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Abstract Let G be a simple graph. Let f be a mapping from V(G)U E(G) to {1,2,...,k}.
Let C¢(v) = {f(v)} U {f(vw)|lw € V(G),vw € E(G)} for every v € V(G). If f is a k-proper-
total-coloring, and for u,v € V(G),uv € E(G), we have Cy(u) # Cf(v), then f is called a k-
adjacent-vertex-distinguishing total coloring (k-AV DT'C for short). Let xq:(G) = min{k|G have
a k-adjacent-vertex-distinguishing total coloring}. Then xq:+(G) is called the adjacent-vertex-
distinguishing total chromatic number (AV DT'C number for short). The AV DTC numbers for
Py X Py, Py, x C,, and C,, x C,, are obtained in this paper.
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1. Introduction

The graphs considered in this paper are connected, finite, undirected and simple graphs.
In [1, 2, 3, 5] the vertex-distinguishing proper edge coloring (i.e. strong coloring), proper edge
coloring of a graph in which no two of its vertices is incident to edges colored with the same set of
colors, was introduced and investigated. In [7] the adjacent strong edge coloring (i.e. adjacent-
vertex-distinguishing proper edge coloring), proper edge coloring of a graph G in which no two
adjacent vertices of G is incident to edges colored with the same set of colors, was introduced
and studied by ZHANG Zhongfu et al. These concepts can be generalized. The adjacent-vertex-
distinguishing total coloring was introduced in [8]. A k-proper-total-coloring f of a graph G is a
mapping from V(G) U E(G) to {1,2,...,k} such that the following 3 conditions are valid:

1) Vu,v € V(G), if wv € E(G), then f(u) # f(v);

2) Vey,es € E(G),e1 # ea , if e1,e2 have a common end vertex, then f(ey) # f(ez);

3) Yu e V(G),e € E(G), if u is an end vertex of e, then f(u) # f(e).

Received date: 2006-09-12; Accepted date: 2007-10-28
Foundation item: the National Natural Science Foundation of China (No.10771091); the Science and Research
Project of the Education Department of Gansu Province (No. 0501-02).



790 CHEN X E, ZHANG Z F and SUN Y R

Suppose f is a k-proper-total-coloring of a graph G. Let Cy(u) = {f(uw)} U {f(vw)lw €
V(@),uw € E(G)} and f(u) = {1,2,...,k}\Cs(u) for every u € V(G). If Vu,v € V(G),uv €
E(G), we have Cf(u) # C¢(v), ie., C¢(u) # Cg(v), then f is called a k-adjacent-vertex-
distinguishing total coloring (k-AVDTC for short). The number min{k|G has a k-adjacent-
vertex-distinguishing total-coloring} is called the adjacent-vertex-distinguishing total chromatic
number (AVDTC number for short) of G and is denoted by x.:(G). The adjacent-vertex-
distinguishing total chromatic numbers of cycles, complete graphs, complete bipartite graphs,

(8]

fans, wheels and trees are obtained'®. From these results, the authors in [8] proposed the fol-

lowing conjecture.

Conjecture 181 For every graph G with order at least 2, we have xq:(G) < A(G) + 3.

Note that for complete graph G with order odd and at least 3, we have x4(G) = A(G) + 3.

Let G and H be graphs. Suppose that V(G) = {u1,us,...,um}, V(H) = {v1,v2,...,0,}.
The Cartesian product of G and H , denoted by G x H, is defined as follows: V(Gx H) = {w;;|i =
1,2,...,m,j=12,...,n}, E(G x H) = {w;jwys|i = r,vus € E(H)orj = s,v;v, € E(G)}. Let
P, be a path with n vertices and C, be a cycle with n vertices. The adjacent-vertex-distinguishing
total coloring on P, X Py, P, x C,, and C,, x C, are studied and the corresponding chromatic
numbers are obtained by constructing 4, 5, 6-AV DT'C in this paper. Theorems 1, 2 and 3 in
this paper will indicate that Conjecture 1 is valid for P,, x P,, P, x C,, and C,, x C,. For the

graph-theoretic terminology the reader is referred to [4, 6]. The following lemma is obvious.

Lemma 1 If arbitrary two distinct vertices of maximum degree in G are not adjacent, then
Xat(G) > A(G) + 1; If G has two distinct vertices of maximum degree which are adjacent, then
Xat(G) > A(G) + 2.

2. The AVDTC number for P, x P,

4, m=n=2;
Theorem 1 Let 2 <m < n. Then Xut(Pmn X P,) = 5 m=2n>3orm=n=3;
6, m=3,n>4orn>m>4.
Proof Assume that P, = uqug - U, Py, = 102+ - v, and V(P x P,) = {wy4li = 1,2,...,m,j =

1,2,...,n}, E(Pyp x P,) = {wijwys|i = r,vv, € E(P,) or j = s,v;u, € E(Py,)}. There are 4

cases to be considered.

Casel m=n=2.

In this case, P, x P, = Cy. Obviously, we have that xq:(P2 X P2) = Xat(Cy) = 4.

Case 2 m=2,n>3.

In this case, there exist two adjacent vertices of degree 3. So xat(P2 X P,,) > 5. In order to
prove Xat(P2 X P,) =5, we only prove that P, x P, has a 5-AV DTC. we construct a mapping
f from V(P2 x P,) U E(P2 x P,) to {1,2,3,4,5} as follows:

flwi;) € {1,2,3,4}, and f(wj) =i+j—1(mod4),i=1,2,j=1,2,...,n
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flwijw; j11) € {1,2,3,4}, and f(wijwij1) =i+ 7+ 1 (mod4d),i=1,2,7=1,2,...,n—1;

flunjwe;) =5,7=1,2,...,n.

Obviously, f is a 5-proper-total-coloring. For j =2,3,...,n — 1, we have

Cp(wiz) = {1},5 = 2 (mod 4); Cp(wiy) = {2},j = 3 (mod4); Cr(wi;) = {3},j =0 (mod 4);
Cp(wiy) = {4},7 = 1 (mod4). Cy(wz;) = {2},j = 2 (mod4); Cy(wz;) = {3},j = 3 (mod 4);
Ct(wej) = {4},7 =0 (mod 4); Cf(wsz;) = {1},7 =1 (mod 4).

And C(wi1) # Cp(war), Cp(win) # Cf(way). So fis a 5-AVDTC.

Case 3 m=n=23.

In this case, there exists only one vertex of maximum degree (=4). So xq:(P3 X P3) > 5. To
prove Xat(Ps X P3) =5, we only prove that P3 x P3 has a 5-AVDTC. we construct a mapping
f from V(P53 x P3)U E(Ps; x P3) to {1,2,3,4,5} as follows:

flwi;) € {1,2,3}, and f(w;;) =i+j—1 (mod3),i=1,2,3;7=1,2,3;

fwijw; j+1) € {1,2,3}, and f(w;jw; j11) =i+ j+ 1 (mod3),i =1,2,3;5=1,2;

flwijwa;) = 4, f(wajws;) = 5,5 =1,2,3.

Obviously, f is a 5-proper-total-coloring. For every xy € F(Ps x P3), we have d(x) # d(y).
So fisab-AVDTC.

Case4 m=3,n>4or4<m<n.

In this case, there exist two adjacent vertices of maximum degree (=4). So Xqut(Pm X Pp,) > 6.
To prove Xat(Pm X P,) = 6, we only prove that P, x P,, has a 6-AV DT C'. we construct a mapping
f from V(P,, x P,) U E(P,, X P,) to {1,2,3,4,5,6} as follows:

flwi;) € {1,2,3,4}, and f(w;j) =i+j—1 (mod4d),i=1,2,...,m,5=1,2,...,n;

flwijw; j+1) € {1,2,3,4}, and f(wijw; j41) = i+j+1 (mod4),i =1,2,...,m,j =1,2,...,n—

flwijwit1)=5,7=1,2,...,n,i=1,2,...,m —1,i is odd;

flwijwit1 ) =6,7=1,2,...,n,i=1,2,...,m — 1,4 is even.

Obviously, f is a 6-proper-total-coloring of P, X P,.

And for j =2,3,...,n— 1, we have

Cy(wij) ={2,3,4,5},7 =2 (mod 4); Cr(wr;) ={3,4,1,5},5 = 3 (mod 4);

Cyr(wr,) ={4,1,2,5},7 =0 (mod 4); Cr(wr;) ={1,2,3,5},5 =1 (mod 4).

For j =2,3,...,n— 1, we have

Ci(wm;) ={a(m+j—1),a(m+j),a(m+j+1),5}, mis even;

Ci(wm;) ={a(m+j—1),a(m+j),a(m+j+1),6},m is even,
where a(z) € {1,2,3,4},a(z) = z (mod 4) for integer z. For i =2,3,...,m — 1, we have

Cy(win) ={2,4,5,6},41s even; Cy(win) = {3,1,5,6},41s odd; Cf(win) = {a(i+n—1),a(i+
n),5,6}.

Fori=2,3,...,m—1,j=2,3,...,n—1, we have that Cf(w;;) = {a(i+j—1),a(i+7),a(i+
j+1),5,6}. By careful examination, we can get that for every two adjacent vertices 2 and y of
P, x P,, C(z) # C(y). So f is a 6-AVDTC. The proof is completed. O
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3. The adjacent-vertex-distinguishing total chromatic number for P,, x

Ch

5, m =2

Theorem 2 Let m > 2,n > 3. Then Xut (P x Cp) =
6, m > 3.

Proof Assume that P, = ujug- - Upm,Cyp = viva---vyv1, and V(P x Cy) = {w;|i =
1,2,...,m,j=1,2,....n}, E(Py, x Cp) = {wjjwrs|wij, wrs € V(P x Cy),1 =1,ujus € E(P,)
or j = s,vvr € E(Cp)}. If r > m, s > n, then we assume that w,s = w;; = wy; = w;s, where
1=1,2,....m,7=1,2,...,n,and i =r (modm), j = s (modn). There are three cases to be

considered.

Case 1 m=2,n=23.

In this case, there are two adjacent vertices of maximum degree (=3). So xa:(P2 X C3) > 5.
To prove xqt (P2 x C3) = 5, we only prove that P, x C3 has a 5-AV DTC'. we construct a mapping
f from V(P2 x C3) UE(Py x C3) to {1,2,3,4,5} as follows:

flwin) = 1, f(wiz) = 2, f(wiz) = 3, f(wa1) = 2, f(wea) = 1, f(waz) = 5; flwnwiz) =
3, f(wigwiz) = 4, f(wizwi) = 2; f(warwee) = 4, f(waawss) = 2, f(waswar) = 3; f(wnwa) =
5, f(wiawee) = 5, f(wizwes) = 1.

We may easily verify that f is a 5-proper-total-coloring. And Cjy(wi1) = Cjp(waz) =
{1,2,3,5}; Cr(wiz) = Cp(war) =12,3,4,5}; Cr(wee) = {1,2,4,5}, Cp(wiz) = {1, 2, 3,4}; Thus
for arbitrary zy € E(P> x C3), we have C(z) # C(y). So f is a 5-AVDTC.

Case 2 m >3,n=23.

In this case, there are two adjacent vertices of maximum degree (=4). So Xat(Pm x C3) > 6
according to Lemma 1. To prove Xqt (P, X C3) = 6, we only prove that P,,, x C3 has a 6-AVDTC.
we construct a mapping f from V (P, x C3) U E(P,, x C3) to {1,2,3,4,5,6} as follows:

flwin) € {1,2,3} and f(win) = ¢ (mod3),i = 1,2,...,m; fwawiy11) € {1,2,3} and
fwipwig11) =i+2 (mod3),i =1,2,...,m—1. f(wi;) € {1,2,3} and f(w;j) = f(wi1) +j —
1 (mod3),j =2,3,i =1,2,...,m; f(wjjwit1,;) € {1,2,3} and f(wijwit1,;) = fwinwit1,1) +
j—1 (mod3),j = 2,3,i = 1,2,...,m — 1; f(wpiwia) = 4, f(wiawiz) = 5, f(wizwi1) =
6; f(wijwij+1) € {4,5,6} and f(w;jw; j+1) = flwijwy j11) +i—1 (mod3),i=2,3,...,m;j
1,2,3; So f is a 6-proper-total-coloring.

Note that C'(w11) does not contain 5, but contains 4 and 6; C'(w12) does not contain 6, but
contains 4 and 5; C(w13) does not contain 4, but contains 5 and 6. One of C(w,1), C(wmz) and
C(wms3) does not contain 4, but contains 5 and 6; Another does not contain 5, but contains 4 and
6; And the third one does not contain 6, but contains 5 and 4. If C(w;;) does not contain 4 (5 or
6), then C(z) must contain 4 (5 or 6) for i = 3,4,...,m—2,j=1,2,3, and w;jz € E(P,, x C3).
So fisa6-AVDTC.

Case 3 m >2,n > 4.

In this case, Xt (Pm X Cr) > 5 if m = 2 and x4t (P, X Cy) > 6 if m > 3 according to Lemma



AV DTC numbers for Py X Ppn, Py x Cy, and Cy, X Cyp, 793

1. To prove Xat(Pm X Cr) =5 when m = 2 or xut(Pmn X Cp,) = 6 when m > 3, we only prove
that P, x C, has a 5-AV DT C when m = 2 or 6-AV DT C when m > 3. we construct a mapping
f from V(P,, x C,) U E(P,, x Cy,) to {1,2,3,4,5} when m = 2 or {1,2,3,4,5,6} when m > 3
as follows.

Firstly, we give a 4-AVDTC for (P, x Cp)[wi1, w12, ...,w1,], which is an n-cycle induced
by the vertices wi1, w12, ..., Wwin.

If n =0 (mod4), then we let

flwrwriv1) € {1,2,3,4} and f(wijwii41) = (mod4),i=1,2,...,n;

flwr;) € {1,2,3,4} and f(wi;) =7+ 1 (mod4);5=1,2,...,n

If n =1 (mod4), then we let

flwiws iv1) € {1,2,3,4} and f(wywy,i41) =4 (mod4),i=1,2,...,n — 5;

flun;) € {1,2,3,4}, and f(wy;) =7+ 1 (mod4);5=1,2,...,n—5;

Fwip—awin-3) =1, f(W1 n—3Win-2) =2, f(Win-2win-1) =4, f(Win_1w1n) = 3,f(Wipw11) =

fwin-1) =2, f(win-3) =3, f(win-2) =1, flwin-1)=2,f(win) =1.
If n =2 (mod4), then we let
flwiws iv1) € {1,2,3,4} and f(wywii41) = (mod4),i=1,2,...,n — 6;
f(wij) € {1,2,3,4}, and f(wy;) =j+1 (mod4);j =1,2,...,n—6;
fwin—swin-4) =1, f(win-awin-3) =2, fwin—3win- 2) 3,
flwr nowino1) =4, f(wrn1win) =3, f(winwi) =4
(W1n-5) =2, f(Win-a) =3, f(win-3) =4, f(win-2) =1, flwrn-1) =2, f(win) =1.
If n =3 (mod4), then we let
flwrwriv1) € {1,2,3,4} and f(wiwii41) = (mod4),i=1,2,...,n—T,
fw)E{l234}andf(w1])_]+1(mod4)j—l2 ,n—T;

(
(
fwrn_ewin-s) =1, f(Winswin-a) =2, f(W1n_awin_ 3)—3 fwy nswin2) =1,
(
(

~

S

flwy powi n1) =4, f(w1n1win) = 3, fwiawin) = 4;

f(win—6) =2, f(win—s) =3, f(win-a) =4, f(win-3) =2,

fwin-2) =3, f(win-1) =2, f(win) = 1.

In all above 4 situations, f is a 4-AVDTC of (P,, x Cp)[wi1, w12, .., w1y

Secondly, we extend f. For ¢ =2,3,...,m, let

flwi) € {1,2,3,4} and f(w;;) = f(w1,) (mod4),j =1,2,...,n,iis odd;

fwiy) € {1,2,3,4} and f(w;;) = f(w1,j+1) (mod4),j =1,2,...,n,i is even;

flwijw; j+1) € {1,2,3,4} and f(wijw; j4+1) = f(wijw jy1) (mod4),5 =1,2,...,n,i is odd;

flwijw; j11) € {1,2,3,4} and f(wijwij+1) = flwijpiw j2) (mod4),j = 1,2,...,n,i is
even.
Foralli=1,2,....m—1,7=1,2,...,n, we let

f(wijwit1,;) =5 when 7 is odd; f(w;jwiy1,;) = 6 when ¢ is even.
By simple verification, we know that f is a 5-AV DT C when m = 2 or 6-AV DTC when m > 3.
The proof is completed. O
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4. The AVDTC number for C,, x C,

Theorem 3 Let m > 3,n > 3. Then xq:(Cp x Cp,) = 6.

Proof Assume that C,, = ujus - - upui, Cp = v1vs - - - 0,01, and

V(Crm x Cy) ={wli=1,2,...,m,j =1,2,...,n},

E(Cy, x Cp) = {wijwrs|wij,wps € V(Cpy, x Cp), and i = r,vu0s € E(Cy) or j = s,uu, €
E(Cm)}-
If r > m, s > n, then we assume that w,s = w;; = wy; = wss, where i = 1,2,...,m,j =
1,2,...,n,and i =r (modm),j = s (modn).

Obviously, Xat(Crm X Cp) > 6. To prove Xqt(Ch, x Cp,) = 6, we only prove that C,, x C,, has
a 6-AV DTC. There are three cases to be considered.

Case 1 One of m,n is 3.
Without loss of generality, we assume m = 3. There are three subcases to be considered in

the following.

Case 1.1 n =0 (mod3).
we construct a mapping f from V(C3 x C,,) UE(C5 x C,,) to {1,2,3,4,5,6} as follows:
flun;) € {1,2,3} and f(wy;) =37 (mod3),j=1,2,...,n;
flwrjwrj+1) € {1,2,3} and f(wr;w1,j41) =75 +2 (mod3),5=1,2,...,n.
f(wij) € {1,2,3} and f(w;;) = f(wi;) +j—1 (mod3),i=2,3,j=1,2,...,n;
fwijw; j+1) € {1,2,3} and f(wijwij+1) € flwijwij+1) +J — 1 (mod3),i = 2,3,5 =

n;

1,2

flwiiwar) =4, f(warwsy) = 5, f(wzi1wi) = 6;
fwijwitr;) € {4,5,6} and f(wijjwit1,;) = fwawir11) +j — 1 (mod3),i = 1,2,3;5 =
2,3,...,m;
Obviously, f is a 6-proper-total-coloring. And
Cp(wiy) = {5}, 5 =1 (mod3); f(wiy) = {6},5 = 2 (mod3); f(wy;) = {4},5 =0 (mod 3);
flwa;) ={6},7 =1 (mod3); f(ws;) = {4},j =2 (mod3); f(wa;) = {5},j = 0 (mod3);
f(ws;) = {4},7 =1 (mod 3); f(ws;) = {5}, =2 (mod3); f(ws;) = {6},7 =0 (mod3). So
fisa6-AVDTC.
Case 1.2 n =1 (mod3).
we construct a mapping f from V(C3 x C,,) UE(C5 x C,,) to {1,2,3,4,5,6} as follows:
f(wij) € {1,2,3} and f(wy;) =7 (mod3),j =1,2,...,n—3;
flwrjwr j+1) € {1,2,3} and f(wr;w1,j41) =5 +2 (mod3),5=1,2,...,n—3.
f(wj) € {1,2,3} and f(w;j) = f(w;) +j—1 (mod3),i=2,3,7=1,2,...,n—3;
fwijwijer) € {1,2,3} and f(wijwijt1) = flwyjwi ) +7 — 1 (mod3),i = 2,3,j =
1,2,...,n—3;

flwniwar) =4, f(warwsi) = 5, fwziwi1) = 6;
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f(wiijLj) S {4,5,6} and f(wiijLj) = f(wﬂwiJrLl) —|—j -1 (mod3),z = 1,2,3;j =
2.3,...,n—3;

flwin—2) =2, flwin-1) =4, f(win) = 3, f(we,n—2) =3, f(wen-1) = 5;
flwzn) =1, f(wz n-2) =4, f(wzn-1) =6, fws,) = 2;

JWin—2win-1) =5, f(win1win) =1, flwipwir) = 2;

f(wa,n—2ws5—1) =6, f(w2 n—1W2,n) = 2, f(wapwa1) = 3;

flws nows 1) =1, f(wzn_1wsn) =3, f(wzaws) = 1;

J(Win—2w2pn—2) =4, f(Won—2w3n—2) =5, f(W3 n_2wWin-2)=6;
JWin—1w2n-1) = 3, fwen—1wz 1) =4, f(W3n_1w1n_1) = 2;
fwr,nwen) =6, f(wa pwsn) =4, f(ws p,win) =5.

We may verify that f is a 6-proper-total-coloring. And

Ct(wij) = {5},7 =1 (mod3); Cr(wy;) = {6}, =2 (mod3); Cy(w;) = {4}, =0 (mod 3);

Cp(waj) = {6},5 =1 (mod3); Cp(ws;) = {4},5 = 2 (mod 3); Cy(ws;) )

Ct(wsj) = {4},7 =1 (mod 3); Cr(ws;) = {5},j =2 (mod 3); Cy(ws;) = 6},j =0 (mod3).
Cp(win—2) = {1}, Cy(win-1) = {6}, Cp(win) = {4}, Cy(wan—2) = {2 }
T (wan) = {5}, Tyl n-z) = {3}, Oy (wsn-1) = {5}, Cp(wsn) = {6},

So fisa 6-AVDTC.

S~—
~w~
Ql
~
—
S
N
3
,_.
S~—
Il
——
[a—y

Case 1.3 n =1 (mod3).
we construct a mapping f from V(C3 x C,) UE(C3 x Cy,) to {1,2,3,4,5,6} as follows:
f(wij) € {1,2,3} and f(wi;) =j (mod3),j =1,2,...,n—4;
flwrjwr j+1) € {1,2,3} and f(wr;w1,j41) =5 +2 (mod3),j=1,2,...,n—4.
f(wi;) € {1,2,3} and f(w;j) = f(wr;) +7—1 (mod3),i=2,3,j = 1,2,...,n—4;
fwijw; j+1) € {1,2,3} and f(wijwij+1) = f(wijwrjr1) +J — 1 (mod3),s = 2,3,5 =
1,2,....n—4;
flwiiwz) =4, f(warwsi) = 5, f(wzi1wir) = 6;
flwijwivr ;) € {4,5,6} and f(wijwivr;) = fwawizin) +5 -1 (mod3),i = 1,2,3;5 =
2,3,...,n—4;

)

fwin—3) =2, f(wi,n—2) = 6, f(wi,n—1) =4, f(win) =3, f(w2,n—3) = 3, f(wa,n—2) =4,
flwan-1) =5, f(wan) =1, f(wsn-3) =4, f(wsn-2) =5, f(wzn-1) =6, f(wsn) =2,
flwin_swin2) =5, f(Winowin-1) =2, f(wrn1win) =1, fwipwi) = 2;
fwa,n—swapn—2) =6, f(wa n_owsn_1) =3, f(wz n—1W2n) = 2, f(wapwa1) = 3;

fws n—swzn-2) =1, f(W3 n-o2wsn-1) =4, f(W3n_1ws,) =3, f(wz,ws1) = 1;
J(Win—3w2n-3) =4, f(We,n_3w3n_3) =5, f(W3n_3w1n3) =6, f(wn 2wz n2)=1;
J(won—2w3n—2) =2, f(W3n—2Win-2)= 3 f(wln 1W2,n—1) =6, f(Wa n—1w3n_1) =1;
fws n—1wi n—1) =5, f(w1 pwan) =6, f(wepws ) =4, f(ws,wi,) =5

We may verify that f is a 6-proper-total-coloring. And C'¢(wy;) = {5},j =1 (mod 3); C'¢(wy,) =
{6},5 =2 (mod 3); Cf(w;) = {4},7 = 0 (mod 3);

Cp(way) = {6},5 =1 (mod3); Cy(wz;) = {4},j = 2 (mod 3);

Cr(ws;) = {4},5 =1 (mod3); O (ws;) = {5},j = 2 (mod 3);

f(wz2;) = {5},j =0 (mod 3);

c
Uf(’LUgj) = {6},] =0 (m0d3)
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Crlwin—s) = {1}, Cy(win-2) = {4}, C(win-1) = {3}, Cp(wrn) = {4};
Cr(wan-s) = {2}, Cp(wan—2) = {5}, Cr(wan-1) = {4}, Cy(wan) = {5};
Cr(wsn—s) = {3}, Cy(wsn-2) = {6}, Cr(wsn_1) = {2}, Cy(wsn) = {6}.

So fisa6-AVDTC.

Case 2 One of m,n is even.

Without loss of generality, we assume that m is even. We construct a mapping f from
V(Cp x Cp) U E(Cypy, x Cy) to {1,2,3,4,5,6} as follows.

Firstly, similar to Case 3 of the proof of Theorem 3, we can give a 4-AVDTC f for (Cy, X
Ch)[w11, w12, . .., wi,], which is a cycle induced by the vertices wi1, wia, ..., wiy.

Secondly, we extend f. Let

flwi;) € {1,2,3,4} and f(w;j;) = f(wi;), 1 =2,3,...,m,j =1,2,...,n,i is odd;

flwiy) € {1,2,3,4} and f(wi;) = f(wi,j+1), 1 =2,3,...,m,j =1,2,...,n,iis even.

flwijwit1;) =5,i=1,2,...,m,j=1,2,...,n,iisodd; f(wjwit1,;) =6,i=1,2,...,m,j =
1,2,...,n,1 is even.

We may easily verify that f is a 6-AV DTC of C,, x C,,.
Case 3 m,n are all odd and m > 5,n > 5. There are two subcases to be considered.

Case 3.1 n =1 (mod4).
We construct a mapping f from V(Cy, x Cp) UE(Cy, x Cy) to {1,2,3,4,5,6} as follows. Let
flwij) € {1,2,3,4} and f(wi;) =75+ 1 (mod4),j=1,2,...,n—4;
(wijwr j41) € {1,2,3,4} and f(wi w1 j41) = J (mod4) i=12,...,n—4
(wi,n-3) =3, f(win-2) =1, flwin_1) =2, fwi,n) = 1;
(W1 n—3Win-2) =2, f(Win-owin-1) =4, f(Win_1w1,n) =3, f(wnwi1) = 4.
(we;) € {1,2,3,4} and f(we;) =7+ 2 (mod4),j =1,2,...,n—4;
(wojwa j+1) € {1,2,3,4} and f(wojwa j41) =j5 +1 (mod4),] =1,2,...,n—4.
(W2,n—3) =4, f(wa,n—2) = 2, f(wzn-1) =3, f(wa,n) =2;
(wo,n—3w2n—2) =3, f(Won—owzpn-1) =1, f(Wan_1w1,n) = 4, f(wonwa1) = 1.
(wmj) € {1,2,3,4} and f(wm;) =7+ 3 (mod4),j=1,2,...,n—4;
(Wmjwm,j+1) € {1,2,3,4} and f(wm;jwm, j+1) =5+ 1 (mod4),5=1,2,...,n —4.
(Wmn—3) = 6, f(Wm.n-2) =3, f(Wmn-1) =5, f(Wmn) =3;
FWmn—3wWmn—2) =1, f(Wmn-owin-1) =2, f(Wnn-1Wmn) =4, f(WnnWm1) = 1.
Fort=3,4,....m—1,7=1,2,...,n, let
flwi;) = f(wiy), if i is odd; f(wij) = f(ws,;), if ¢ is even;
flwijw; j11) = flwijwi jy1), if ¢ is odd; fwijwi j41) = f(wjwa j41), if ¢ is even.
Fori=1,2,....m—2,j=12,...,n—2 let f(wjjwit1,;) € {5,6}, f(wiwit1,) =i+
j—1 (mod2). Fori=1,2,....m—2,j=n—1n,let f(wwit1,;) € {5,6}, f(wjjwit1,;) =
i+ j (mod2). And let
fwm=—1,jWm. ;) € {5,6}, f(Wm-1,Wm ;) =7 +1 (mod2),5=1,2,...,n—3;

f(wmfl,n72wm,n72) = 47 f(wmfl,nflwm,nfl) = 6; f(wmfl,nwm,n) =5.

f
f
f
f
f
f
f
f
f
f
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flwm jwi ;) € {1,2,3,4}, f(wm jwr,;) =j+ 2 (mod4),j =1,2,...,n—3;

f(Wmn—2wi n—2) =6, f(Wnn-1W1n-1) = 1, f(W nwin) = 2.

We may verify that f is a 6-proper-total-coloring. Let B; = (C'f(wj1), Cf(wia), ..., C(win)),i =
1,2,...,m. We have

B; = (6,5,6,5,6,5,6,5,...,6,5,6,5,6,5,3,6, 5);

Bi=(4,1,2,3,4,1,2,3,...,4,1,2,3,4,1,4,2,3),i = 2,3,...,m — 2,4 is even;

=(3,4,1,2,3,4,1,2,...,3,4,1,2,3,4,3,1,2),i = 2,3,...,m — 2,i is odd;

Bon1 = (4,1,2,3,4,1,2,3,...,4,1,2,3,4,1,6,2,3),

B = (5,6,5,6,5,6,5,6,...,5,6,5,6,5,3,5,3,6).
So fisa 6-AVDTC of Cp, x C,.

Case 3.2 n =3 (mod4).
We construct a mapping f from V(Cy, x Cp,) U E(C, x Cy) to {1,2,3,4,5,6} as follows. Let

f(wij) € {1,2,3,4} and f(wi;) =75+ 1 (mod4),j=1,2,...,n—6;

flwjwr j41) € {1,2 34}andf(w1jw1j+1):](mod4)j:1,2,..., n — 6.

flwin—s) =3, flwin-a) =4, f(win-3) =2, f(win-2) =3, f(win1) =2, flwin) =1;
Jwin—swin—4) =2, f(Win—awi,n-3) =3, f(Wi,n—3wWi,n—2) =1,

fwin—owin1) =4, f(win—1w1,n) = 3, f(winwi1) = 4.

flwg;) € {1,2,3,4} and f(wg;) =j +2 (mod4),j =1,2,...,n—6;

flwajwa j4+1) € {1,2,3,4} and f(wejwe j+1) =j+ 1 (mod4),j =1,2,...,n—6.
fwan—s) =4, f(won—a) =1, f(wzn-3) =3, f(wen2) =4, f(wan1) =3, f(wan) =2;
Jwon—sw2pn-4) =3, f(Waon_awrn_3) =4, f(W2,n_3w2n_2) = 2,

flwanowspn1) =1, f(won-1win) =4, f(wa pwo) = 1.

flwm;) € {1,2,3,4} and f(wm;) =75+ 3 (mod4),5=1,2,...,n —6;

fwmjwm j+1) € {1,2,3,4} and f(wmjwm, j+1) =j+ 1 (mod4),j =1,2,...,n —6.
f(Wmn—5) =1, f(Wm,n-1) =5, f(Wm,n-3) =6, f(Wnn—2) =5, f(Wnn- 1)—1 f(Wmn) = 3;
f(wmn 5Wm n— 4)—3f(wmn 4W1,n— 3)—2f(wmn 3Wm n— 2) 1,

(

f(Wmn—2wi n=1) = 3, f(Wm n-1Wm.,n) =4, f (W nwm1) = 1.
Fori=3,4,....m—1,5=1,2,...,n, let

fwij) = flwiy), if i is odd; f(wij) = f(wa,;), if i is even;

flwijw; j11) = flwijwi jy1), if 7 is odd; fwijwi j41) = flwajwa j41), if ¢ is even.
Fori=12,....m—2,7=1,2,....,n—2, let f(wiwit1,) € {5,6}, flwijwiy1;) =i+j—
1 (mod2). Fori = 1,2,....m—2,5 = n—1,n, let f(wjjwiy1,;) € {5,6}, f(wijwit1,) =
i+j (mod2). And let

fwm=—1,jWm. ;) € {5,6}, f(Wm-1,Wm;) =75 +1 (mod2),j=1,2,...,n—2;

fWm—1,n-1Wmn—1) = 2, f(Wm—1,nWmn) =5

flwm jwi;) € {1,2,3,4}, f(wm jur,;) =j+ 2 (mod4),j =1,2,...,n—4;

f(Wimn—swi n—3) =4, f(Wmn--o2win--2) =2, f(Wnn_1Win-1) =6, f(Wnnwin) = 2.
We may verify that f is a 6-proper-total-coloring.

Let B; = (Cy(wi1), Cr(wiz),...,Crlwin)), i = 1,2,...,m. We have
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By = (6,5,6,5,6,5,6,5,...,6,5,6,5,6,5,6,5,6,1,5);
o=(4,1,2,3,4,1,2,3,...,4,1,2,3,4,1,2,1,3,2,3),i=2,3,...,m— 2,i is even;
c=(3,4,1,2,3,4,1,2,...,3,4,1,2,3,4,1,4,2,1,2),i =2,3,...,m — 2,i is odd;
Bno1=(4,1,2,3,4,1,2,3,...,4,1,2,3,4,1,2,1,3,6,3),

By, = (5,6,5,6,5,6,5,6,...,5,6,5,6,5,6,4,3,4,5,6).

B
B

So fisa 6-AVDTC of Cp, x C,.

The proof is completed. O
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