi,j+1) ≡ i+j+1 (mod 4), i = 1, 2, . . . , m, j = 1, 2, . . . , n−

1;

f(wijwi+1,j) = 5, j = 1, 2, . . . , n, i = 1, 2, . . . , m − 1, i is odd;

f(wijwi+1,j) = 6, j = 1, 2, . . . , n, i = 1, 2, . . . , m − 1, i is even.

Obviously, f is a 6-proper-total-coloring of Pm × Pn.

And for j = 2, 3, . . . , n − 1, we have

Cf (w1j) = {2, 3, 4, 5}, j ≡ 2 (mod 4); Cf (w1j) = {3, 4, 1, 5}, j ≡ 3 (mod 4);

Cf (w1j) = {4, 1, 2, 5}, j ≡ 0 (mod 4); Cf (w1j) = {1, 2, 3, 5}, j ≡ 1 (mod 4).

For j = 2, 3, . . . , n − 1, we have

Cf (wmj) = {a(m + j − 1), a(m + j), a(m + j + 1), 5}, m is even;

Cf (wmj) = {a(m + j − 1), a(m + j), a(m + j + 1), 6}, m is even,

where a(z) ∈ {1, 2, 3, 4}, a(z) ≡ z (mod 4) for integer z. For i = 2, 3, . . . , m − 1, we have

Cf (wi1) = {2, 4, 5, 6}, i is even; Cf (wi1) = {3, 1, 5, 6}, i is odd; Cf (win) = {a(i + n− 1), a(i +

n), 5, 6}.

For i = 2, 3, . . . , m−1, j = 2, 3, . . . , n−1, we have that Cf (wij) = {a(i+ j−1), a(i+ j), a(i+

j + 1), 5, 6}. By careful examination, we can get that for every two adjacent vertices x and y of

Pm × Pn, C(x) 6= C(y). So f is a 6-AV DTC. The proof is completed. 2
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3. The adjacent-vertex-distinguishing total chromatic number for Pm ×

Cn

Theorem 2 Let m ≥ 2, n ≥ 3. Then χat(Pm × Cn) =

{

5, m = 2;

6, m ≥ 3.

Proof Assume that Pm = u1u2 · · ·um, Cn = v1v2 · · · vnv1, and V (Pm × Cn) = {wij |i =

1, 2, . . . , m, j = 1, 2, . . . , n}, E(Pm × Cn) = {wijwrs|wij , wrs ∈ V (Pm × Cn), i = r, ujus ∈ E(Pn)

or j = s, vivr ∈ E(Cm)}. If r > m, s > n, then we assume that wrs = wij = wrj = wis, where

i = 1, 2, . . . , m, j = 1, 2, . . . , n, and i ≡ r (mod m), j ≡ s (mod n). There are three cases to be

considered.

Case 1 m = 2, n = 3.

In this case, there are two adjacent vertices of maximum degree (=3). So χat(P2 × C3) ≥ 5.

To prove χat(P2×C3) = 5, we only prove that P2×C3 has a 5-AV DTC. we construct a mapping

f from V (P2 × C3) ∪ E(P2 × C3) to {1, 2, 3, 4, 5} as follows:

f(w11) = 1, f(w12) = 2, f(w13) = 3, f(w21) = 2, f(w22) = 1, f(w23) = 5; f(w11w12) =

3, f(w12w13) = 4, f(w13w11) = 2; f(w21w22) = 4, f(w22w23) = 2, f(w23w21) = 3; f(w11w21) =

5, f(w12w22) = 5, f(w13w23) = 1.

We may easily verify that f is a 5-proper-total-coloring. And Cf (w11) = Cf (w23) =

{1, 2, 3, 5}; Cf (w12) = Cf (w21) = {2, 3, 4, 5}; Cf (w22) = {1, 2, 4, 5}, Cf(w13) = {1, 2, 3, 4}; Thus

for arbitrary xy ∈ E(P2 × C3), we have C(x) 6= C(y). So f is a 5-AV DTC.

Case 2 m ≥ 3, n = 3.

In this case, there are two adjacent vertices of maximum degree (=4). So χat(Pm × C3) ≥ 6

according to Lemma 1. To prove χat(Pm×C3) = 6, we only prove that Pm×C3 has a 6-AV DTC.

we construct a mapping f from V (Pm × C3) ∪ E(Pm × C3) to {1, 2, 3, 4, 5, 6} as follows:

f(wi1) ∈ {1, 2, 3} and f(wi1) ≡ i (mod 3), i = 1, 2, . . . , m; f(wi1wi+1,1) ∈ {1, 2, 3} and

f(wi1wi+1,1) ≡ i + 2 (mod 3), i = 1, 2, . . . , m − 1. f(wij) ∈ {1, 2, 3} and f(wij) ≡ f(wi1) + j −

1 (mod 3), j = 2, 3, i = 1, 2, . . . , m; f(wijwi+1,j) ∈ {1, 2, 3} and f(wijwi+1,j) ≡ f(wi1wi+1,1) +

j − 1 (mod 3), j = 2, 3, i = 1, 2, . . . , m − 1; f(w11w12) = 4, f(w12w13) = 5, f(w13w11) =

6; f(wijwi,j+1) ∈ {4, 5, 6} and f(wijwi,j+1) ≡ f(w1jw1,j+1) + i − 1 (mod 3), i = 2, 3, . . . , m; j =

1, 2, 3; So f is a 6-proper-total-coloring.

Note that C(w11) does not contain 5, but contains 4 and 6; C(w12) does not contain 6, but

contains 4 and 5; C(w13) does not contain 4, but contains 5 and 6. One of C(wm1), C(wm2) and

C(wm3) does not contain 4, but contains 5 and 6; Another does not contain 5, but contains 4 and

6; And the third one does not contain 6, but contains 5 and 4. If C(wij) does not contain 4 (5 or

6), then C(x) must contain 4 (5 or 6) for i = 3, 4, . . . , m− 2, j = 1, 2, 3, and wijx ∈ E(Pm ×C3).

So f is a 6-AV DTC.

Case 3 m ≥ 2, n ≥ 4.

In this case, χat(Pm ×Cn) ≥ 5 if m = 2 and χat(Pm ×Cn) ≥ 6 if m ≥ 3 according to Lemma
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1. To prove χat(Pm × Cn) = 5 when m = 2 or χat(Pm × Cn) = 6 when m ≥ 3, we only prove

that Pm ×Cn has a 5-AV DTC when m = 2 or 6-AV DTC when m ≥ 3. we construct a mapping

f from V (Pm × Cn) ∪ E(Pm × Cn) to {1, 2, 3, 4, 5} when m = 2 or {1, 2, 3, 4, 5, 6} when m ≥ 3

as follows.

Firstly, we give a 4-AV DTC for (Pm × Cn)[w11, w12, . . . , w1n], which is an n-cycle induced

by the vertices w11, w12, . . . , w1n.

If n ≡ 0 (mod 4), then we let

f(w1iw1,i+1) ∈ {1, 2, 3, 4} and f(w1iw1,i+1) ≡ i (mod 4), i = 1, 2, . . . , n;

f(w1j) ∈ {1, 2, 3, 4} and f(w1j) ≡ j + 1 (mod 4); j = 1, 2, . . . , n.

If n ≡ 1 (mod 4), then we let

f(w1iw1,i+1) ∈ {1, 2, 3, 4} and f(w1iw1,i+1) ≡ i (mod 4), i = 1, 2, . . . , n − 5;

f(w1j) ∈ {1, 2, 3, 4}, and f(w1j) ≡ j + 1 (mod 4); j = 1, 2, . . . , n − 5;

f(w1,n−4w1,n−3) = 1, f(w1,n−3w1,n−2) = 2, f(w1,n−2w1,n−1) = 4, f(w1,n−1w1n) = 3,f(w1nw11) =

4;

f(w1,n−1) = 2, f(w1,n−3) = 3, f(w1,n−2) = 1, f(w1,n−1) = 2, f(w1n) = 1.

If n ≡ 2 (mod 4), then we let

f(w1iw1,i+1) ∈ {1, 2, 3, 4} and f(w1iw1,i+1) ≡ i (mod 4), i = 1, 2, . . . , n − 6;

f(w1j) ∈ {1, 2, 3, 4}, and f(w1j) ≡ j + 1 (mod 4); j = 1, 2, . . . , n − 6;

f(w1,n−5w1,n−4) = 1, f(w1,n−4w1,n−3) = 2, f(w1,n−3w1,n−2) = 3,

f(w1,n−2w1,n−1) = 4, f(w1,n−1w1n) = 3, f(w1nw11) = 4;

f(w1,n−5) = 2, f(w1,n−4) = 3, f(w1,n−3) = 4, f(w1,n−2) = 1, f(w1,n−1) = 2, f(w1,n) = 1.

If n ≡ 3 (mod 4), then we let

f(w1iw1,i+1) ∈ {1, 2, 3, 4} and f(w1iw1,i+1) ≡ i (mod 4), i = 1, 2, . . . , n − 7;

f(w1j) ∈ {1, 2, 3, 4} and f(w1j) ≡ j + 1 (mod 4); j = 1, 2, . . . , n − 7;

f(w1,n−6w1,n−5) = 1, f(w1,n−5w1,n−4) = 2, f(w1,n−4w1,n−3) = 3, f(w1,n−3w1,n−2) = 1,

f(w1,n−2w1,n−1) = 4, f(w1,n−1w1n) = 3, f(w1nw11) = 4;

f(w1,n−6) = 2, f(w1,n−5) = 3, f(w1,n−4) = 4, f(w1,n−3) = 2,

f(w1,n−2) = 3, f(w1,n−1) = 2, f(w1n) = 1.

In all above 4 situations, f is a 4-AV DTC of (Pm × Cn)[w11, w12, . . . , w1n].

Secondly, we extend f . For i = 2, 3, . . . , m, let

f(wij) ∈ {1, 2, 3, 4} and f(wij) ≡ f(w1j) (mod 4), j = 1, 2, . . . , n, i is odd;

f(wij) ∈ {1, 2, 3, 4} and f(wij) ≡ f(w1,j+1) (mod 4), j = 1, 2, . . . , n, i is even;

f(wijwi,j+1) ∈ {1, 2, 3, 4} and f(wijwi,j+1) ≡ f(w1jw1,j+1) (mod 4), j = 1, 2, . . . , n, i is odd;

f(wijwi,j+1) ∈ {1, 2, 3, 4} and f(wijwi,j+1) ≡ f(w1,j+1w1,j+2) (mod 4), j = 1, 2, . . . , n, i is

even.

For all i = 1, 2, . . . , m − 1, j = 1, 2, . . . , n, we let

f(wijwi+1,j) = 5 when i is odd; f(wijwi+1,j) = 6 when i is even.

By simple verification, we know that f is a 5-AV DTC when m = 2 or 6-AV DTC when m ≥ 3.

The proof is completed. 2
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4. The AVDTC number for Cm × Cn

Theorem 3 Let m ≥ 3, n ≥ 3. Then χat(Cm × Cn) = 6.

Proof Assume that Cm = u1u2 · · ·umu1, Cn = v1v2 · · · vnv1, and

V (Cm × Cn) = {wij |i = 1, 2, . . . , m, j = 1, 2, . . . , n},

E(Cm × Cn) = {wijwrs|wij , wrs ∈ V (Cm × Cn), and i = r, vjvs ∈ E(Cn) or j = s, uiur ∈

E(Cm)}.

If r > m, s > n, then we assume that wrs = wij = wrj = wis, where i = 1, 2, . . . , m, j =

1, 2, . . . , n, and i ≡ r (mod m), j ≡ s (mod n).

Obviously, χat(Cm ×Cn) ≥ 6. To prove χat(Cm ×Cn) = 6, we only prove that Cm ×Cn has

a 6-AV DTC. There are three cases to be considered.

Case 1 One of m, n is 3.

Without loss of generality, we assume m = 3. There are three subcases to be considered in

the following.

Case 1.1 n ≡ 0 (mod 3).

we construct a mapping f from V (C3 × Cn) ∪ E(C3 × Cn) to {1, 2, 3, 4, 5, 6} as follows:

f(w1j) ∈ {1, 2, 3} and f(w1j) ≡ j (mod 3), j = 1, 2, . . . , n;

f(w1jw1,j+1) ∈ {1, 2, 3} and f(w1jw1,j+1) ≡ j + 2 (mod 3), j = 1, 2, . . . , n.

f(wij) ∈ {1, 2, 3} and f(wij) ≡ f(w1j) + j − 1 (mod 3), i = 2, 3, j = 1, 2, . . . , n;

f(wijwi,j+1) ∈ {1, 2, 3} and f(wijwi,j+1) ∈ f(w1jw1,j+1) + j − 1 (mod 3), i = 2, 3, j =

1, 2, . . . , n;

f(w11w21) = 4, f(w21w31) = 5, f(w31w11) = 6;

f(wijwi+1,j) ∈ {4, 5, 6} and f(wijwi+1,j) ≡ f(wi1wi+1,1) + j − 1 (mod 3), i = 1, 2, 3; j =

2, 3, . . . , n;

Obviously, f is a 6-proper-total-coloring. And

Cf (w1j) = {5}, j ≡ 1 (mod 3); f(w1j) = {6}, j ≡ 2 (mod 3); f(w1j) = {4}, j ≡ 0 (mod 3);

f(w2j) = {6}, j ≡ 1 (mod 3); f(w2j) = {4}, j ≡ 2 (mod 3); f(w2j) = {5}, j ≡ 0 (mod 3);

f(w3j) = {4}, j ≡ 1 (mod 3); f(w3j) = {5}, j ≡ 2 (mod 3); f(w3j) = {6}, j ≡ 0 (mod 3). So

f is a 6-AV DTC.

Case 1.2 n ≡ 1 (mod 3).

we construct a mapping f from V (C3 × Cn) ∪ E(C3 × Cn) to {1, 2, 3, 4, 5, 6} as follows:

f(w1j) ∈ {1, 2, 3} and f(w1j) ≡ j (mod 3), j = 1, 2, . . . , n − 3;

f(w1jw1,j+1) ∈ {1, 2, 3} and f(w1jw1,j+1) ≡ j + 2 (mod 3), j = 1, 2, . . . , n − 3.

f(wij) ∈ {1, 2, 3} and f(wij) ≡ f(w1j) + j − 1 (mod 3), i = 2, 3, j = 1, 2, . . . , n − 3;

f(wijwi,j+1) ∈ {1, 2, 3} and f(wijwi,j+1) ≡ f(w1jw1,j+1) + j − 1 (mod 3), i = 2, 3, j =

1, 2, . . . , n − 3;

f(w11w21) = 4, f(w21w31) = 5, f(w31w11) = 6;
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f(wijwi+1,j) ∈ {4, 5, 6} and f(wijwi+1,j) ≡ f(wi1wi+1,1) + j − 1 (mod 3), i = 1, 2, 3; j =

2, 3, . . . , n − 3;

f(w1,n−2) = 2, f(w1,n−1) = 4, f(w1n) = 3, f(w2,n−2) = 3, f(w2,n−1) = 5;

f(w2n) = 1, f(w3,n−2) = 4, f(w3,n−1) = 6, f(w3n) = 2;

f(w1,n−2w1,n−1) = 5, f(w1,n−1w1,n) = 1, f(w1nw11) = 2;

f(w2,n−2w2,n−1) = 6, f(w2,n−1w2,n) = 2, f(w2nw21) = 3;

f(w3,n−2w3,n−1) = 1, f(w3,n−1w3,n) = 3, f(w3nw31) = 1;

f(w1,n−2w2,n−2) = 4, f(w2,n−2w3,n−2) = 5, f(w3,n−2w1,n−2) = 6;

f(w1,n−1w2,n−1) = 3, f(w2,n−1w3,n−1) = 4, f(w3,n−1w1,n−1) = 2;

f(w1,nw2,n) = 6, f(w2,nw3,n) = 4, f(w3,nw1,n) = 5.

We may verify that f is a 6-proper-total-coloring. And

Cf (w1j) = {5}, j ≡ 1 (mod 3); Cf (w1j) = {6}, j ≡ 2 (mod 3); Cf (w1j) = {4}, j ≡ 0 (mod 3);

Cf (w2j) = {6}, j ≡ 1 (mod 3); Cf (w2j) = {4}, j ≡ 2 (mod 3); Cf (w2j) = {5}, j ≡ 0 (mod 3);

Cf (w3j) = {4}, j ≡ 1 (mod 3); Cf (w3j) = {5}, j ≡ 2 (mod 3); Cf (w3j) = {6}, j ≡ 0 (mod 3).

Cf (w1,n−2) = {1}, Cf (w1,n−1) = {6}, Cf (w1n) = {4}, Cf (w2,n−2) = {2}, Cf (w2,n−1) = {1},

Cf (w2n) = {5}, Cf (w3,n−2) = {3}, Cf (w3,n−1) = {5}, Cf (w3n) = {6}.

So f is a 6-AV DTC.

Case 1.3 n ≡ 1 (mod 3).

we construct a mapping f from V (C3 × Cn) ∪ E(C3 × Cn) to {1, 2, 3, 4, 5, 6} as follows:

f(w1j) ∈ {1, 2, 3} and f(w1j) ≡ j (mod 3), j = 1, 2, . . . , n − 4;

f(w1jw1,j+1) ∈ {1, 2, 3} and f(w1jw1,j+1) ≡ j + 2 (mod 3), j = 1, 2, . . . , n − 4.

f(wij) ∈ {1, 2, 3} and f(wij) ≡ f(w1j) + j − 1 (mod 3), i = 2, 3, j = 1, 2, . . . , n − 4;

f(wijwi,j+1) ∈ {1, 2, 3} and f(wijwi,j+1) ≡ f(w1jw1,j+1) + j − 1 (mod 3), i = 2, 3, j =

1, 2, . . . , n − 4;

f(w11w21) = 4, f(w21w31) = 5, f(w31w11) = 6;

f(wijwi+1,j) ∈ {4, 5, 6} and f(wijwi+1,j) ≡ f(wi1wi+1,1) + j − 1 (mod 3), i = 1, 2, 3; j =

2, 3, . . . , n − 4;

f(w1,n−3) = 2, f(w1,n−2) = 6, f(w1,n−1) = 4, f(w1n) = 3, f(w2,n−3) = 3, f(w2,n−2) = 4,

f(w2,n−1) = 5, f(w2n) = 1, f(w3,n−3) = 4, f(w3,n−2) = 5, f(w3,n−1) = 6, f(w3n) = 2,

f(w1,n−3w1,n−2) = 5, f(w1,n−2w1,n−1) = 2, f(w1,n−1w1,n) = 1, f(w1nw11) = 2;

f(w2,n−3w2,n−2) = 6, f(w2,n−2w2,n−1) = 3, f(w2,n−1w2,n) = 2, f(w2nw21) = 3;

f(w3,n−3w3,n−2) = 1, f(w3,n−2w3,n−1) = 4, f(w3,n−1w3,n) = 3, f(w3nw31) = 1;

f(w1,n−3w2,n−3) = 4, f(w2,n−3w3,n−3) = 5, f(w3,n−3w1,n−3) = 6, f(w1,n−2w2,n−2) = 1;

f(w2,n−2w3,n−2) = 2, f(w3,n−2w1,n−2) = 3, f(w1,n−1w2,n−1) = 6, f(w2,n−1w3,n−1) = 1;

f(w3,n−1w1,n−1) = 5, f(w1,nw2,n) = 6, f(w2,nw3,n) = 4, f(w3,nw1,n) = 5.

We may verify that f is a 6-proper-total-coloring. And Cf (w1j) = {5}, j ≡ 1 (mod 3); Cf (w1j) =

{6}, j ≡ 2 (mod 3); Cf (w1j) = {4}, j ≡ 0 (mod 3);

Cf (w2j) = {6}, j ≡ 1 (mod 3); Cf (w2j) = {4}, j ≡ 2 (mod 3); Cf (w2j) = {5}, j ≡ 0 (mod 3);

Cf (w3j) = {4}, j ≡ 1 (mod 3); Cf (w3j) = {5}, j ≡ 2 (mod 3); Cf (w3j) = {6}, j ≡ 0 (mod 3).
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Cf (w1,n−3) = {1}, Cf (w1,n−2) = {4}, Cf (w1,n−1) = {3}, Cf (w1n) = {4};

Cf (w2,n−3) = {2}, Cf (w2,n−2) = {5}, Cf (w2,n−1) = {4}, Cf (w2n) = {5};

Cf (w3,n−3) = {3}, Cf (w3,n−2) = {6}, Cf (w3,n−1) = {2}, Cf (w3n) = {6}.

So f is a 6-AV DTC.

Case 2 One of m, n is even.

Without loss of generality, we assume that m is even. We construct a mapping f from

V (Cm × Cn) ∪ E(Cm × Cn) to {1, 2, 3, 4, 5, 6} as follows.

Firstly, similar to Case 3 of the proof of Theorem 3, we can give a 4-AV DTC f for (Cm ×

Cn)[w11, w12, . . . , w1n], which is a cycle induced by the vertices w11, w12, . . . , w1n.

Secondly, we extend f . Let

f(wij) ∈ {1, 2, 3, 4} and f(wij) = f(w1j), i = 2, 3, . . . , m, j = 1, 2, . . . , n, i is odd;

f(wij) ∈ {1, 2, 3, 4} and f(wij) = f(w1,j+1), i = 2, 3, . . . , m, j = 1, 2, . . . , n, i is even.

f(wijwi+1,j) = 5, i = 1, 2, . . . , m, j = 1, 2, . . . , n, i is odd; f(wijwi+1,j) = 6, i = 1, 2, . . . , m, j =

1, 2, . . . , n, i is even.

We may easily verify that f is a 6-AV DTC of Cm × Cn.

Case 3 m, n are all odd and m ≥ 5, n ≥ 5. There are two subcases to be considered.

Case 3.1 n ≡ 1 (mod 4).

We construct a mapping f from V (Cm ×Cn)∪E(Cm ×Cn) to {1, 2, 3, 4, 5, 6} as follows. Let

f(w1j) ∈ {1, 2, 3, 4} and f(w1j) ≡ j + 1 (mod 4), j = 1, 2, . . . , n − 4;

f(w1jw1,j+1) ∈ {1, 2, 3, 4} and f(w1jw1,j+1) ≡ j (mod 4), j = 1, 2, . . . , n − 4.

f(w1,n−3) = 3, f(w1,n−2) = 1, f(w1,n−1) = 2, f(w1,n) = 1;

f(w1,n−3w1,n−2) = 2, f(w1,n−2w1,n−1) = 4, f(w1,n−1w1,n) = 3, f(w1,nw11) = 4.

f(w2j) ∈ {1, 2, 3, 4} and f(w2j) ≡ j + 2 (mod 4), j = 1, 2, . . . , n − 4;

f(w2jw2,j+1) ∈ {1, 2, 3, 4} and f(w2jw2,j+1) ≡ j + 1 (mod 4), j = 1, 2, . . . , n − 4.

f(w2,n−3) = 4, f(w2,n−2) = 2, f(w2,n−1) = 3, f(w2,n) = 2;

f(w2,n−3w2,n−2) = 3, f(w2,n−2w2,n−1) = 1, f(w2,n−1w1,n) = 4, f(w2,nw21) = 1.

f(wmj) ∈ {1, 2, 3, 4} and f(wmj) ≡ j + 3 (mod 4), j = 1, 2, . . . , n − 4;

f(wmjwm,j+1) ∈ {1, 2, 3, 4} and f(wmjwm,j+1) ≡ j + 1 (mod 4), j = 1, 2, . . . , n − 4.

f(wm,n−3) = 6, f(wm,n−2) = 3, f(wm,n−1) = 5, f(wm,n) = 3;

f(wm,n−3wm,n−2) = 1, f(wm,n−2w1,n−1) = 2, f(wm,n−1wm,n) = 4, f(wm,nwm1) = 1.

For i = 3, 4, . . . , m − 1, j = 1, 2, . . . , n, let

f(wij) = f(w1,j), if i is odd; f(wij) = f(w2,j), if i is even;

f(wijwi,j+1) = f(w1jw1,j+1), if i is odd; f(wijwi,j+1) = f(w2jw2,j+1), if i is even.

For i = 1, 2, . . . , m − 2, j = 1, 2, . . . , n − 2, let f(wijwi+1,j) ∈ {5, 6}, f(wijwi+1,j) ≡ i +

j − 1 (mod 2). For i = 1, 2, . . . , m − 2, j = n − 1, n, let f(wijwi+1,j) ∈ {5, 6}, f(wijwi+1,j) ≡

i + j (mod 2). And let

f(wm−1,jwm,j) ∈ {5, 6}, f(wm−1,jwm,j) ≡ j + 1 (mod 2), j = 1, 2, . . . , n − 3;

f(wm−1,n−2wm,n−2) = 4, f(wm−1,n−1wm,n−1) = 6, f(wm−1,nwm,n) = 5.
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f(wm,jw1,j) ∈ {1, 2, 3, 4}, f(wm,jw1,j) ≡ j + 2 (mod 4), j = 1, 2, . . . , n − 3;

f(wm,n−2w1,n−2) = 6, f(wm,n−1w1,n−1) = 1, f(wm,nw1n) = 2.

We may verify that f is a 6-proper-total-coloring. Let Bi = (Cf (wi1), Cf (wi2), . . . , Cf (win)), i =

1, 2, . . . , m. We have

B1 = (6, 5, 6, 5, 6, 5, 6, 5, . . . , 6, 5, 6, 5, 6, 5, 3, 6, 5);

Bi = (4, 1, 2, 3, 4, 1, 2, 3, . . . , 4, 1, 2, 3, 4, 1, 4, 2, 3), i = 2, 3, . . . , m − 2, i is even;

Bi = (3, 4, 1, 2, 3, 4, 1, 2, . . . , 3, 4, 1, 2, 3, 4, 3, 1, 2), i = 2, 3, . . . , m − 2, i is odd;

Bm−1 = (4, 1, 2, 3, 4, 1, 2, 3, . . . , 4, 1, 2, 3, 4, 1, 6, 2, 3),

Bm = (5, 6, 5, 6, 5, 6, 5, 6, . . . , 5, 6, 5, 6, 5, 3, 5, 3, 6).

So f is a 6-AV DTC of Cm × Cn.

Case 3.2 n ≡ 3 (mod 4).

We construct a mapping f from V (Cm ×Cn)∪E(Cm ×Cn) to {1, 2, 3, 4, 5, 6} as follows. Let

f(w1j) ∈ {1, 2, 3, 4} and f(w1j) ≡ j + 1 (mod 4), j = 1, 2, . . . , n − 6;

f(w1jw1,j+1) ∈ {1, 2, 3, 4} and f(w1jw1,j+1) ≡ j (mod 4), j = 1, 2, . . . , n − 6.

f(w1,n−5) = 3, f(w1,n−4) = 4, f(w1,n−3) = 2, f(w1,n−2) = 3, f(w1,n−1) = 2, f(w1,n) = 1;

f(w1,n−5w1,n−4) = 2, f(w1,n−4w1,n−3) = 3, f(w1,n−3w1,n−2) = 1,

f(w1,n−2w1,n−1) = 4, f(w1,n−1w1,n) = 3, f(w1,nw11) = 4.

f(w2j) ∈ {1, 2, 3, 4} and f(w2j) ≡ j + 2 (mod 4), j = 1, 2, . . . , n − 6;

f(w2jw2,j+1) ∈ {1, 2, 3, 4} and f(w2jw2,j+1) ≡ j + 1 (mod 4), j = 1, 2, . . . , n − 6.

f(w2,n−5) = 4, f(w2,n−4) = 1, f(w2,n−3) = 3, f(w2,n−2) = 4, f(w2,n−1) = 3, f(w2,n) = 2;

f(w2,n−5w2,n−4) = 3, f(w2,n−4w2,n−3) = 4, f(w2,n−3w2,n−2) = 2,

f(w2,n−2w2,n−1) = 1, f(w2,n−1w1,n) = 4, f(w2,nw21) = 1.

f(wmj) ∈ {1, 2, 3, 4} and f(wmj) ≡ j + 3 (mod 4), j = 1, 2, . . . , n − 6;

f(wmjwm,j+1) ∈ {1, 2, 3, 4} and f(wmjwm,j+1) ≡ j + 1 (mod 4), j = 1, 2, . . . , n − 6.

f(wm,n−5) = 1, f(wm,n−4) = 5, f(wm,n−3) = 6, f(wm,n−2) = 5, f(wm,n−1) = 1, f(wm,n) = 3;

f(wm,n−5wm,n−4) = 3, f(wm,n−4w1,n−3) = 2, f(wm,n−3wm,n−2) = 1,

f(wm,n−2w1,n−1) = 3, f(wm,n−1wm,n) = 4, f(wm,nwm1) = 1.

For i = 3, 4, . . . , m − 1, j = 1, 2, . . . , n, let

f(wij) = f(w1,j), if i is odd; f(wij) = f(w2,j), if i is even;

f(wijwi,j+1) = f(w1jw1,j+1), if i is odd; f(wijwi,j+1) = f(w2jw2,j+1), if i is even.

For i = 1, 2, . . . , m − 2, j = 1, 2, . . . , n − 2, let f(wijwi+1,j) ∈ {5, 6}, f(wijwi+1,j) ≡ i + j −

1 (mod 2). For i = 1, 2, . . . , m − 2, j = n − 1, n, let f(wijwi+1,j) ∈ {5, 6}, f(wijwi+1,j) ≡

i + j (mod 2). And let

f(wm−1,jwm,j) ∈ {5, 6}, f(wm−1,jwm,j) ≡ j + 1 (mod 2), j = 1, 2, . . . , n − 2;

f(wm−1,n−1wm,n−1) = 2, f(wm−1,nwm,n) = 5

f(wm,jw1,j) ∈ {1, 2, 3, 4}, f(wm,jw1,j) ≡ j + 2 (mod 4), j = 1, 2, . . . , n − 4;

f(wm,n−3w1,n−3) = 4, f(wm,n−2w1,n−2) = 2, f(wm,n−1w1,n−1) = 6, f(wm,nw1n) = 2.

We may verify that f is a 6-proper-total-coloring.

Let Bi = (Cf (wi1), Cf (wi2), . . . , Cf (win)), i = 1, 2, . . . , m. We have
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B1 = (6, 5, 6, 5, 6, 5, 6, 5, . . . , 6, 5, 6, 5, 6, 5, 6, 5, 6, 1, 5);

Bi = (4, 1, 2, 3, 4, 1, 2, 3, . . . , 4, 1, 2, 3, 4, 1, 2, 1, 3, 2, 3), i = 2, 3, . . . , m − 2, i is even;

Bi = (3, 4, 1, 2, 3, 4, 1, 2, . . . , 3, 4, 1, 2, 3, 4, 1, 4, 2, 1, 2), i = 2, 3, . . . , m − 2, i is odd;

Bm−1 = (4, 1, 2, 3, 4, 1, 2, 3, . . . , 4, 1, 2, 3, 4, 1, 2, 1, 3, 6, 3),

Bm = (5, 6, 5, 6, 5, 6, 5, 6, . . . , 5, 6, 5, 6, 5, 6, 4, 3, 4, 5, 6).

So f is a 6-AV DTC of Cm × Cn.

The proof is completed. 2
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