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Abstract The total chromatic number χt(G) of a graph G(V, E) is the minimum number of

total independent partition sets of V
⋃

E, satisfying that any two sets have no common element.

If the difference of the numbers of any two total independent partition sets of V
⋃

E is no more

than one, then the minimum number of total independent partition sets of V
⋃

E is called the

equitable total chromatic number of G, denoted by χet(G). In this paper, we have obtained the

equitable total chromatic number of Wm

∨

Kn, Fm

∨

Kn and Sm

∨

Kn while m ≥ n ≥ 3.
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1. Introduction

In this paper we only consider finite simple graphs and we use the standard notation of graph

theory. Definitions not given here may be found in [2]. Let G(V, E) be a graph with the set of

vertices V and the edge set E. Total coloring was introduced by Vizing[4] and Behzad[1]. They

both conjectured that for any graph G the following inequality holds:

∆(G) + 1 ≤ χt(G) ≤ ∆(G) + 2.

It is obvious that ∆(G) + 1 is the best possible lower bound. The conjecture is proved so far for

some specific classes of graphs. And the concept of equitable total coloring was presented in [3]

and [5]. In general the equitable total coloring problem is more difficult than the total coloring

problem. In [6], the equitable total chromatic numbers of some join graphs were given. In this

paper, the equitable total coloring of Wm

∨

Kn, Fm

∨

Kn and Sm

∨

Kn (m ≥ n ≥ 3) have been

studied.

Definition 1 For a k-proper edge coloring f of graph G, if ||Ei(G)| − |Ej(G)|| ≤ 1, i, j =
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0, 1, . . . , k − 1, where Ei(G) is the set of edges of color i in G, then f is called a k-equitable edge

coloring of graph G, and

χ′

e(G) = min{k|there is a k-equitable edge coloring of graph G}

is called the equitable edge chromatic number of G.

Definition 2
[6] For a simple graph G(V, E), the edges and vertices are called the elements

of G(V, E), and elements are called independent if any two of them are neither incident nor

adjacent. If k is a natural number and V
⋃

E =
⋃k−1

i=0 (Vi

⋃

Ei) satisfies:

(1) The elements of Vi

⋃

Ei are independent, i = 0, 1, 2, . . . , k − 1;

(2) (Vi

⋃

Ei)
⋂

(Vj

⋃

Ej) = ∅, i, j = 0, 1, 2, . . . , k − 1, and i 6= j;

(3) ||Vi

⋃

Ei| − |Vj

⋃

Ej || ≤ 1, i, j = 0, 1, 2, . . . , k − 1,

then the partition {Vi

⋃

Ei | 0 ≤ i ≤ k − 1} is called a k-equitable total coloring of G, and

χet(G) = min{k|there is a k-equitable total coloring of graph G}

is called the equitable total chromatic number of G.

Definition 3
[2] The join graph G

∨

H of disjoint graphs G and H is defined as follows:

V (G
∨

H) = V (G)
⋃

V (H), E(G
∨

H) = E(G)
⋃

E(H)
⋃

{uv|u ∈ V (G), v ∈ V (H)}.

Definition 4 Let m ≥ 2, n ≥ 3, We define star Sm, fan Fm and wheel Wn as follows:

V (Sm) = {ui | i = 0, 1, 2, . . . , m},

E(Sm) = {u0ui | i = 1, 2, . . . , m};

V (Fm) = {ui | i = 0, 1, 2, . . . , m},

E(Fm) = {u0ui | i = 1, 2, . . . , m}
⋃

{uiui+1 | i = 1, 2, . . . , m − 1};

V (Wn) = {vi | i = 0, 1, 2, . . . , n},

E(Wn) = {v0vi | i = 1, 2, . . . , n}
⋃

{vivi+1 | i = 1, 2, . . . , n − 1}
⋃

{vnv1}.

2. Main results

Lemma 1
[2] For a complete graph Kp of order p,

χ ′(Kp) =

{

p if p ≡ 1 (mod 2)

p − 1 if p ≡ 0 (mod 2)

Lemma 2 For any subgraph H of a graph G, χ′(H) ≤ χ′(G).

Lemma 3 For a finite simple graph G, χ′

e(G) = χ′(G).

Proof Let f1 be a k-proper edge coloring of G, where k = χ′(G). If there exist two colors i and j,

such that ||Ei(G)|−|Ej(G)|| ≥ 2, then notice that the graph Gij is composed of the edges colored

with color i and color j, each branch of Gij is either a path or an even cycle. It is obvious that we
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can recolor the edges of Gij just with color i and j, such that ||Ei(Gij)| − |Ej(Gij)|| ≤ 1. After

recoloring the corresponding edges of G, we get a new edge coloring f2 of G. Under edge coloring

f2, ||Ei(G)| − |Ej(G)|| ≤ 1. If there also exist two colors i1 and j1, such that ||Ei1 | − |Ej1 || ≥ 2,

repeat the process above. After finite steps, we can get a k-proper edge coloring f of G. Under

edge coloring f , for any i, j = 0, 1, . . . , k − 1, ||Ei(G)| − |Ej(G)|| ≤ 1.

Lemma 4
[7] For a simple graph G, χet(G) ≥ χt(G) ≥ ∆(G) + 1.

Lemma 5 For a simple graph G of order p, if ∆(G) = p−1, and χ′(G
∨

{w}) = p for w /∈ V (G),

then χet(G) = p.

Proof By Lemma 3, χ′

e(G
∨

{w}) = χ′(G
∨

{w}). Notice that G′ = G
∨

{w} is obtained by

adding a new vertex w to G and adding an edge joining w to each vertex in G. Let g be a

p-equitable edge coloring of G
∨

{w}. Now we turn g into a p-equitable total coloring f of G as

follows:

∀ v ∈ V (G), fG(v) = gG′(wv); ∀ e ∈ E(G), fG(e) = gG′(e).

It is obvious that f is a p-equitable total coloring of G. By Lemma 4, χet(G) ≥ χt(G) ≥

∆(G) + 1 = p, so χet(G) = p.

Lemma 6 For an edge coloring of a graph G, Ei(G) denotes the set of edges of color i. Let the

color of some edges of graph G be restricted to be j. Under this restriction, if there exists an

α-edge coloring of graph G, such that | Ej(G) |= ⌊ε/α⌋ or ⌈ε/α⌉, where ε =| E(G) |, α = χ′(G),

then under this restriction there exists an α-equitable edge coloring of graph G.

Proof Let g be an α-edge coloring of graph G under the restriction. So the coloring under

G − Ej(G) is an (α − 1)-edge coloring. By Lemma 3, there exists an (α − 1)-equitable edge

coloring g′e of G−Ej(G). Then Ej(G) combining with the edge independent sets of g′e constitutes

an α-edge coloring of graph G.

Case 1 If | Ej(G) |= ⌊ε/α⌋, we denote ⌊ε/α⌋ by c. So c ≤ ε/α < c + 1, cα ≤ ε < (c + 1)α,

c(α − 1) ≤ ε − c < c(α − 1) + α, c ≤ (ε − c)/(α − 1) < c + α/(α − 1). We will show that

(ε − c)/(α − 1) > (c + 1) does not hold:

Else, ε > (c+1)α−1, and (c+1)α−1 < ε < (c+1)α, a contradiction because ε is an integer.

So we have c ≤ (ε− c)/(α− 1) ≤ c + 1, and Ej(G) combining with the edge independent sets of

g ′

e constitutes an α-equitable edge coloring of G.

Case 2 If | Ej(G) |= ⌈ε/α⌉, we assume that ε/α is not an integer. Otherwise, ⌈ε/α⌉ = ⌊ε/α⌋,

it is the same as Case 1. Now we denote ⌈ε/α⌉ by c. So c < ε/α < c + 1, c − 1/(α − 1) <

(ε − c − 1)/(α − 1) < c + 1, we will show that (ε − c − 1)/(α − 1) < c does not hold:

Else, ε < cα + 1, and cα < ε < cα + 1, a contradiction because ε is an integer. We have

c ≤ (ε − c − 1)/(α − 1) < c + 1, so Ej(G) combining with the edge independent sets of g ′

e

constitutes an α-equitable edge coloring of G.

Lemma 7 For a graph G, x, y ∈ V (G), xy /∈ E(G), w, z /∈ V (G), let G∗ = (G
∨

{w} −
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{wx})
⋃

{zx}. If g is an α-equitable edge coloring of graph G∗, and g(zx) = g(wy), then there

exists an α-equitable total coloring of graph G.

Proof We define an α-total coloring f of graph G as follows:

(1) For ∀ e ∈ E(G), fG(e) = gG∗(e).

(2) For any vertex v ∈ V (G), v 6= x, fG(v) = gG∗(wv); and fG(x) = fG(y).

It is obvious that f is an α-equitable total coloring of graph G.

Theorem 1 For m ≥ n ≥ 3, χet(Wm

∨

Kn) = m + n + 1.

Proof For Wm

∨

Kn = Cm

∨

Kn+1, let G′ = G
∨

{w}, where G = Wm

∨

Kn, w /∈ V (G). So we

have G′ = Cm

∨

Kn+1

∨

{w} = Cm

∨

Kn+2. And by Lemma 4, χet(Wm

∨

Kn) ≥ m + n + 1.

Case 1 If m + n is even, then m + n + 2 is even, and for G′ ⊆ Km+n+2, by Lemmas 1

and 2, χ′(G′) ≤ χ′(Km+n+2) = m + n + 1, and for χ′(G′) ≥ ∆(G′) = m + n + 1, we have

χ′(G′) = m + n + 1. For ∆(G) = m + n, by Lemma 5, χet(Wm

∨

Kn) = m + n + 1.

Case 2 If m + n is odd.

Case 2.1 When m = n + 1 ≥ 4. For G = Wm

∨

Kn = Cm

∨

Kn+1 = Cn+1

∨

Kn+1, let

V (Kn+1) = {v0, v1, . . . , vn}, V (Cn+1) = {vn+1, vn+2, . . . , v2n+1},

E(Cn+1) = {vn+1vn+2, vn+2vn+3, . . . , v2nv2n+1, v2n+1vn+1}.

Case 2.1.1 When m = n + 1 = 4. We define a total coloring f of C4

∨

K4 as follows:

f(v0) = f(v1v6) = f(v2v4) = f(v3v7) = 0, f(v3) = f(v0v5) = f(v1v7) = f(v2v6) = 3,

f(v1) = f(v0v7) = f(v2v5) = f(v3v4) = 1, f(v4) = f(v6) = f(v0v3) = f(v1v5) = f(v2v7) = 4,

f(v2) = f(v0v6) = f(v1v4) = f(v3v5) = 2, f(v5) = f(v7) = f(v0v4) = f(v1v2) = f(v3v6) = 5,

f(v0v1) = f(v2v3) = f(v4v5) = f(v6v7) = 6, f(v0v2) = f(v1v3) = f(v4v7) = f(v5v6) = 7.

Thus χet(W4

∨

K3) = 8.

Case 2.1.2 When m = n + 1 = 5. We define a total coloring f of C5

∨

K5 as follows:

f(v0) = 9, f(v7) = 5, f(v8) = 7, f(v9) = 6, f(vi) = i, i = 1, 2, 3, 4, 5, 6;

f(v0vi) = 2i, i = 1, 2, 3, 4; f(v0v5) = 0, f(v0vi) ≡ 2i − 2 (mod 9), i = 6, 7, 8, 9;

f(vjvk) ≡ j + k (mod 10), for 1 ≤ j ≤ 4, 1 ≤ k ≤ 9;

f(v5v6) = 3, f(v5v9) = f(v7v8) = 4, f(v6v7) = 2, f(v8v9) = 8.

For every color of {0, 1, 2, . . . , 9}, 5 elements are colored exactly. So f is an equitable total

coloring of W5

∨

K4, and χet(W5

∨

K4) = 10.

Case 2.1.3 When m = n + 1 ≥ 6, and n is odd. Let G∗ = (G
∨

{w}− {wv2n})
⋃

{zv2n}, where

w, z /∈ V (G). We define an edge coloring g of G∗ as follows:

g(v0vj) = 2j, 1 ≤ j ≤ n; g(v0vn+1) = 0; g(v0vj) ≡ 2j − 2 (mod 2n + 1), n + 2 ≤ j ≤ 2n + 1;
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g(vjvk) ≡ j + k (mod 2n + 2), 1 ≤ j ≤ n, 1 ≤ k ≤ 2n + 1;

g(wv0) = 2n + 1, g(wv2n+1) = 2n, g(wvj) = j, 1 ≤ j ≤ 2n − 1;

g(v2nv2n+1) = n + 2, g(v2n+1vn+1) = n, g(vn+1vn+2) = n − 1, g(zv2n) = g(wvn+1) = n + 1.

Case 2.1.3.1 When n ≡ 1 (mod 4). Let n = 4k + 1.

g(vn+2vn+3) = g(vn+4vn+5) = · · · = g(vn+2k−2vn+2k−1) = n + 1.

g(vjvj+1) = j − 1, for n + 3 ≤ j ≤ 2n − 1, and j 6= n + 2, n + 4, . . . , n + 2k − 2.

So g is a (2n + 2)-edge coloring of G∗, χ′(G∗) = 2n + 2. All the edges of color n + 1 are listed

below:

v0v(n+1)/2, v1vn, v2vn−1, . . . , v(n−1)/2v(n+3)/2,

wvn+1, zv2n, vn+2vn+3, vn+4vn+5, . . . , vn+2k−2vn+2k−1.

So | En+1(G
∗) |= (n+1)/2+(k+1) = 3k +2. When n = 5, i.e. k = 1, | E6(G

∗) |= 6 = 3k+3 =

⌈3n/4 + 2⌉. When n > 5, we have | E(G∗) |= (n + 1)(3n/2 + 4), and ⌊| E(G∗) | /χ ′(G∗)⌋ =

⌊3n/4+2⌋ = 3k+2, by Lemmas 6 and 7, there exists a (2n+2)-equitable total coloring of graph

G, thus χet(Wn+1

∨

Kn) = 2n + 2.

Case 2.1.3.2 When n ≡ 3 (mod 4). Let n = 4k + 3.

g(vn+2vn+3) = g(vn+4vn+5) = · · · = g(vn+2kvn+2k+1) = n + 1.

g(vjvj+1) = j − 1, for n + 3 ≤ j ≤ 2n − 1, and j 6= n + 2, n + 4, . . . , n + 2k.

So g is a (2n + 2)-edge coloring of G∗, χ′(G∗) = 2n + 2. All the edges of color n + 1 are listed

as follows:

v0v(n+1)/2, v1vn, v2vn−1, . . . , v(n−1)/2v(n+3)/2,

wvn+1, zv2n, vn+2vn+3, vn+4vn+5, . . . , vn+2kvn+2k+1.

So | En+1(G
∗) |= (n + 1)/2 + (k + 2) = 3k + 4. For ⌊| E(G∗) | /χ′(G∗)⌋ = ⌊3n/4 + 2⌋ = 3k + 4,

by Lemmas 6 and 7, there exists a (2n + 2)-equitable total coloring of graph G. Hence we have

χet(Wn+1

∨

Kn) = 2n + 2.

Case 2.1.4 When m = n + 1 ≥ 7, and n is even. Let G∗ = (G
∨

{w} − {wv2n+1})
⋃

{zv2n+1},

where w, z /∈ V (G). g(v0vj) = 2j, for 1 ≤ j ≤ n; g(v0vn+1) = 0; g(v0vj) ≡ 2j − 2 (mod 2n + 1),

for n + 2 ≤ j ≤ 2n + 1;

g(vjvk) ≡ j + k (mod 2n + 2), 1 ≤ j ≤ n, 1 ≤ k ≤ 2n + 1; g(wv0) = 2n + 1, g(wvj) = j,

1 ≤ j ≤ 2n; g(v2n−1v2n) = 2n−4, g(v2nv2n+1) = 2n−2, g(v2n+1vn+1) = n, g(vn+1vn+2) = n−1,

g(zv2n+1) = g(wvn+2) = n + 2.

Case 2.1.4.1 When n ≡ 0 (mod 4). Let n = 4k, k ≥ 2. g(vn+3vn+4) = g(vn+5vn+6) = · · · =

g(vn+2k−1vn+2k) = n+2. g(vjvj+1) = j−1, for n+2 ≤ j ≤ 2n−2, and j 6= n+3, n+4, . . . , n+

2k − 1. Hence g is a (2n + 2)-edge coloring of G∗, χ′(G∗) = 2n + 2. All the edges of color n + 2
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are listed below:

v0vn/2+1, v1vn+1, v2vn, v3vn−1, . . . , vn/2vn/2+2,

wvn+2, zv2n+1, vn+3vn+4, vn+5vn+6, . . . , vn+2k−1vn+2k.

So | En+1(G
∗) |= (n/2 + 1) + (k + 1) = 3k + 2. For ⌊| E(G∗) | /χ′(G∗)⌋ = ⌊3n/4 + 2⌋ = 3k + 2,

by Lemmas 6 and 7, there exists a (2n + 2)-equitable total coloring of graph G. So we have

χet(Wn+1

∨

Kn) = 2n + 2.

Case 2.1.4.2 When n ≡ 2 (mod 4). Let n = 4k + 2. The coloring is the same as Case 2.1.4.1,

and | En+1(G
∗) |= (n/2 + 1) + (k + 1) = 3k + 3. ⌊| E(G∗) | /χ′(G∗)⌋ = ⌊3n/4 + 2⌋ = 3k + 3, by

Lemmas 6 and 7, there exists a (2n + 2)-equitable total coloring of graph G. It is obvious that

χet(Wn+1

∨

Kn) = 2n + 2.

Case 2.2 If m ≥ n + 3 ≥ 6, for G′ = Cm

∨

Kn+1

∨

{w} = Cm

∨

Kn+2, let

V (Cm) = {u0, u1, . . . , um−1}, E(Cm) = {u0u1, u1u2, . . . , um−2um−1, um−1u0},

V (Kn + 2) = {v0, v1, . . . , vn+1}.

We define an edge coloring g of Cm

∨

Kn+2 as follows:

g(v0vj) = 2j, 1 ≤ j ≤ n + 1; g(v0ui) ≡ 2i + 2n + 4 (mod m + n), for 0 ≤ i ≤ m − 3;

g(v0um−2) = m + n, g(v0um−1) = 0, g(vjvk) = j + k, 1 ≤ j, k ≤ n + 1;

g(uivj) ≡ i + n + 2 + j (mod m + n + 1), for 0 ≤ i ≤ m − 1, 1 ≤ j ≤ n + 1;

g(u0u1) = n + 1, g(uiui+1) = i + n + 2, for 1 ≤ i ≤ m − 3, and i 6= m − 4;

g(um−4um−3) = n, g(um−2um−1) = n + 3, g(um−1u0) = n + 2.

It is easy to see that g is a proper edge coloring of Cm

∨

Kn+1

∨

{w}, so χ′(Cm

∨

Kn+1

∨

{w}) =

m + n + 1. For ∆(Cm

∨

Kn+1) = m + n, by Lemma 5, we have χet(Cm

∨

Kn+1) = m + n + 1.

From all above, the theorem holds. 2

Theorem 2 χet(Fm

∨

Kn) = χet(Sm

∨

Kn) = m + n + 1, for m ≥ n ≥ 3.

The proof is similar to Theorem 1.
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