Equitable Total Coloring of Some Join Graphs

GONG Kun ${ }^{1,2}$, ZHANG Zhong $\mathrm{Fu}^{3,4}$, WANG Jian Fang ${ }^{1}$
(1. Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China;
2. Graduate School of the Chinese Academy of Sciences, Beijing 100080, China;
3. Institute of Applied Mathematics, Lanzhou Jiaotong University, Gansu 730070, China;
4. Department of Applied Mathematics, Northwest Normal University, Gansu 730070, China)
(E-mail: gongkun99@hotmail.com)

Abstract

The total chromatic number $\chi_{t}(G)$ of a graph $G(V, E)$ is the minimum number of total independent partition sets of $V \bigcup E$, satisfying that any two sets have no common element. If the difference of the numbers of any two total independent partition sets of $V \bigcup E$ is no more than one, then the minimum number of total independent partition sets of $V \bigcup E$ is called the equitable total chromatic number of G, denoted by $\chi_{e t}(G)$. In this paper, we have obtained the equitable total chromatic number of $W_{m} \bigvee K_{n}, F_{m} \bigvee K_{n}$ and $S_{m} \bigvee K_{n}$ while $m \geq n \geq 3$.

Keywords equitable total coloring; equitable total chromatic number; join graph; equitable edge coloring.
Document code A
MR(2000) Subject Classification 05C15
Chinese Library Classification O157.5

1. Introduction

In this paper we only consider finite simple graphs and we use the standard notation of graph theory. Definitions not given here may be found in [2]. Let $G(V, E)$ be a graph with the set of vertices V and the edge set E. Total coloring was introduced by Vizing ${ }^{[4]}$ and Behzad ${ }^{[1]}$. They both conjectured that for any graph G the following inequality holds:

$$
\Delta(G)+1 \leq \chi_{t}(G) \leq \Delta(G)+2
$$

It is obvious that $\Delta(G)+1$ is the best possible lower bound. The conjecture is proved so far for some specific classes of graphs. And the concept of equitable total coloring was presented in [3] and [5]. In general the equitable total coloring problem is more difficult than the total coloring problem. In [6], the equitable total chromatic numbers of some join graphs were given. In this paper, the equitable total coloring of $W_{m} \bigvee K_{n}, F_{m} \bigvee K_{n}$ and $S_{m} \bigvee K_{n}(m \geq n \geq 3)$ have been studied.

Definition 1 For a k-proper edge coloring f of graph G, if $\left\|E_{i}(G)|-| E_{j}(G)\right\| \leq 1, i, j=$

Received date: 2006-11-13; Accepted date: 2007-03-23
Foundation item: the National Natural Science Foundation of China (No. 10771091).
$0,1, \ldots, k-1$, where $E_{i}(G)$ is the set of edges of color i in G, then f is called a k-equitable edge coloring of graph G, and

$$
\chi_{e}^{\prime}(G)=\min \{k \mid \text { there is a } k \text {-equitable edge coloring of graph } G\}
$$

is called the equitable edge chromatic number of G.
Definition $2^{[6]}$ For a simple graph $G(V, E)$, the edges and vertices are called the elements of $G(V, E)$, and elements are called independent if any two of them are neither incident nor adjacent. If k is a natural number and $V \bigcup E=\bigcup_{i=0}^{k-1}\left(V_{i} \bigcup E_{i}\right)$ satisfies:
(1) The elements of $V_{i} \bigcup E_{i}$ are independent, $i=0,1,2, \ldots, k-1$;
(2) $\left(V_{i} \bigcup E_{i}\right) \bigcap\left(V_{j} \bigcup E_{j}\right)=\emptyset, i, j=0,1,2, \ldots, k-1$, and $i \neq j$;
(3) $\left|\left|V_{i} \bigcup E_{i}\right|-\right| V_{j} \bigcup E_{j} \| \leq 1, i, j=0,1,2, \ldots, k-1$,
then the partition $\left\{V_{i} \bigcup E_{i} \mid 0 \leq i \leq k-1\right\}$ is called a k-equitable total coloring of G, and

$$
\chi_{e t}(G)=\min \{k \mid \text { there is a } k \text {-equitable total coloring of graph } G\}
$$

is called the equitable total chromatic number of G.
Definition $3^{[2]}$ The join graph $G \bigvee H$ of disjoint graphs G and H is defined as follows:

$$
V(G \bigvee H)=V(G) \bigcup V(H), E(G \bigvee H)=E(G) \bigcup E(H) \bigcup\{u v \mid u \in V(G), v \in V(H)\}
$$

Definition 4 Let $m \geq 2$, $n \geq 3$, We define star S_{m}, fan F_{m} and wheel W_{n} as follows:

$$
\begin{aligned}
& V\left(S_{m}\right)=\left\{u_{i} \mid i=0,1,2, \ldots, m\right\} \\
& E\left(S_{m}\right)=\left\{u_{0} u_{i} \mid i=1,2, \ldots, m\right\} \\
& V\left(F_{m}\right)=\left\{u_{i} \mid i=0,1,2, \ldots, m\right\} \\
& E\left(F_{m}\right)=\left\{u_{0} u_{i} \mid i=1,2, \ldots, m\right\} \bigcup\left\{u_{i} u_{i+1} \mid i=1,2, \ldots, m-1\right\} \\
& V\left(W_{n}\right)=\left\{v_{i} \mid i=0,1,2, \ldots, n\right\} \\
& E\left(W_{n}\right)=\left\{v_{0} v_{i} \mid i=1,2, \ldots, n\right\} \bigcup\left\{v_{i} v_{i+1} \mid i=1,2, \ldots, n-1\right\} \bigcup\left\{v_{n} v_{1}\right\} .
\end{aligned}
$$

2. Main results

Lemma $1^{[2]}$ For a complete graph K_{p} of order p,

$$
\chi^{\prime}\left(K_{p}\right)= \begin{cases}p & \text { if } p \equiv 1(\bmod 2) \\ p-1 & \text { if } p \equiv 0(\bmod 2)\end{cases}
$$

Lemma 2 For any subgraph H of a graph $G, \chi^{\prime}(H) \leq \chi^{\prime}(G)$.
Lemma 3 For a finite simple graph $G, \chi_{e}^{\prime}(G)=\chi^{\prime}(G)$.
Proof Let f_{1} be a k-proper edge coloring of G, where $k=\chi^{\prime}(G)$. If there exist two colors i and j, such that $\left|\left|E_{i}(G)\right|-\right| E_{j}(G) \| \geq 2$, then notice that the graph $G_{i j}$ is composed of the edges colored with color i and color j, each branch of $G_{i j}$ is either a path or an even cycle. It is obvious that we
can recolor the edges of $G_{i j}$ just with color i and j, such that $\| E_{i}\left(G_{i j}\right)\left|-\left|E_{j}\left(G_{i j}\right)\right|\right| \leq 1$. After recoloring the corresponding edges of G, we get a new edge coloring f_{2} of G. Under edge coloring $f_{2},\left|\left|E_{i}(G)\right|-\right| E_{j}(G) \| \leq 1$. If there also exist two colors i_{1} and j_{1}, such that $\| E_{i_{1}}\left|-\left|E_{j_{1}}\right|\right| \geq 2$, repeat the process above. After finite steps, we can get a k-proper edge coloring f of G. Under edge coloring f, for any $i, j=0,1, \ldots, k-1,\left|\left|E_{i}(G)\right|-\left|E_{j}(G)\right|\right| \leq 1$.

Lemma $4^{[7]}$ For a simple graph $G, \chi_{e t}(G) \geq \chi_{t}(G) \geq \Delta(G)+1$.
Lemma 5 For a simple graph G of order p, if $\Delta(G)=p-1$, and $\chi^{\prime}(G \bigvee\{w\})=p$ for $w \notin V(G)$, then $\chi_{e t}(G)=p$.

Proof By Lemma 3, $\chi_{e}^{\prime}(G \bigvee\{w\})=\chi^{\prime}(G \bigvee\{w\})$. Notice that $G^{\prime}=G \bigvee\{w\}$ is obtained by adding a new vertex w to G and adding an edge joining w to each vertex in G. Let g be a p-equitable edge coloring of $G \bigvee\{w\}$. Now we turn g into a p-equitable total coloring f of G as follows:

$$
\forall v \in V(G), f_{G}(v)=g_{G^{\prime}}(w v) ; \forall e \in E(G), f_{G}(e)=g_{G^{\prime}}(e)
$$

It is obvious that f is a p-equitable total coloring of G. By Lemma $4, \chi_{e t}(G) \geq \chi_{t}(G) \geq$ $\Delta(G)+1=p$, so $\chi_{e t}(G)=p$.

Lemma 6 For an edge coloring of a graph $G, E_{i}(G)$ denotes the set of edges of color i. Let the color of some edges of graph G be restricted to be j. Under this restriction, if there exists an α-edge coloring of graph G, such that $\left|E_{j}(G)\right|=\lfloor\varepsilon / \alpha\rfloor$ or $\lceil\varepsilon / \alpha\rceil$, where $\varepsilon=|E(G)|, \alpha=\chi^{\prime}(G)$, then under this restriction there exists an α-equitable edge coloring of graph G.

Proof Let g be an α-edge coloring of graph G under the restriction. So the coloring under $G-E_{j}(G)$ is an $(\alpha-1)$-edge coloring. By Lemma 3, there exists an ($\alpha-1$)-equitable edge coloring g_{e}^{\prime} of $G-E_{j}(G)$. Then $E_{j}(G)$ combining with the edge independent sets of g_{e}^{\prime} constitutes an α-edge coloring of graph G.

Case 1 If $\left|E_{j}(G)\right|=\lfloor\varepsilon / \alpha\rfloor$, we denote $\lfloor\varepsilon / \alpha\rfloor$ by c. So $c \leq \varepsilon / \alpha<c+1, c \alpha \leq \varepsilon<(c+1) \alpha$, $c(\alpha-1) \leq \varepsilon-c<c(\alpha-1)+\alpha, c \leq(\varepsilon-c) /(\alpha-1)<c+\alpha /(\alpha-1)$. We will show that $(\varepsilon-c) /(\alpha-1)>(c+1)$ does not hold:

Else, $\varepsilon>(c+1) \alpha-1$, and $(c+1) \alpha-1<\varepsilon<(c+1) \alpha$, a contradiction because ε is an integer. So we have $c \leq(\varepsilon-c) /(\alpha-1) \leq c+1$, and $E_{j}(G)$ combining with the edge independent sets of g_{e}^{\prime} constitutes an α-equitable edge coloring of G.

Case 2 If $\left|E_{j}(G)\right|=\lceil\varepsilon / \alpha\rceil$, we assume that ε / α is not an integer. Otherwise, $\lceil\varepsilon / \alpha\rceil=\lfloor\varepsilon / \alpha\rfloor$, it is the same as Case 1. Now we denote $\lceil\varepsilon / \alpha\rceil$ by c. So $c<\varepsilon / \alpha<c+1, c-1 /(\alpha-1)<$ $(\varepsilon-c-1) /(\alpha-1)<c+1$, we will show that $(\varepsilon-c-1) /(\alpha-1)<c$ does not hold:

Else, $\varepsilon<c \alpha+1$, and $c \alpha<\varepsilon<c \alpha+1$, a contradiction because ε is an integer. We have $c \leq(\varepsilon-c-1) /(\alpha-1)<c+1$, so $E_{j}(G)$ combining with the edge independent sets of g_{e}^{\prime} constitutes an α-equitable edge coloring of G.

Lemma 7 For a graph $G, x, y \in V(G), x y \notin E(G), w, z \notin V(G)$, let $G^{*}=(G \bigvee\{w\}-$
$\{w x\}) \bigcup\{z x\}$. If g is an α-equitable edge coloring of graph G^{*}, and $g(z x)=g(w y)$, then there exists an α-equitable total coloring of graph G.

Proof We define an α-total coloring f of graph G as follows:
(1) For $\forall e \in E(G), f_{G}(e)=g_{G^{*}}(e)$.
(2) For any vertex $v \in V(G), v \neq x, f_{G}(v)=g_{G^{*}}(w v)$; and $f_{G}(x)=f_{G}(y)$.

It is obvious that f is an α-equitable total coloring of graph G.
Theorem 1 For $m \geq n \geq 3$, $\chi_{e t}\left(W_{m} \bigvee K_{n}\right)=m+n+1$.
Proof For $W_{m} \bigvee K_{n}=C_{m} \bigvee K_{n+1}$, let $G^{\prime}=G \bigvee\{w\}$, where $G=W_{m} \bigvee K_{n}, w \notin V(G)$. So we have $G^{\prime}=C_{m} \bigvee K_{n+1} \bigvee\{w\}=C_{m} \bigvee K_{n+2}$. And by Lemma 4, $\chi_{e t}\left(W_{m} \bigvee K_{n}\right) \geq m+n+1$.

Case 1 If $m+n$ is even, then $m+n+2$ is even, and for $G^{\prime} \subseteq K_{m+n+2}$, by Lemmas 1 and $2, \chi^{\prime}\left(G^{\prime}\right) \leq \chi^{\prime}\left(K_{m+n+2}\right)=m+n+1$, and for $\chi^{\prime}\left(G^{\prime}\right) \geq \Delta\left(G^{\prime}\right)=m+n+1$, we have $\chi^{\prime}\left(G^{\prime}\right)=m+n+1$. For $\Delta(G)=m+n$, by Lemma $5, \chi_{e t}\left(W_{m} \bigvee K_{n}\right)=m+n+1$.

Case 2 If $m+n$ is odd.
Case 2.1 When $m=n+1 \geq 4$. For $G=W_{m} \bigvee K_{n}=C_{m} \bigvee K_{n+1}=C_{n+1} \bigvee K_{n+1}$, let

$$
\begin{aligned}
& V\left(K_{n+1}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}, V\left(C_{n+1}\right)=\left\{v_{n+1}, v_{n+2}, \ldots, v_{2 n+1}\right\}, \\
& E\left(C_{n+1}\right)=\left\{v_{n+1} v_{n+2}, v_{n+2} v_{n+3}, \ldots, v_{2 n} v_{2 n+1}, v_{2 n+1} v_{n+1}\right\}
\end{aligned}
$$

Case 2.1.1 When $m=n+1=4$. We define a total coloring f of $C_{4} \bigvee K_{4}$ as follows:

$$
\begin{aligned}
& f\left(v_{0}\right)=f\left(v_{1} v_{6}\right)=f\left(v_{2} v_{4}\right)=f\left(v_{3} v_{7}\right)=0, f\left(v_{3}\right)=f\left(v_{0} v_{5}\right)=f\left(v_{1} v_{7}\right)=f\left(v_{2} v_{6}\right)=3, \\
& f\left(v_{1}\right)=f\left(v_{0} v_{7}\right)=f\left(v_{2} v_{5}\right)=f\left(v_{3} v_{4}\right)=1, f\left(v_{4}\right)=f\left(v_{6}\right)=f\left(v_{0} v_{3}\right)=f\left(v_{1} v_{5}\right)=f\left(v_{2} v_{7}\right)=4, \\
& f\left(v_{2}\right)=f\left(v_{0} v_{6}\right)=f\left(v_{1} v_{4}\right)=f\left(v_{3} v_{5}\right)=2, f\left(v_{5}\right)=f\left(v_{7}\right)=f\left(v_{0} v_{4}\right)=f\left(v_{1} v_{2}\right)=f\left(v_{3} v_{6}\right)=5, \\
& f\left(v_{0} v_{1}\right)=f\left(v_{2} v_{3}\right)=f\left(v_{4} v_{5}\right)=f\left(v_{6} v_{7}\right)=6, f\left(v_{0} v_{2}\right)=f\left(v_{1} v_{3}\right)=f\left(v_{4} v_{7}\right)=f\left(v_{5} v_{6}\right)=7 .
\end{aligned}
$$

Thus $\chi_{e t}\left(W_{4} \bigvee K_{3}\right)=8$.
Case 2.1.2 When $m=n+1=5$. We define a total coloring f of $C_{5} \bigvee K_{5}$ as follows:

$$
\begin{aligned}
& f\left(v_{0}\right)=9, f\left(v_{7}\right)=5, f\left(v_{8}\right)=7, f\left(v_{9}\right)=6, f\left(v_{i}\right)=i, i=1,2,3,4,5,6 \\
& f\left(v_{0} v_{i}\right)=2 i, i=1,2,3,4 ; f\left(v_{0} v_{5}\right)=0, f\left(v_{0} v_{i}\right) \equiv 2 i-2(\bmod 9), i=6,7,8,9 ; \\
& f\left(v_{j} v_{k}\right) \equiv j+k(\bmod 10), \text { for } 1 \leq j \leq 4,1 \leq k \leq 9 \\
& f\left(v_{5} v_{6}\right)=3, f\left(v_{5} v_{9}\right)=f\left(v_{7} v_{8}\right)=4, f\left(v_{6} v_{7}\right)=2, f\left(v_{8} v_{9}\right)=8
\end{aligned}
$$

For every color of $\{0,1,2, \ldots, 9\}, 5$ elements are colored exactly. So f is an equitable total coloring of $W_{5} \bigvee K_{4}$, and $\chi_{e t}\left(W_{5} \bigvee K_{4}\right)=10$.

Case 2.1.3 When $m=n+1 \geq 6$, and n is odd. Let $G^{*}=\left(G \bigvee\{w\}-\left\{w v_{2 n}\right\}\right) \bigcup\left\{z v_{2 n}\right\}$, where $w, z \notin V(G)$. We define an edge coloring g of G^{*} as follows:

$$
g\left(v_{0} v_{j}\right)=2 j, 1 \leq j \leq n ; g\left(v_{0} v_{n+1}\right)=0 ; g\left(v_{0} v_{j}\right) \equiv 2 j-2(\bmod 2 n+1), n+2 \leq j \leq 2 n+1
$$

$$
\begin{aligned}
& g\left(v_{j} v_{k}\right) \equiv j+k(\bmod 2 n+2), 1 \leq j \leq n, 1 \leq k \leq 2 n+1 \\
& g\left(w v_{0}\right)=2 n+1, g\left(w v_{2 n+1}\right)=2 n, g\left(w v_{j}\right)=j, 1 \leq j \leq 2 n-1 \\
& g\left(v_{2 n} v_{2 n+1}\right)=n+2, g\left(v_{2 n+1} v_{n+1}\right)=n, g\left(v_{n+1} v_{n+2}\right)=n-1, g\left(z v_{2 n}\right)=g\left(w v_{n+1}\right)=n+1
\end{aligned}
$$

Case 2.1.3.1 When $n \equiv 1(\bmod 4)$. Let $n=4 k+1$.

$$
\begin{aligned}
& g\left(v_{n+2} v_{n+3}\right)=g\left(v_{n+4} v_{n+5}\right)=\cdots=g\left(v_{n+2 k-2} v_{n+2 k-1}\right)=n+1 \\
& g\left(v_{j} v_{j+1}\right)=j-1, \text { for } n+3 \leq j \leq 2 n-1, \text { and } j \neq n+2, n+4, \ldots, n+2 k-2 .
\end{aligned}
$$

So g is a $(2 n+2)$-edge coloring of $G^{*}, \chi^{\prime}\left(G^{*}\right)=2 n+2$. All the edges of color $n+1$ are listed below:

$$
\begin{gathered}
v_{0} v_{(n+1) / 2}, v_{1} v_{n}, v_{2} v_{n-1}, \ldots, v_{(n-1) / 2} v_{(n+3) / 2} \\
w v_{n+1}, z v_{2 n}, v_{n+2} v_{n+3}, v_{n+4} v_{n+5}, \ldots, v_{n+2 k-2} v_{n+2 k-1}
\end{gathered}
$$

So $\left|E_{n+1}\left(G^{*}\right)\right|=(n+1) / 2+(k+1)=3 k+2$. When $n=5$, i.e. $k=1,\left|E_{6}\left(G^{*}\right)\right|=6=3 k+3=$ $\lceil 3 n / 4+2\rceil$. When $n>5$, we have $\left|E\left(G^{*}\right)\right|=(n+1)(3 n / 2+4)$, and $\left\lfloor\left|E\left(G^{*}\right)\right| / \chi^{\prime}\left(G^{*}\right)\right\rfloor=$ $\lfloor 3 n / 4+2\rfloor=3 k+2$, by Lemmas 6 and 7 , there exists a $(2 n+2)$-equitable total coloring of graph G, thus $\chi_{e t}\left(W_{n+1} \bigvee K_{n}\right)=2 n+2$.

Case 2.1.3.2 When $n \equiv 3(\bmod 4)$. Let $n=4 k+3$.

$$
\begin{aligned}
& g\left(v_{n+2} v_{n+3}\right)=g\left(v_{n+4} v_{n+5}\right)=\cdots=g\left(v_{n+2 k} v_{n+2 k+1}\right)=n+1 \\
& g\left(v_{j} v_{j+1}\right)=j-1, \text { for } n+3 \leq j \leq 2 n-1, \text { and } j \neq n+2, n+4, \ldots, n+2 k
\end{aligned}
$$

So g is a $(2 n+2)$-edge coloring of $G^{*}, \chi^{\prime}\left(G^{*}\right)=2 n+2$. All the edges of color $n+1$ are listed as follows:

$$
\begin{aligned}
& v_{0} v_{(n+1) / 2}, v_{1} v_{n}, v_{2} v_{n-1}, \ldots, v_{(n-1) / 2} v_{(n+3) / 2} \\
& w v_{n+1}, z v_{2 n}, v_{n+2} v_{n+3}, v_{n+4} v_{n+5}, \ldots, v_{n+2 k} v_{n+2 k+1}
\end{aligned}
$$

So $\left|E_{n+1}\left(G^{*}\right)\right|=(n+1) / 2+(k+2)=3 k+4$. For $\left\lfloor\left|E\left(G^{*}\right)\right| / \chi^{\prime}\left(G^{*}\right)\right\rfloor=\lfloor 3 n / 4+2\rfloor=3 k+4$, by Lemmas 6 and 7 , there exists a $(2 n+2)$-equitable total coloring of graph G. Hence we have $\chi_{e t}\left(W_{n+1} \bigvee K_{n}\right)=2 n+2$.

Case 2.1.4 When $m=n+1 \geq 7$, and n is even. Let $G^{*}=\left(G \bigvee\{w\}-\left\{w v_{2 n+1}\right\}\right) \bigcup\left\{z v_{2 n+1}\right\}$, where $w, z \notin V(G) . g\left(v_{0} v_{j}\right)=2 j$, for $1 \leq j \leq n ; g\left(v_{0} v_{n+1}\right)=0 ; g\left(v_{0} v_{j}\right) \equiv 2 j-2(\bmod 2 n+1)$, for $n+2 \leq j \leq 2 n+1$; $g\left(v_{j} v_{k}\right) \equiv j+k(\bmod 2 n+2), 1 \leq j \leq n, 1 \leq k \leq 2 n+1 ; g\left(w v_{0}\right)=2 n+1, g\left(w v_{j}\right)=j$, $1 \leq j \leq 2 n ; g\left(v_{2 n-1} v_{2 n}\right)=2 n-4, g\left(v_{2 n} v_{2 n+1}\right)=2 n-2, g\left(v_{2 n+1} v_{n+1}\right)=n, g\left(v_{n+1} v_{n+2}\right)=n-1$, $g\left(z v_{2 n+1}\right)=g\left(w v_{n+2}\right)=n+2$.

Case 2.1.4.1 When $n \equiv 0(\bmod 4)$. Let $n=4 k, k \geq 2 . g\left(v_{n+3} v_{n+4}\right)=g\left(v_{n+5} v_{n+6}\right)=\cdots=$ $g\left(v_{n+2 k-1} v_{n+2 k}\right)=n+2 . g\left(v_{j} v_{j+1}\right)=j-1$, for $n+2 \leq j \leq 2 n-2$, and $j \neq n+3, n+4, \ldots, n+$ $2 k-1$. Hence g is a $(2 n+2)$-edge coloring of $G^{*}, \chi^{\prime}\left(G^{*}\right)=2 n+2$. All the edges of color $n+2$
are listed below:

$$
\begin{aligned}
& v_{0} v_{n / 2+1}, v_{1} v_{n+1}, v_{2} v_{n}, v_{3} v_{n-1}, \ldots, v_{n / 2} v_{n / 2+2} \\
& w v_{n+2}, z v_{2 n+1}, v_{n+3} v_{n+4}, v_{n+5} v_{n+6}, \ldots, v_{n+2 k-1} v_{n+2 k}
\end{aligned}
$$

So $\left|E_{n+1}\left(G^{*}\right)\right|=(n / 2+1)+(k+1)=3 k+2$. For $\left\lfloor\left|E\left(G^{*}\right)\right| / \chi^{\prime}\left(G^{*}\right)\right\rfloor=\lfloor 3 n / 4+2\rfloor=3 k+2$, by Lemmas 6 and 7 , there exists a $(2 n+2)$-equitable total coloring of graph G. So we have $\chi_{e t}\left(W_{n+1} \bigvee K_{n}\right)=2 n+2$.

Case 2.1.4.2 When $n \equiv 2(\bmod 4)$. Let $n=4 k+2$. The coloring is the same as Case 2.1.4.1, and $\left|E_{n+1}\left(G^{*}\right)\right|=(n / 2+1)+(k+1)=3 k+3$. $\left\lfloor\left|E\left(G^{*}\right)\right| / \chi^{\prime}\left(G^{*}\right)\right\rfloor=\lfloor 3 n / 4+2\rfloor=3 k+3$, by Lemmas 6 and 7 , there exists a $(2 n+2)$-equitable total coloring of graph G. It is obvious that $\chi_{e t}\left(W_{n+1} \bigvee K_{n}\right)=2 n+2$.

Case 2.2 If $m \geq n+3 \geq 6$, for $G^{\prime}=C_{m} \bigvee K_{n+1} \bigvee\{w\}=C_{m} \bigvee K_{n+2}$, let

$$
\begin{aligned}
& V\left(C_{m}\right)=\left\{u_{0}, u_{1}, \ldots, u_{m-1}\right\}, E\left(C_{m}\right)=\left\{u_{0} u_{1}, u_{1} u_{2}, \ldots, u_{m-2} u_{m-1}, u_{m-1} u_{0}\right\} \\
& V\left(K_{n}+2\right)=\left\{v_{0}, v_{1}, \ldots, v_{n+1}\right\}
\end{aligned}
$$

We define an edge coloring g of $C_{m} \bigvee K_{n+2}$ as follows:

$$
\begin{aligned}
& g\left(v_{0} v_{j}\right)=2 j, 1 \leq j \leq n+1 ; g\left(v_{0} u_{i}\right) \equiv 2 i+2 n+4(\bmod m+n), \text { for } 0 \leq i \leq m-3 \\
& g\left(v_{0} u_{m-2}\right)=m+n, g\left(v_{0} u_{m-1}\right)=0, g\left(v_{j} v_{k}\right)=j+k, 1 \leq j, k \leq n+1 \\
& g\left(u_{i} v_{j}\right) \equiv i+n+2+j(\bmod m+n+1), \text { for } 0 \leq i \leq m-1,1 \leq j \leq n+1 \\
& g\left(u_{0} u_{1}\right)=n+1, g\left(u_{i} u_{i+1}\right)=i+n+2, \text { for } 1 \leq i \leq m-3, \text { and } i \neq m-4 \\
& g\left(u_{m-4} u_{m-3}\right)=n, g\left(u_{m-2} u_{m-1}\right)=n+3, g\left(u_{m-1} u_{0}\right)=n+2
\end{aligned}
$$

It is easy to see that g is a proper edge coloring of $C_{m} \bigvee K_{n+1} \bigvee\{w\}$, so $\chi^{\prime}\left(C_{m} \bigvee K_{n+1} \bigvee\{w\}\right)=$ $m+n+1$. For $\Delta\left(C_{m} \bigvee K_{n+1}\right)=m+n$, by Lemma 5 , we have $\chi_{e t}\left(C_{m} \bigvee K_{n+1}\right)=m+n+1$. From all above, the theorem holds.

Theorem $2 \chi_{e t}\left(F_{m} \bigvee K_{n}\right)=\chi_{e t}\left(S_{m} \bigvee K_{n}\right)=m+n+1$, for $m \geq n \geq 3$.
The proof is similar to Theorem 1.

References

[1] BEHZAD M. Graphs and their chromatic numbers [D]. Doctoral Thesis, East Lansing: Michigan State University, 1965.
[2] BONDY J A, MURTY U S R. Graph Theory with Applications [M]. American Elsevier Publishing Co., Inc., New York, 1976.
[3] FU Hunglin. Some results on equalized total coloring [J]. Congr. Numer., 1994, 102: 111-119.
[4] VIZING V G. On an estimate of the chromatic class of a p-graph [J]. Metody Diskret. Analiz., 1964, 3: 25-30. (in Russian)
[5] ZHANG Zhongfu. Equitable total coloring of graphs [R]. Tianjin: Institute of Mathematics, Nankai University, 1996.
[6] ZHANG Zhongfu, WANG Weifan, BAU Sheng. et al. On the equitable total colorings of some join graphs [J]. J. Info. \& Comput. Sci., 2005, 2(4): 829-834.
[7] ZHANG Zhongfu, ZHANG Jianxun, WANG Jianfang. The total chromatic number of some graph [J]. Sci. Sinica Ser. A, 1988, 31(12): 1434-1441.

