A Note on Adjacent-Vertex-Distinguishing Total Chromatic Numbers for $P_{m} \times P_{n}, P_{m} \times C_{n}$ and $C_{m} \times C_{n}$

CHEN Xiang En ${ }^{1}$, ZHANG Zhong Fu ${ }^{1,2}$, SUN Yi Rong ${ }^{1}$
(1. College of Mathematics and Information Science, Northwest Normal University, Gansu 730070, China;
2. Institute of Applied Mathematics, Lanzhou Jiaotong University, Gansu 730070, China)

(E-mail: chenxe@nwnu.edu.cn)

Abstract

Let G be a simple graph. Let f be a mapping from $V(G) \cup E(G)$ to $\{1,2, \ldots, k\}$. Let $C_{f}(v)=\{f(v)\} \cup\{f(v w) \mid w \in V(G), v w \in E(G)\}$ for every $v \in V(G)$. If f is a k-proper-total-coloring, and for $u, v \in V(G), u v \in E(G)$, we have $C_{f}(u) \neq C_{f}(v)$, then f is called a k -adjacent-vertex-distinguishing total coloring $\left(k-A V D T C\right.$ for short). Let $\chi_{a t}(G)=\min \{k \mid G$ have a k-adjacent-vertex-distinguishing total coloring\}. Then $\chi_{a t}(G)$ is called the adjacent-vertexdistinguishing total chromatic number (AVDTC number for short). The AVDTC numbers for $P_{m} \times P_{n}, P_{m} \times C_{n}$ and $C_{m} \times C_{n}$ are obtained in this paper.

Keywords total coloring; adjacent-vertex-distinguishing total coloring; adjacent-vertex-distinguishing total chromatic number.

Document code A

MR(2000) Subject Classification 05C15
Chinese Library Classification O157.5

1. Introduction

The graphs considered in this paper are connected, finite, undirected and simple graphs. In $[1,2,3,5]$ the vertex-distinguishing proper edge coloring (i.e. strong coloring), proper edge coloring of a graph in which no two of its vertices is incident to edges colored with the same set of colors, was introduced and investigated. In [7] the adjacent strong edge coloring (i.e. adjacent-vertex-distinguishing proper edge coloring), proper edge coloring of a graph G in which no two adjacent vertices of G is incident to edges colored with the same set of colors, was introduced and studied by ZHANG Zhongfu et al. These concepts can be generalized. The adjacent-vertexdistinguishing total coloring was introduced in [8]. A k-proper-total-coloring f of a graph G is a mapping from $V(G) \cup E(G)$ to $\{1,2, \ldots, k\}$ such that the following 3 conditions are valid:

1) $\forall u, v \in V(G)$, if $u v \in E(G)$, then $f(u) \neq f(v)$;
2) $\forall e_{1}, e_{2} \in E(G), e_{1} \neq e_{2}$, if e_{1}, e_{2} have a common end vertex, then $f\left(e_{1}\right) \neq f\left(e_{2}\right)$;
3) $\forall u \in V(G), e \in E(G)$, if u is an end vertex of e, then $f(u) \neq f(e)$.

Received date: 2006-09-12; Accepted date: 2007-10-28
Foundation item: the National Natural Science Foundation of China (No. 10771091); the Science and Research Project of the Education Department of Gansu Province (No. 0501-02).

Suppose f is a k-proper-total-coloring of a graph G. Let $C_{f}(u)=\{f(u)\} \cup\{f(u w) \mid w \in$ $V(G), u w \in E(G)\}$ and $f(u)=\{1,2, \ldots, k\} \backslash C_{f}(u)$ for every $u \in V(G)$. If $\forall u, v \in V(G), u v \in$ $E(G)$, we have $C_{f}(u) \neq C_{f}(v)$, i.e., $\bar{C}_{f}(u) \neq \bar{C}_{f}(v)$, then f is called a k-adjacent-vertexdistinguishing total coloring (k-AVDTC for short). The number $\min \{k \mid G$ has a k-adjacent-vertex-distinguishing total-coloring\} is called the adjacent-vertex-distinguishing total chromatic number ($A V D T C$ number for short) of G and is denoted by $\chi_{a t}(G)$. The adjacent-vertexdistinguishing total chromatic numbers of cycles, complete graphs, complete bipartite graphs, fans, wheels and trees are obtained ${ }^{[8]}$. From these results, the authors in [8] proposed the following conjecture.

Conjecture $1^{[8]}$ For every graph G with order at least 2, we have $\chi_{a t}(G) \leq \Delta(G)+3$.
Note that for complete graph G with order odd and at least 3 , we have $\chi_{a t}(G)=\Delta(G)+3$.
Let G and H be graphs. Suppose that $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}, V(H)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The Cartesian product of G and H, denoted by $G \times H$, is defined as follows: $V(G \times H)=\left\{w_{i j} \mid i=\right.$ $1,2, \ldots, m, j=1,2, \ldots, n\}, E(G \times H)=\left\{w_{i j} w_{r s} \mid i=r, v_{j} v_{s} \in E(H) \operatorname{or} j=s, v_{i} v_{r} \in E(G)\right\}$. Let P_{n} be a path with n vertices and C_{n} be a cycle with n vertices. The adjacent-vertex-distinguishing total coloring on $P_{m} \times P_{n}, P_{m} \times C_{n}$ and $C_{m} \times C_{n}$ are studied and the corresponding chromatic numbers are obtained by constructing $4,5,6-A V D T C$ in this paper. Theorems 1,2 and 3 in this paper will indicate that Conjecture 1 is valid for $P_{m} \times P_{n}, P_{m} \times C_{n}$ and $C_{m} \times C_{n}$. For the graph-theoretic terminology the reader is referred to [4, 6]. The following lemma is obvious.

Lemma 1 If arbitrary two distinct vertices of maximum degree in G are not adjacent, then $\chi_{a t}(G) \geq \Delta(G)+1$; If G has two distinct vertices of maximum degree which are adjacent, then $\chi_{a t}(G) \geq \Delta(G)+2$.

2. The AVDTC number for $P_{m} \times P_{n}$

Theorem 1 Let $2 \leq m \leq n$. Then $\chi_{a t}\left(P_{m} \times P_{n}\right)= \begin{cases}4, & m=n=2 ; \\ 5, & m=2, n \geq 3 \text { or } m=n=3 ; \\ 6, & m=3, n \geq 4 \text { or } n \geq m \geq 4 .\end{cases}$
Proof Assume that $P_{m}=u_{1} u_{2} \cdots u_{m}, P_{n}=v_{1} v_{2} \cdots v_{n}$, and $V\left(P_{m} \times P_{n}\right)=\left\{w_{i j} \mid i=1,2, \ldots, m, j=\right.$ $1,2, \ldots, n\}, E\left(P_{m} \times P_{n}\right)=\left\{w_{i j} w_{r s} \mid i=r, v_{j} v_{s} \in E\left(P_{n}\right)\right.$ or $\left.j=s, v_{i} v_{r} \in E\left(P_{m}\right)\right\}$. There are 4 cases to be considered.

Case $1 m=n=2$.
In this case, $P_{2} \times P_{2}=C_{4}$. Obviously, we have that $\chi_{a t}\left(P_{2} \times P_{2}\right)=\chi_{a t}\left(C_{4}\right)=4$.
Case $2 m=2, n \geq 3$.
In this case, there exist two adjacent vertices of degree 3. So $\chi_{a t}\left(P_{2} \times P_{n}\right) \geq 5$. In order to prove $\chi_{a t}\left(P_{2} \times P_{n}\right)=5$, we only prove that $P_{2} \times P_{n}$ has a 5-AVDTC. we construct a mapping f from $V\left(P_{2} \times P_{n}\right) \cup E\left(P_{2} \times P_{n}\right)$ to $\{1,2,3,4,5\}$ as follows:

$$
f\left(w_{i j}\right) \in\{1,2,3,4\}, \text { and } f\left(w_{i j}\right) \equiv i+j-1(\bmod 4), i=1,2, j=1,2, \ldots, n
$$

$f\left(w_{i j} w_{i, j+1}\right) \in\{1,2,3,4\}$, and $f\left(w_{i j} w_{i, j+1}\right) \equiv i+j+1(\bmod 4), i=1,2, j=1,2, \ldots, n-1$; $f\left(w_{1 j} w_{2 j}\right)=5, j=1,2, \ldots, n$.
Obviously, f is a 5 -proper-total-coloring. For $j=2,3, \ldots, n-1$, we have
$\bar{C}_{f}\left(w_{1 j}\right)=\{1\}, j \equiv 2(\bmod 4) ; \bar{C}_{f}\left(w_{1 j}\right)=\{2\}, j \equiv 3(\bmod 4) ; \bar{C}_{f}\left(w_{1 j}\right)=\{3\}, j \equiv 0(\bmod 4) ;$ $\bar{C}_{f}\left(w_{1 j}\right)=\{4\}, j \equiv 1(\bmod 4) . \bar{C}_{f}\left(w_{2 j}\right)=\{2\}, j \equiv 2(\bmod 4) ; \bar{C}_{f}\left(w_{2 j}\right)=\{3\}, j \equiv 3(\bmod 4) ;$ $\bar{C}_{f}\left(w_{2 j}\right)=\{4\}, j \equiv 0(\bmod 4) ; \bar{C}_{f}\left(w_{2 j}\right)=\{1\}, j \equiv 1(\bmod 4)$.

And $\bar{C}_{f}\left(w_{11}\right) \neq \bar{C}_{f}\left(w_{21}\right), \bar{C}_{f}\left(w_{1 n}\right) \neq \bar{C}_{f}\left(w_{2 n}\right)$. So f is a $5-A V D T C$.
Case $3 m=n=3$.
In this case, there exists only one vertex of maximum degree $(=4)$. So $\chi_{a t}\left(P_{3} \times P_{3}\right) \geq 5$. To prove $\chi_{a t}\left(P_{3} \times P_{3}\right)=5$, we only prove that $P_{3} \times P_{3}$ has a 5 -AVDTC. we construct a mapping f from $V\left(P_{3} \times P_{3}\right) \cup E\left(P_{3} \times P_{3}\right)$ to $\{1,2,3,4,5\}$ as follows:
$f\left(w_{i j}\right) \in\{1,2,3\}$, and $f\left(w_{i j}\right) \equiv i+j-1(\bmod 3), i=1,2,3 ; j=1,2,3 ;$
$f\left(w_{i j} w_{i, j+1}\right) \in\{1,2,3\}$, and $f\left(w_{i j} w_{i, j+1}\right) \equiv i+j+1(\bmod 3), i=1,2,3 ; j=1,2$;
$f\left(w_{1 j} w_{2 j}\right)=4, f\left(w_{2 j} w_{3 j}\right)=5, j=1,2,3$.
Obviously, f is a 5 -proper-total-coloring. For every $x y \in E\left(P_{3} \times P_{3}\right)$, we have $d(x) \neq d(y)$. So f is a $5-A V D T C$.

Case $4 m=3, n \geq 4$ or $4 \leq m \leq n$.
In this case, there exist two adjacent vertices of maximum degree $(=4)$. So $\chi_{a t}\left(P_{m} \times P_{n}\right) \geq 6$. To prove $\chi_{a t}\left(P_{m} \times P_{n}\right)=6$, we only prove that $P_{m} \times P_{n}$ has a 6-AVDTC. we construct a mapping f from $V\left(P_{m} \times P_{n}\right) \cup E\left(P_{m} \times P_{n}\right)$ to $\{1,2,3,4,5,6\}$ as follows:
$f\left(w_{i j}\right) \in\{1,2,3,4\}$, and $f\left(w_{i j}\right) \equiv i+j-1(\bmod 4), i=1,2, \ldots, m, j=1,2, \ldots, n ;$
$f\left(w_{i j} w_{i, j+1}\right) \in\{1,2,3,4\}$, and $f\left(w_{i j} w_{i, j+1}\right) \equiv i+j+1(\bmod 4), i=1,2, \ldots, m, j=1,2, \ldots, n-$ $1 ;$
$f\left(w_{i j} w_{i+1, j}\right)=5, j=1,2, \ldots, n, i=1,2, \ldots, m-1, i$ is odd;
$f\left(w_{i j} w_{i+1, j}\right)=6, j=1,2, \ldots, n, i=1,2, \ldots, m-1, i$ is even.
Obviously, f is a 6-proper-total-coloring of $P_{m} \times P_{n}$.
And for $j=2,3, \ldots, n-1$, we have
$C_{f}\left(w_{1 j}\right)=\{2,3,4,5\}, j \equiv 2(\bmod 4) ; C_{f}\left(w_{1 j}\right)=\{3,4,1,5\}, j \equiv 3(\bmod 4) ;$
$C_{f}\left(w_{1 j}\right)=\{4,1,2,5\}, j \equiv 0(\bmod 4) ; C_{f}\left(w_{1 j}\right)=\{1,2,3,5\}, j \equiv 1(\bmod 4)$.
For $j=2,3, \ldots, n-1$, we have
$C_{f}\left(w_{m j}\right)=\{a(m+j-1), a(m+j), a(m+j+1), 5\}, m$ is even;
$C_{f}\left(w_{m j}\right)=\{a(m+j-1), a(m+j), a(m+j+1), 6\}, m$ is even,
where $a(z) \in\{1,2,3,4\}, a(z) \equiv z(\bmod 4)$ for integer z. For $i=2,3, \ldots, m-1$, we have
$C_{f}\left(w_{i 1}\right)=\{2,4,5,6\}, i$ is even; $C_{f}\left(w_{i 1}\right)=\{3,1,5,6\}, i$ is odd; $C_{f}\left(w_{i n}\right)=\{a(i+n-1), a(i+$ $n), 5,6\}$.

For $i=2,3, \ldots, m-1, j=2,3, \ldots, n-1$, we have that $C_{f}\left(w_{i j}\right)=\{a(i+j-1), a(i+j), a(i+$ $j+1), 5,6\}$. By careful examination, we can get that for every two adjacent vertices x and y of $P_{m} \times P_{n}, C(x) \neq C(y)$. So f is a $6-A V D T C$. The proof is completed.

3. The adjacent-vertex-distinguishing total chromatic number for $P_{m} \times$

 C_{n}Theorem 2 Let $m \geq 2, n \geq 3$. Then $\chi_{a t}\left(P_{m} \times C_{n}\right)= \begin{cases}5, & m=2 ; \\ 6, & m \geq 3 .\end{cases}$
Proof Assume that $P_{m}=u_{1} u_{2} \cdots u_{m}, C_{n}=v_{1} v_{2} \cdots v_{n} v_{1}$, and $V\left(P_{m} \times C_{n}\right)=\left\{w_{i j} \mid i=\right.$ $1,2, \ldots, m, j=1,2, \ldots, n\}, E\left(P_{m} \times C_{n}\right)=\left\{w_{i j} w_{r s} \mid w_{i j}, w_{r s} \in V\left(P_{m} \times C_{n}\right), i=r, u_{j} u_{s} \in E\left(P_{n}\right)\right.$ or $\left.j=s, v_{i} v_{r} \in E\left(C_{m}\right)\right\}$. If $r>m, s>n$, then we assume that $w_{r s}=w_{i j}=w_{r j}=w_{i s}$, where $i=1,2, \ldots, m, j=1,2, \ldots, n$, and $i \equiv r(\bmod m), j \equiv s(\bmod n)$. There are three cases to be considered.

Case $1 m=2, n=3$.
In this case, there are two adjacent vertices of maximum degree ($=3$). So $\chi_{a t}\left(P_{2} \times C_{3}\right) \geq 5$. To prove $\chi_{a t}\left(P_{2} \times C_{3}\right)=5$, we only prove that $P_{2} \times C_{3}$ has a 5-AVDTC. we construct a mapping f from $V\left(P_{2} \times C_{3}\right) \cup E\left(P_{2} \times C_{3}\right)$ to $\{1,2,3,4,5\}$ as follows:
$f\left(w_{11}\right)=1, f\left(w_{12}\right)=2, f\left(w_{13}\right)=3, f\left(w_{21}\right)=2, f\left(w_{22}\right)=1, f\left(w_{23}\right)=5 ; f\left(w_{11} w_{12}\right)=$ $3, f\left(w_{12} w_{13}\right)=4, f\left(w_{13} w_{11}\right)=2 ; f\left(w_{21} w_{22}\right)=4, f\left(w_{22} w_{23}\right)=2, f\left(w_{23} w_{21}\right)=3 ; f\left(w_{11} w_{21}\right)=$ 5, $f\left(w_{12} w_{22}\right)=5, f\left(w_{13} w_{23}\right)=1$.

We may easily verify that f is a 5 -proper-total-coloring. And $C_{f}\left(w_{11}\right)=C_{f}\left(w_{23}\right)=$ $\{1,2,3,5\} ; C_{f}\left(w_{12}\right)=C_{f}\left(w_{21}\right)=\{2,3,4,5\} ; C_{f}\left(w_{22}\right)=\{1,2,4,5\}, C_{f}\left(w_{13}\right)=\{1,2,3,4\} ;$ Thus for arbitrary $x y \in E\left(P_{2} \times C_{3}\right)$, we have $C(x) \neq C(y)$. So f is a 5 -AVDTC.

Case $2 m \geq 3, n=3$.
In this case, there are two adjacent vertices of maximum degree (=4). So $\chi_{a t}\left(P_{m} \times C_{3}\right) \geq 6$ according to Lemma 1 . To prove $\chi_{a t}\left(P_{m} \times C_{3}\right)=6$, we only prove that $P_{m} \times C_{3}$ has a 6-AVDTC. we construct a mapping f from $V\left(P_{m} \times C_{3}\right) \cup E\left(P_{m} \times C_{3}\right)$ to $\{1,2,3,4,5,6\}$ as follows:
$f\left(w_{i 1}\right) \in\{1,2,3\}$ and $f\left(w_{i 1}\right) \equiv i(\bmod 3), i=1,2, \ldots, m ; f\left(w_{i 1} w_{i+1,1}\right) \in\{1,2,3\}$ and $f\left(w_{i 1} w_{i+1,1}\right) \equiv i+2(\bmod 3), i=1,2, \ldots, m-1 . f\left(w_{i j}\right) \in\{1,2,3\}$ and $f\left(w_{i j}\right) \equiv f\left(w_{i 1}\right)+j-$ $1(\bmod 3), j=2,3, i=1,2, \ldots, m ; f\left(w_{i j} w_{i+1, j}\right) \in\{1,2,3\}$ and $f\left(w_{i j} w_{i+1, j}\right) \equiv f\left(w_{i 1} w_{i+1,1}\right)+$ $j-1(\bmod 3), j=2,3, i=1,2, \ldots, m-1 ; f\left(w_{11} w_{12}\right)=4, f\left(w_{12} w_{13}\right)=5, f\left(w_{13} w_{11}\right)=$ $6 ; f\left(w_{i j} w_{i, j+1}\right) \in\{4,5,6\}$ and $f\left(w_{i j} w_{i, j+1}\right) \equiv f\left(w_{1 j} w_{1, j+1}\right)+i-1(\bmod 3), i=2,3, \ldots, m ; j=$ $1,2,3 ;$ So f is a 6 -proper-total-coloring.

Note that $C\left(w_{11}\right)$ does not contain 5 , but contains 4 and $6 ; C\left(w_{12}\right)$ does not contain 6 , but contains 4 and $5 ; C\left(w_{13}\right)$ does not contain 4, but contains 5 and 6 . One of $C\left(w_{m 1}\right), C\left(w_{m 2}\right)$ and $C\left(w_{m 3}\right)$ does not contain 4, but contains 5 and 6 ; Another does not contain 5, but contains 4 and 6; And the third one does not contain 6, but contains 5 and 4 . If $C\left(w_{i j}\right)$ does not contain 4 (5 or 6), then $C(x)$ must contain 4 (5 or 6) for $i=3,4, \ldots, m-2, j=1,2,3$, and $w_{i j} x \in E\left(P_{m} \times C_{3}\right)$. So f is a 6 -AVDTC.

Case $3 m \geq 2, n \geq 4$.
In this case, $\chi_{a t}\left(P_{m} \times C_{n}\right) \geq 5$ if $m=2$ and $\chi_{a t}\left(P_{m} \times C_{n}\right) \geq 6$ if $m \geq 3$ according to Lemma

1. To prove $\chi_{a t}\left(P_{m} \times C_{n}\right)=5$ when $m=2$ or $\chi_{a t}\left(P_{m} \times C_{n}\right)=6$ when $m \geq 3$, we only prove that $P_{m} \times C_{n}$ has a $5-A V D T C$ when $m=2$ or $6-A V D T C$ when $m \geq 3$. we construct a mapping f from $V\left(P_{m} \times C_{n}\right) \cup E\left(P_{m} \times C_{n}\right)$ to $\{1,2,3,4,5\}$ when $m=2$ or $\{1,2,3,4,5,6\}$ when $m \geq 3$ as follows.

Firstly, we give a $4-A V D T C$ for $\left(P_{m} \times C_{n}\right)\left[w_{11}, w_{12}, \ldots, w_{1 n}\right]$, which is an n-cycle induced by the vertices $w_{11}, w_{12}, \ldots, w_{1 n}$.

If $n \equiv 0(\bmod 4)$, then we let
$f\left(w_{1 i} w_{1, i+1}\right) \in\{1,2,3,4\}$ and $f\left(w_{1 i} w_{1, i+1}\right) \equiv i(\bmod 4), i=1,2, \ldots, n$;
$f\left(w_{1 j}\right) \in\{1,2,3,4\}$ and $f\left(w_{1 j}\right) \equiv j+1(\bmod 4) ; j=1,2, \ldots, n$.
If $n \equiv 1(\bmod 4)$, then we let
$f\left(w_{1 i} w_{1, i+1}\right) \in\{1,2,3,4\}$ and $f\left(w_{1 i} w_{1, i+1}\right) \equiv i(\bmod 4), i=1,2, \ldots, n-5$;
$f\left(w_{1 j}\right) \in\{1,2,3,4\}$, and $f\left(w_{1 j}\right) \equiv j+1(\bmod 4) ; j=1,2, \ldots, n-5$;
$f\left(w_{1, n-4} w_{1, n-3}\right)=1, f\left(w_{1, n-3} w_{1, n-2}\right)=2, f\left(w_{1, n-2} w_{1, n-1}\right)=4, f\left(w_{1, n-1} w_{1 n}\right)=3, f\left(w_{1 n} w_{11}\right)=$ 4;

$$
f\left(w_{1, n-1}\right)=2, f\left(w_{1, n-3}\right)=3, f\left(w_{1, n-2}\right)=1, f\left(w_{1, n-1}\right)=2, f\left(w_{1 n}\right)=1
$$

If $n \equiv 2(\bmod 4)$, then we let
$f\left(w_{1 i} w_{1, i+1}\right) \in\{1,2,3,4\}$ and $f\left(w_{1 i} w_{1, i+1}\right) \equiv i(\bmod 4), i=1,2, \ldots, n-6$;
$f\left(w_{1 j}\right) \in\{1,2,3,4\}$, and $f\left(w_{1 j}\right) \equiv j+1(\bmod 4) ; j=1,2, \ldots, n-6 ;$
$f\left(w_{1, n-5} w_{1, n-4}\right)=1, f\left(w_{1, n-4} w_{1, n-3}\right)=2, f\left(w_{1, n-3} w_{1, n-2}\right)=3$,
$f\left(w_{1, n-2} w_{1, n-1}\right)=4, f\left(w_{1, n-1} w_{1 n}\right)=3, f\left(w_{1 n} w_{11}\right)=4$;
$f\left(w_{1, n-5}\right)=2, f\left(w_{1, n-4}\right)=3, f\left(w_{1, n-3}\right)=4, f\left(w_{1, n-2}\right)=1, f\left(w_{1, n-1}\right)=2, f\left(w_{1, n}\right)=1$.
If $n \equiv 3(\bmod 4)$, then we let
$f\left(w_{1 i} w_{1, i+1}\right) \in\{1,2,3,4\}$ and $f\left(w_{1 i} w_{1, i+1}\right) \equiv i(\bmod 4), i=1,2, \ldots, n-7$;
$f\left(w_{1 j}\right) \in\{1,2,3,4\}$ and $f\left(w_{1 j}\right) \equiv j+1(\bmod 4) ; j=1,2, \ldots, n-7$;
$f\left(w_{1, n-6} w_{1, n-5}\right)=1, f\left(w_{1, n-5} w_{1, n-4}\right)=2, f\left(w_{1, n-4} w_{1, n-3}\right)=3, f\left(w_{1, n-3} w_{1, n-2}\right)=1$,
$f\left(w_{1, n-2} w_{1, n-1}\right)=4, f\left(w_{1, n-1} w_{1 n}\right)=3, f\left(w_{1 n} w_{11}\right)=4$;
$f\left(w_{1, n-6}\right)=2, f\left(w_{1, n-5}\right)=3, f\left(w_{1, n-4}\right)=4, f\left(w_{1, n-3}\right)=2$,
$f\left(w_{1, n-2}\right)=3, f\left(w_{1, n-1}\right)=2, f\left(w_{1 n}\right)=1$.
In all above 4 situations, f is a $4-A V D T C$ of $\left(P_{m} \times C_{n}\right)\left[w_{11}, w_{12}, \ldots, w_{1 n}\right]$.
Secondly, we extend f. For $i=2,3, \ldots, m$, let
$f\left(w_{i j}\right) \in\{1,2,3,4\}$ and $f\left(w_{i j}\right) \equiv f\left(w_{1 j}\right)(\bmod 4), j=1,2, \ldots, n, i$ is odd;
$f\left(w_{i j}\right) \in\{1,2,3,4\}$ and $f\left(w_{i j}\right) \equiv f\left(w_{1, j+1}\right)(\bmod 4), j=1,2, \ldots, n, i$ is even;
$f\left(w_{i j} w_{i, j+1}\right) \in\{1,2,3,4\}$ and $f\left(w_{i j} w_{i, j+1}\right) \equiv f\left(w_{1 j} w_{1, j+1}\right)(\bmod 4), j=1,2, \ldots, n, i$ is odd;
$f\left(w_{i j} w_{i, j+1}\right) \in\{1,2,3,4\}$ and $f\left(w_{i j} w_{i, j+1}\right) \equiv f\left(w_{1, j+1} w_{1, j+2}\right)(\bmod 4), j=1,2, \ldots, n, i$ is even.
For all $i=1,2, \ldots, m-1, j=1,2, \ldots, n$, we let
$f\left(w_{i j} w_{i+1, j}\right)=5$ when i is odd; $f\left(w_{i j} w_{i+1, j}\right)=6$ when i is even.
By simple verification, we know that f is a $5-A V D T C$ when $m=2$ or $6-A V D T C$ when $m \geq 3$.
The proof is completed.

4. The AVDTC number for $C_{m} \times C_{n}$

Theorem 3 Let $m \geq 3, n \geq 3$. Then $\chi_{a t}\left(C_{m} \times C_{n}\right)=6$.
Proof Assume that $C_{m}=u_{1} u_{2} \cdots u_{m} u_{1}, C_{n}=v_{1} v_{2} \cdots v_{n} v_{1}$, and
$V\left(C_{m} \times C_{n}\right)=\left\{w_{i j} \mid i=1,2, \ldots, m, j=1,2, \ldots, n\right\}$,
$E\left(C_{m} \times C_{n}\right)=\left\{w_{i j} w_{r s} \mid w_{i j}, w_{r s} \in V\left(C_{m} \times C_{n}\right)\right.$, and $i=r, v_{j} v_{s} \in E\left(C_{n}\right)$ or $j=s, u_{i} u_{r} \in$ $\left.E\left(C_{m}\right)\right\}$.
If $r>m, s>n$, then we assume that $w_{r s}=w_{i j}=w_{r j}=w_{i s}$, where $i=1,2, \ldots, m, j=$ $1,2, \ldots, n$, and $i \equiv r(\bmod m), j \equiv s(\bmod n)$.

Obviously, $\chi_{a t}\left(C_{m} \times C_{n}\right) \geq 6$. To prove $\chi_{a t}\left(C_{m} \times C_{n}\right)=6$, we only prove that $C_{m} \times C_{n}$ has a $6-A V D T C$. There are three cases to be considered.

Case 1 One of m, n is 3 .
Without loss of generality, we assume $m=3$. There are three subcases to be considered in the following.

Case 1.1 $n \equiv 0(\bmod 3)$.
we construct a mapping f from $V\left(C_{3} \times C_{n}\right) \cup E\left(C_{3} \times C_{n}\right)$ to $\{1,2,3,4,5,6\}$ as follows:
$f\left(w_{1 j}\right) \in\{1,2,3\}$ and $f\left(w_{1 j}\right) \equiv j(\bmod 3), j=1,2, \ldots, n$;
$f\left(w_{1 j} w_{1, j+1}\right) \in\{1,2,3\}$ and $f\left(w_{1 j} w_{1, j+1}\right) \equiv j+2(\bmod 3), j=1,2, \ldots, n$.
$f\left(w_{i j}\right) \in\{1,2,3\}$ and $f\left(w_{i j}\right) \equiv f\left(w_{1 j}\right)+j-1(\bmod 3), i=2,3, j=1,2, \ldots, n$;
$f\left(w_{i j} w_{i, j+1}\right) \in\{1,2,3\}$ and $f\left(w_{i j} w_{i, j+1}\right) \in f\left(w_{1 j} w_{1, j+1}\right)+j-1(\bmod 3), i=2,3, j=$ $1,2, \ldots, n$;
$f\left(w_{11} w_{21}\right)=4, f\left(w_{21} w_{31}\right)=5, f\left(w_{31} w_{11}\right)=6 ;$
$f\left(w_{i j} w_{i+1, j}\right) \in\{4,5,6\}$ and $f\left(w_{i j} w_{i+1, j}\right) \equiv f\left(w_{i 1} w_{i+1,1}\right)+j-1(\bmod 3), i=1,2,3 ; j=$ $2,3, \ldots, n$;

Obviously, f is a 6 -proper-total-coloring. And
$\bar{C}_{f}\left(w_{1 j}\right)=\{5\}, j \equiv 1(\bmod 3) ; f\left(w_{1 j}\right)=\{6\}, j \equiv 2(\bmod 3) ; f\left(w_{1 j}\right)=\{4\}, j \equiv 0(\bmod 3) ;$
$f\left(w_{2 j}\right)=\{6\}, j \equiv 1(\bmod 3) ; f\left(w_{2 j}\right)=\{4\}, j \equiv 2(\bmod 3) ; f\left(w_{2 j}\right)=\{5\}, j \equiv 0(\bmod 3) ;$
$f\left(w_{3 j}\right)=\{4\}, j \equiv 1(\bmod 3) ; f\left(w_{3 j}\right)=\{5\}, j \equiv 2(\bmod 3) ; f\left(w_{3 j}\right)=\{6\}, j \equiv 0(\bmod 3)$. So f is a $6-A V D T C$.

Case $1.2 n \equiv 1(\bmod 3)$.
we construct a mapping f from $V\left(C_{3} \times C_{n}\right) \cup E\left(C_{3} \times C_{n}\right)$ to $\{1,2,3,4,5,6\}$ as follows:
$f\left(w_{1 j}\right) \in\{1,2,3\}$ and $f\left(w_{1 j}\right) \equiv j(\bmod 3), j=1,2, \ldots, n-3$;
$f\left(w_{1 j} w_{1, j+1}\right) \in\{1,2,3\}$ and $f\left(w_{1 j} w_{1, j+1}\right) \equiv j+2(\bmod 3), j=1,2, \ldots, n-3$.
$f\left(w_{i j}\right) \in\{1,2,3\}$ and $f\left(w_{i j}\right) \equiv f\left(w_{1 j}\right)+j-1(\bmod 3), i=2,3, j=1,2, \ldots, n-3$;
$f\left(w_{i j} w_{i, j+1}\right) \in\{1,2,3\}$ and $f\left(w_{i j} w_{i, j+1}\right) \equiv f\left(w_{1 j} w_{1, j+1}\right)+j-1(\bmod 3), i=2,3, j=$ $1,2, \ldots, n-3$;
$f\left(w_{11} w_{21}\right)=4, f\left(w_{21} w_{31}\right)=5, f\left(w_{31} w_{11}\right)=6 ;$
$f\left(w_{i j} w_{i+1, j}\right) \in\{4,5,6\}$ and $f\left(w_{i j} w_{i+1, j}\right) \equiv f\left(w_{i 1} w_{i+1,1}\right)+j-1(\bmod 3), i=1,2,3 ; j=$ $2,3, \ldots, n-3$;

```
\(f\left(w_{1, n-2}\right)=2, f\left(w_{1, n-1}\right)=4, f\left(w_{1 n}\right)=3, f\left(w_{2, n-2}\right)=3, f\left(w_{2, n-1}\right)=5 ;\)
\(f\left(w_{2 n}\right)=1, f\left(w_{3, n-2}\right)=4, f\left(w_{3, n-1}\right)=6, f\left(w_{3 n}\right)=2\);
\(f\left(w_{1, n-2} w_{1, n-1}\right)=5, f\left(w_{1, n-1} w_{1, n}\right)=1, f\left(w_{1 n} w_{11}\right)=2\);
\(f\left(w_{2, n-2} w_{2, n-1}\right)=6, f\left(w_{2, n-1} w_{2, n}\right)=2, f\left(w_{2 n} w_{21}\right)=3\);
\(f\left(w_{3, n-2} w_{3, n-1}\right)=1, f\left(w_{3, n-1} w_{3, n}\right)=3, f\left(w_{3 n} w_{31}\right)=1\);
\(f\left(w_{1, n-2} w_{2, n-2}\right)=4, f\left(w_{2, n-2} w_{3, n-2}\right)=5, f\left(w_{3, n-2} w_{1, n-2}\right)=6\);
\(f\left(w_{1, n-1} w_{2, n-1}\right)=3, f\left(w_{2, n-1} w_{3, n-1}\right)=4, f\left(w_{3, n-1} w_{1, n-1}\right)=2\);
\(f\left(w_{1, n} w_{2, n}\right)=6, f\left(w_{2, n} w_{3, n}\right)=4, f\left(w_{3, n} w_{1, n}\right)=5\).
```

We may verify that f is a 6 -proper-total-coloring. And
$\bar{C}_{f}\left(w_{1 j}\right)=\{5\}, j \equiv 1(\bmod 3) ; \bar{C}_{f}\left(w_{1 j}\right)=\{6\}, j \equiv 2(\bmod 3) ; \bar{C}_{f}\left(w_{1 j}\right)=\{4\}, j \equiv 0(\bmod 3) ;$
$\bar{C}_{f}\left(w_{2 j}\right)=\{6\}, j \equiv 1(\bmod 3) ; \bar{C}_{f}\left(w_{2 j}\right)=\{4\}, j \equiv 2(\bmod 3) ; \bar{C}_{f}\left(w_{2 j}\right)=\{5\}, j \equiv 0(\bmod 3) ;$
$\bar{C}_{f}\left(w_{3 j}\right)=\{4\}, j \equiv 1(\bmod 3) ; \bar{C}_{f}\left(w_{3 j}\right)=\{5\}, j \equiv 2(\bmod 3) ; \bar{C}_{f}\left(w_{3 j}\right)=\{6\}, j \equiv 0(\bmod 3)$.
$\bar{C}_{f}\left(w_{1, n-2}\right)=\{1\}, \bar{C}_{f}\left(w_{1, n-1}\right)=\{6\}, \bar{C}_{f}\left(w_{1 n}\right)=\{4\}, \bar{C}_{f}\left(w_{2, n-2}\right)=\{2\}, \bar{C}_{f}\left(w_{2, n-1}\right)=\{1\}$,
$\bar{C}_{f}\left(w_{2 n}\right)=\{5\}, \bar{C}_{f}\left(w_{3, n-2}\right)=\{3\}, \bar{C}_{f}\left(w_{3, n-1}\right)=\{5\}, \bar{C}_{f}\left(w_{3 n}\right)=\{6\}$.
So f is a $6-A V D T C$.
Case $1.3 n \equiv 1(\bmod 3)$.
we construct a mapping f from $V\left(C_{3} \times C_{n}\right) \cup E\left(C_{3} \times C_{n}\right)$ to $\{1,2,3,4,5,6\}$ as follows:
$f\left(w_{1 j}\right) \in\{1,2,3\}$ and $f\left(w_{1 j}\right) \equiv j(\bmod 3), j=1,2, \ldots, n-4$;
$f\left(w_{1 j} w_{1, j+1}\right) \in\{1,2,3\}$ and $f\left(w_{1 j} w_{1, j+1}\right) \equiv j+2(\bmod 3), j=1,2, \ldots, n-4$.
$f\left(w_{i j}\right) \in\{1,2,3\}$ and $f\left(w_{i j}\right) \equiv f\left(w_{1 j}\right)+j-1(\bmod 3), i=2,3, j=1,2, \ldots, n-4$;
$f\left(w_{i j} w_{i, j+1}\right) \in\{1,2,3\}$ and $f\left(w_{i j} w_{i, j+1}\right) \equiv f\left(w_{1 j} w_{1, j+1}\right)+j-1(\bmod 3), i=2,3, j=$ $1,2, \ldots, n-4$;
$f\left(w_{11} w_{21}\right)=4, f\left(w_{21} w_{31}\right)=5, f\left(w_{31} w_{11}\right)=6 ;$
$f\left(w_{i j} w_{i+1, j}\right) \in\{4,5,6\}$ and $f\left(w_{i j} w_{i+1, j}\right) \equiv f\left(w_{i 1} w_{i+1,1}\right)+j-1(\bmod 3), i=1,2,3 ; j=$ $2,3, \ldots, n-4$;

$$
\begin{aligned}
& f\left(w_{1, n-3}\right)=2, f\left(w_{1, n-2}\right)=6, f\left(w_{1, n-1}\right)=4, f\left(w_{1 n}\right)=3, f\left(w_{2, n-3}\right)=3, f\left(w_{2, n-2}\right)=4, \\
& f\left(w_{2, n-1}\right)=5, f\left(w_{2 n}\right)=1, f\left(w_{3, n-3}\right)=4, f\left(w_{3, n-2}\right)=5, f\left(w_{3, n-1}\right)=6, f\left(w_{3 n}\right)=2 \\
& f\left(w_{1, n-3} w_{1, n-2}\right)=5, f\left(w_{1, n-2} w_{1, n-1}\right)=2, f\left(w_{1, n-1} w_{1, n}\right)=1, f\left(w_{1 n} w_{11}\right)=2 \\
& f\left(w_{2, n-3} w_{2, n-2}\right)=6, f\left(w_{2, n-2} w_{2, n-1}\right)=3, f\left(w_{2, n-1} w_{2, n}\right)=2, f\left(w_{2 n} w_{21}\right)=3 \\
& f\left(w_{3, n-3} w_{3, n-2}\right)=1, f\left(w_{3, n-2} w_{3, n-1}\right)=4, f\left(w_{3, n-1} w_{3, n}\right)=3, f\left(w_{3 n} w_{31}\right)=1 ; \\
& f\left(w_{1, n-3} w_{2, n-3}\right)=4, f\left(w_{2, n-3} w_{3, n-3}\right)=5, f\left(w_{3, n-3} w_{1, n-3}\right)=6, f\left(w_{1, n-2} w_{2, n-2}\right)=1 ; \\
& f\left(w_{2, n-2} w_{3, n-2}\right)=2, f\left(w_{3, n-2} w_{1, n-2}\right)=3, f\left(w_{1, n-1} w_{2, n-1}\right)=6, f\left(w_{2, n-1} w_{3, n-1}\right)=1 \\
& f\left(w_{3, n-1} w_{1, n-1}\right)=5, f\left(w_{1, n} w_{2, n}\right)=6, f\left(w_{2, n} w_{3, n}\right)=4, f\left(w_{3, n} w_{1, n}\right)=5
\end{aligned}
$$

We may verify that f is a 6-proper-total-coloring. And $\bar{C}_{f}\left(w_{1 j}\right)=\{5\}, j \equiv 1(\bmod 3) ; \bar{C}_{f}\left(w_{1 j}\right)=$ $\{6\}, j \equiv 2(\bmod 3) ; \bar{C}_{f}\left(w_{1 j}\right)=\{4\}, j \equiv 0(\bmod 3)$;

$$
\begin{aligned}
& \bar{C}_{f}\left(w_{2 j}\right)=\{6\}, j \equiv 1(\bmod 3) ; \bar{C}_{f}\left(w_{2 j}\right)=\{4\}, j \equiv 2(\bmod 3) ; \bar{C}_{f}\left(w_{2 j}\right)=\{5\}, j \equiv 0(\bmod 3) ; \\
& \bar{C}_{f}\left(w_{3 j}\right)=\{4\}, j \equiv 1(\bmod 3) ; \bar{C}_{f}\left(w_{3 j}\right)=\{5\}, j \equiv 2(\bmod 3) ; \bar{C}_{f}\left(w_{3 j}\right)=\{6\}, j \equiv 0(\bmod 3) .
\end{aligned}
$$

$$
\begin{aligned}
& \bar{C}_{f}\left(w_{1, n-3}\right)=\{1\}, \bar{C}_{f}\left(w_{1, n-2}\right)=\{4\}, \bar{C}_{f}\left(w_{1, n-1}\right)=\{3\}, \bar{C}_{f}\left(w_{1 n}\right)=\{4\} ; \\
& \bar{C}_{f}\left(w_{2, n-3}\right)=\{2\}, \bar{C}_{f}\left(w_{2, n-2}\right)=\{5\}, \bar{C}_{f}\left(w_{2, n-1}\right)=\{4\}, \bar{C}_{f}\left(w_{2 n}\right)=\{5\} ; \\
& \bar{C}_{f}\left(w_{3, n-3}\right)=\{3\}, \bar{C}_{f}\left(w_{3, n-2}\right)=\{6\}, \bar{C}_{f}\left(w_{3, n-1}\right)=\{2\}, \bar{C}_{f}\left(w_{3 n}\right)=\{6\} .
\end{aligned}
$$

So f is a $6-A V D T C$.
Case 2 One of m, n is even.
Without loss of generality, we assume that m is even. We construct a mapping f from $V\left(C_{m} \times C_{n}\right) \cup E\left(C_{m} \times C_{n}\right)$ to $\{1,2,3,4,5,6\}$ as follows.

Firstly, similar to Case 3 of the proof of Theorem 3, we can give a 4 -AVDTC f for $\left(C_{m} \times\right.$ $\left.C_{n}\right)\left[w_{11}, w_{12}, \ldots, w_{1 n}\right]$, which is a cycle induced by the vertices $w_{11}, w_{12}, \ldots, w_{1 n}$.

Secondly, we extend f. Let
$f\left(w_{i j}\right) \in\{1,2,3,4\}$ and $f\left(w_{i j}\right)=f\left(w_{1 j}\right), i=2,3, \ldots, m, j=1,2, \ldots, n, i$ is odd;
$f\left(w_{i j}\right) \in\{1,2,3,4\}$ and $f\left(w_{i j}\right)=f\left(w_{1, j+1}\right), i=2,3, \ldots, m, j=1,2, \ldots, n, i$ is even.
$f\left(w_{i j} w_{i+1, j}\right)=5, i=1,2, \ldots, m, j=1,2, \ldots, n, i$ is odd; $f\left(w_{i j} w_{i+1, j}\right)=6, i=1,2, \ldots, m, j=$ $1,2, \ldots, n, i$ is even.
We may easily verify that f is a $6-A V D T C$ of $C_{m} \times C_{n}$.
Case $3 m, n$ are all odd and $m \geq 5, n \geq 5$. There are two subcases to be considered.
Case $3.1 n \equiv 1(\bmod 4)$.
We construct a mapping f from $V\left(C_{m} \times C_{n}\right) \cup E\left(C_{m} \times C_{n}\right)$ to $\{1,2,3,4,5,6\}$ as follows. Let
$f\left(w_{1 j}\right) \in\{1,2,3,4\}$ and $f\left(w_{1 j}\right) \equiv j+1(\bmod 4), j=1,2, \ldots, n-4 ;$
$f\left(w_{1 j} w_{1, j+1}\right) \in\{1,2,3,4\}$ and $f\left(w_{1 j} w_{1, j+1}\right) \equiv j(\bmod 4), j=1,2, \ldots, n-4$.
$f\left(w_{1, n-3}\right)=3, f\left(w_{1, n-2}\right)=1, f\left(w_{1, n-1}\right)=2, f\left(w_{1, n}\right)=1$;
$f\left(w_{1, n-3} w_{1, n-2}\right)=2, f\left(w_{1, n-2} w_{1, n-1}\right)=4, f\left(w_{1, n-1} w_{1, n}\right)=3, f\left(w_{1, n} w_{11}\right)=4$.
$f\left(w_{2 j}\right) \in\{1,2,3,4\}$ and $f\left(w_{2 j}\right) \equiv j+2(\bmod 4), j=1,2, \ldots, n-4$;
$f\left(w_{2 j} w_{2, j+1}\right) \in\{1,2,3,4\}$ and $f\left(w_{2 j} w_{2, j+1}\right) \equiv j+1(\bmod 4), j=1,2, \ldots, n-4$.
$f\left(w_{2, n-3}\right)=4, f\left(w_{2, n-2}\right)=2, f\left(w_{2, n-1}\right)=3, f\left(w_{2, n}\right)=2$;
$f\left(w_{2, n-3} w_{2, n-2}\right)=3, f\left(w_{2, n-2} w_{2, n-1}\right)=1, f\left(w_{2, n-1} w_{1, n}\right)=4, f\left(w_{2, n} w_{21}\right)=1$.
$f\left(w_{m j}\right) \in\{1,2,3,4\}$ and $f\left(w_{m j}\right) \equiv j+3(\bmod 4), j=1,2, \ldots, n-4$;
$f\left(w_{m j} w_{m, j+1}\right) \in\{1,2,3,4\}$ and $f\left(w_{m j} w_{m, j+1}\right) \equiv j+1(\bmod 4), j=1,2, \ldots, n-4$.
$f\left(w_{m, n-3}\right)=6, f\left(w_{m, n-2}\right)=3, f\left(w_{m, n-1}\right)=5, f\left(w_{m, n}\right)=3$;
$f\left(w_{m, n-3} w_{m, n-2}\right)=1, f\left(w_{m, n-2} w_{1, n-1}\right)=2, f\left(w_{m, n-1} w_{m, n}\right)=4, f\left(w_{m, n} w_{m 1}\right)=1$.
For $i=3,4, \ldots, m-1, j=1,2, \ldots, n$, let
$f\left(w_{i j}\right)=f\left(w_{1, j}\right)$, if i is odd; $f\left(w_{i j}\right)=f\left(w_{2, j}\right)$, if i is even;
$f\left(w_{i j} w_{i, j+1}\right)=f\left(w_{1 j} w_{1, j+1}\right)$, if i is odd; $f\left(w_{i j} w_{i, j+1}\right)=f\left(w_{2 j} w_{2, j+1}\right)$, if i is even.
For $i=1,2, \ldots, m-2, j=1,2, \ldots, n-2$, let $f\left(w_{i j} w_{i+1, j}\right) \in\{5,6\}, f\left(w_{i j} w_{i+1, j}\right) \equiv i+$ $j-1(\bmod 2)$. For $i=1,2, \ldots, m-2, j=n-1, n$, let $f\left(w_{i j} w_{i+1, j}\right) \in\{5,6\}, f\left(w_{i j} w_{i+1, j}\right) \equiv$ $i+j(\bmod 2)$. And let
$f\left(w_{m-1, j} w_{m, j}\right) \in\{5,6\}, f\left(w_{m-1, j} w_{m, j}\right) \equiv j+1(\bmod 2), j=1,2, \ldots, n-3 ;$
$f\left(w_{m-1, n-2} w_{m, n-2}\right)=4, f\left(w_{m-1, n-1} w_{m, n-1}\right)=6, f\left(w_{m-1, n} w_{m, n}\right)=5$.
$f\left(w_{m, j} w_{1, j}\right) \in\{1,2,3,4\}, f\left(w_{m, j} w_{1, j}\right) \equiv j+2(\bmod 4), j=1,2, \ldots, n-3 ;$
$f\left(w_{m, n-2} w_{1, n-2}\right)=6, f\left(w_{m, n-1} w_{1, n-1}\right)=1, f\left(w_{m, n} w_{1 n}\right)=2$.
We may verify that f is a 6 -proper-total-coloring. Let $B_{i}=\left(\bar{C}_{f}\left(w_{i 1}\right), \bar{C}_{f}\left(w_{i 2}\right), \ldots, \bar{C}_{f}\left(w_{i n}\right)\right), i=$ $1,2, \ldots, m$. We have
$B_{1}=(6,5,6,5,6,5,6,5, \ldots, 6,5,6,5,6,5,3,6,5) ;$
$B_{i}=(4,1,2,3,4,1,2,3, \ldots, 4,1,2,3,4,1,4,2,3), i=2,3, \ldots, m-2, i$ is even;
$B_{i}=(3,4,1,2,3,4,1,2, \ldots, 3,4,1,2,3,4,3,1,2), i=2,3, \ldots, m-2, i$ is odd;
$B_{m-1}=(4,1,2,3,4,1,2,3, \ldots, 4,1,2,3,4,1,6,2,3)$,
$B_{m}=(5,6,5,6,5,6,5,6, \ldots, 5,6,5,6,5,3,5,3,6)$.
So f is a $6-A V D T C$ of $C_{m} \times C_{n}$.
Case $3.2 n \equiv 3(\bmod 4)$.
We construct a mapping f from $V\left(C_{m} \times C_{n}\right) \cup E\left(C_{m} \times C_{n}\right)$ to $\{1,2,3,4,5,6\}$ as follows. Let
$f\left(w_{1 j}\right) \in\{1,2,3,4\}$ and $f\left(w_{1 j}\right) \equiv j+1(\bmod 4), j=1,2, \ldots, n-6 ;$
$f\left(w_{1 j} w_{1, j+1}\right) \in\{1,2,3,4\}$ and $f\left(w_{1 j} w_{1, j+1}\right) \equiv j(\bmod 4), j=1,2, \ldots, n-6$.
$f\left(w_{1, n-5}\right)=3, f\left(w_{1, n-4}\right)=4, f\left(w_{1, n-3}\right)=2, f\left(w_{1, n-2}\right)=3, f\left(w_{1, n-1}\right)=2, f\left(w_{1, n}\right)=1$;
$f\left(w_{1, n-5} w_{1, n-4}\right)=2, f\left(w_{1, n-4} w_{1, n-3}\right)=3, f\left(w_{1, n-3} w_{1, n-2}\right)=1$,
$f\left(w_{1, n-2} w_{1, n-1}\right)=4, f\left(w_{1, n-1} w_{1, n}\right)=3, f\left(w_{1, n} w_{11}\right)=4$.
$f\left(w_{2 j}\right) \in\{1,2,3,4\}$ and $f\left(w_{2 j}\right) \equiv j+2(\bmod 4), j=1,2, \ldots, n-6$;
$f\left(w_{2 j} w_{2, j+1}\right) \in\{1,2,3,4\}$ and $f\left(w_{2 j} w_{2, j+1}\right) \equiv j+1(\bmod 4), j=1,2, \ldots, n-6$.
$f\left(w_{2, n-5}\right)=4, f\left(w_{2, n-4}\right)=1, f\left(w_{2, n-3}\right)=3, f\left(w_{2, n-2}\right)=4, f\left(w_{2, n-1}\right)=3, f\left(w_{2, n}\right)=2$;
$f\left(w_{2, n-5} w_{2, n-4}\right)=3, f\left(w_{2, n-4} w_{2, n-3}\right)=4, f\left(w_{2, n-3} w_{2, n-2}\right)=2$,
$f\left(w_{2, n-2} w_{2, n-1}\right)=1, f\left(w_{2, n-1} w_{1, n}\right)=4, f\left(w_{2, n} w_{21}\right)=1$.
$f\left(w_{m j}\right) \in\{1,2,3,4\}$ and $f\left(w_{m j}\right) \equiv j+3(\bmod 4), j=1,2, \ldots, n-6$;
$f\left(w_{m j} w_{m, j+1}\right) \in\{1,2,3,4\}$ and $f\left(w_{m j} w_{m, j+1}\right) \equiv j+1(\bmod 4), j=1,2, \ldots, n-6$.
$f\left(w_{m, n-5}\right)=1, f\left(w_{m, n-4}\right)=5, f\left(w_{m, n-3}\right)=6, f\left(w_{m, n-2}\right)=5, f\left(w_{m, n-1}\right)=1, f\left(w_{m, n}\right)=3$;
$f\left(w_{m, n-5} w_{m, n-4}\right)=3, f\left(w_{m, n-4} w_{1, n-3}\right)=2, f\left(w_{m, n-3} w_{m, n-2}\right)=1$,
$f\left(w_{m, n-2} w_{1, n-1}\right)=3, f\left(w_{m, n-1} w_{m, n}\right)=4, f\left(w_{m, n} w_{m 1}\right)=1$.
For $i=3,4, \ldots, m-1, j=1,2, \ldots, n$, let
$f\left(w_{i j}\right)=f\left(w_{1, j}\right)$, if i is odd; $f\left(w_{i j}\right)=f\left(w_{2, j}\right)$, if i is even;
$f\left(w_{i j} w_{i, j+1}\right)=f\left(w_{1 j} w_{1, j+1}\right)$, if i is odd; $f\left(w_{i j} w_{i, j+1}\right)=f\left(w_{2 j} w_{2, j+1}\right)$, if i is even.
For $i=1,2, \ldots, m-2, j=1,2, \ldots, n-2$, let $f\left(w_{i j} w_{i+1, j}\right) \in\{5,6\}, f\left(w_{i j} w_{i+1, j}\right) \equiv i+j-$ $1(\bmod 2)$. For $i=1,2, \ldots, m-2, j=n-1, n$, let $f\left(w_{i j} w_{i+1, j}\right) \in\{5,6\}, f\left(w_{i j} w_{i+1, j}\right) \equiv$ $i+j(\bmod 2)$. And let

$$
\begin{aligned}
& f\left(w_{m-1, j} w_{m, j}\right) \in\{5,6\}, f\left(w_{m-1, j} w_{m, j}\right) \equiv j+1(\bmod 2), j=1,2, \ldots, n-2 \\
& f\left(w_{m-1, n-1} w_{m, n-1}\right)=2, f\left(w_{m-1, n} w_{m, n}\right)=5 \\
& f\left(w_{m, j} w_{1, j}\right) \in\{1,2,3,4\}, f\left(w_{m, j} w_{1, j}\right) \equiv j+2(\bmod 4), j=1,2, \ldots, n-4 \\
& f\left(w_{m, n-3} w_{1, n-3}\right)=4, f\left(w_{m, n-2} w_{1, n-2}\right)=2, f\left(w_{m, n-1} w_{1, n-1}\right)=6, f\left(w_{m, n} w_{1 n}\right)=2
\end{aligned}
$$

We may verify that f is a 6 -proper-total-coloring.
Let $B_{i}=\left(\bar{C}_{f}\left(w_{i 1}\right), \bar{C}_{f}\left(w_{i 2}\right), \ldots, \bar{C}_{f}\left(w_{i n}\right)\right), i=1,2, \ldots, m$. We have

$$
\begin{aligned}
& B_{1}=(6,5,6,5,6,5,6,5, \ldots, 6,5,6,5,6,5,6,5,6,1,5) \\
& B_{i}=(4,1,2,3,4,1,2,3, \ldots, 4,1,2,3,4,1,2,1,3,2,3), i=2,3, \ldots, m-2, i \text { is even; } \\
& B_{i}=(3,4,1,2,3,4,1,2, \ldots, 3,4,1,2,3,4,1,4,2,1,2), i=2,3, \ldots, m-2, i \text { is odd; } \\
& B_{m-1}=(4,1,2,3,4,1,2,3, \ldots, 4,1,2,3,4,1,2,1,3,6,3) \\
& B_{m}=(5,6,5,6,5,6,5,6, \ldots, 5,6,5,6,5,6,4,3,4,5,6)
\end{aligned}
$$

So f is a $6-A V D T C$ of $C_{m} \times C_{n}$.
The proof is completed.

References

[1] BALISTER P N, BOLLOBÁS B, SCHELP R H. Vertex distinguishing colorings of graphs with $\Delta(G)=2$ [J]. Discrete Math., 2002, 252(1-3): 17-29.
[2] BALISTER P N, RIORDAN O M, SCHELP R H. Vertex-distinguishing edge colorings of graphs [J]. J. Graph Theory, 2003, 42(2): 95-109.
[3] BURRIS A C, SCHELP R H. Vertex-distinguishing proper edge-colorings [J]. J. Graph Theory, 1997, 26(2): 73-82.
[4] CHARTRAND G, LESNIAK L. Graphs \& Digraphs [M]. Fourth edition. Chapman \& Hall/CRC, Boca Raton, FL, 2005.
[5] FAVARON O, LI Hao, SCHELP R H. Strong edge colorings of graphs [J]. Discrete Math., 1996, 159(1-3): 103-109.
[6] MARCOTTE O, HANSEN P. The Height and Length of Colour Switching [M]. CRM Proc. Lecture Notes, 23, Amer. Math. Soc., Providence, RI, 1999.
[7] ZHANG Zhongfu, LIU Linzhong, WANG Jianfang. Adjacent strong edge coloring of graphs [J]. Appl. Math. Lett., 2002, 15(5): 623-626.
[8] ZHANG Zhongfu, CHEN Xiang en, LI Jingwen. et al. On adjacent-vertex-distinguishing total coloring of graphs [J]. Sci. China Ser. A, 2005, 48(3): 289-299.

