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Abstract Presented in this paper is a convergence theorem for a kind of composite power
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1. Introduction

Denote by R and C the real and complex number fields respectively, and let a ∈ C. Suppose

that f(a+ t) has a formal power series expansion in t, and let
∑

∞

n=1 αnzn be a formal series over

C. Given a formal power series expansion of the form

f
(

a +
∞
∑

n=1

αnzn
)

= f(a) +
∞
∑

n=1

βnzn. (1)

It is known that the coefficientsβncan be expressed by means of Faà di Bruno’s formula[1,2]

βn =
∑

σ(n)

f (k)(a)
αk1

1 · · ·αkn

n

k1! · · · kn!
(2)

where f (k)(a) = (d/dt)kf(a + t)|t=0 denotes the kth formal derivative of f(a + t) at t = 0, and

the summation involved in (2) is taken over the set σ(n) of all possible partitions of n, that

is, over all nonnegative integral solutions (k1, k2, . . . , kn) of the equation 1k1 + 2k2 + · · ·nkn =

n, k1 + k2 + · · ·kn = k, k = 1, 2, . . . , n.

In this paper all functions are assumed to be analytic having convergence circular regions in

C. We shall prove (in §2) a convergence theorem for the series expansion (1), in which a basic

convergence condition is stated in terms of the convergence radii of f(z) and
∑

∞

n=1 αnzn, and

also involving free parameters p > 1 and q > 1 with 1/p + 1/q = 1.

2. A convergence theorem and its corollaries
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Theorem Let the following conditions be fulfilled:

(i)
∑

∞

n=1 αnzn is an analytic function of z defined for |z| < ρ;

(ii) f(z) is analytic within the circle |z − a| < r of center at a ∈ C;

(iii) s is a finite number defined by

s :=
(

∞
∑

n=1

|αn|
pρpn

0

)1/p

(3)

where p > 1 and 0 < ρ0 < ρ. Then the power series expansion (1) is absolutely convergent for

any z such that

|z| < ρ0r/(rq + sq)1/q (4)

where q = p/(p− 1), and the coefficients βncontained in (1) are given by Faà di Bruno’s formula

(2).

Proof First, notice that the convergence of the series in the RHS (right-hand side) of (3) follows

from condition (i) and Cauchy’s root-test. Clearly, condition (inequality) (4) implies z < ρ0 < ρ.

Thus it suffices to show that (4) also implies the inequality

∞
∑

n=1

|αn||z|
n < r (5)

which could ensure the absolute convergence of the series expansion (1). Indeed, condition (ii)

leads to an absolutely convergent Taylor expansion of f(z) at z = a within the circle |z − a| < r,

so that we have

|f(a + z)| ≤ |f(a)| +
∞
∑

k=1

|f (k)(a)

k!
|z|k < +∞, |z| < r.

Consequently, we see that (5) implies the following

∣

∣

∣
f
(

a +

∞
∑

n=1

|αn||z
n|

)

∣

∣

∣
≤ |f(a)| +

∞
∑

k=1

|f (k)(a)|

k!

(

∞
∑

n=1

|αn||z
n|

)k

= |f(a)| +
∞
∑

k=1

|f (k)(a)|

k!

∞
∑

m=1

Sk(m)|z|m < +∞,

where sk(m) denotes the k-fold convolution of the |αn| coefficients, viz.

sk(m) =
∑

n1+···nk=m

|αn−1| · · · |αnk
|.

By exchanging the order of the double summation occurring above, we get

∣

∣

∣
f(a +

∞
∑

n=1

|αn||z
n|

)

∣

∣

∣
≤ |f(a)| +

∞
∑

m=1

(

m
∑

k=1

f (k)(a)

k!
Sk(m)

)

|z|m. (6)

Certainly this implies that the RHS of (1) is bounded absolutely by the RHS of (6).

What remains is to deduce (5) from (4). Denote z = ρ0t and note that 1/p + 1/q = 1. Thus,

making use of Hölder’s inequality, we see that the LHS (left-hand side) of (5) with |z| < ρ0 may
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be estimated as follows

∞
∑

n=1

|αn| |z|
n

=

∞
∑

n=1

|αn| |ρ
n
0 | |t|

n
≤

(

∞
∑

n=1

|αn|
p
ρnp
0

)

1/p
(

∞
∑

n=1

|t|
nq

)1/q

= s · |t|/(1 − |t|q)1/q , |t| < 1.

Thus the truth of (5) is implied by the inequality

s · |t|/(1 − |t|q)1/q < r (7)

which is equivalent to

sq|t|q < rq(1 − |t|q)|, i.e., |t| < r/(rq + sq)1/q.

Recalling z = ρ0t, we can rewrite the above inequality as

|z| < ρ0r/(rq + sq)1/q.

Hence (4) really implies (5) and the proof is completed. 2

It is easily seen that the theorem and its proof imply the following propositions.

Corollary 1 Let the condition (i) of Theorem be replaced by

(i)∗
∑

∞

n=1 αnzn is absolutely convergent on the disc |z| < ρ0. Also, let the statement

0 < ρ0 < ρ in (iii) be omitted. Then the conclusion of Theorem does hold under the (i)∗, (ii)

and (iii).

Observe that the inequality (6) in the proof holds for every entire function f(z), provided

that
∑

∞

n=1 αnzn is convergent for |z| < ρ. This leads to the following

Corollary 2 Let f(z) be an entire function and let
∑

∞

n=1 αnzn be analytic within the circle

|z| < ρ. Then the expansion formula (1) with βnbeing given by (2) holds for |z| < ρ.

Obviously, the condition |z| < ρ also follows from (4) by letting r → ∞ and then replacing

ρ0 by ρ. Moreover, by taking p = q = 2 in Theorem we have

Corollary 3 Given
∑

∞

n=1 αnzn and f(z) as in Theorem. Let s be defined by

s :=
(

∞
∑

n=1

|αn|
2ρ2n

0

)1/2

, 0 < ρ0 < ρ. (8)

Then the expansion (1) converges absolutely for z such that

|z| < ρ0r/(r2 + s2)1/2. (9)

Here the condition (9) may be replaced by

|z| < sup{ρ0r/(r2 + s2)1/2|0 < ρ0 < ρ}. (10)

As may be observed, the classical Taylor expansion theorem is a particular case included in

Corollary 3 with α1 = 1, αn = 0 (n ≥ 2), so that ρ = +∞ and s = ρ0. Indeed, (1) and (2) imply

f(a + z) = f(a) +

∞
∑

n=1

f (n)(a)

n!
zn
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and the convergence condition (10) may be now written as

|z| < sup{ρ0r/(r2 + ρ2
0)

1/2|0 < ρ0 < ∞} = r.

Here we would like to mention a remark involving an unsolved problem.

Remark Notice that the convergence result described in the theorem is proved without reference

to Faà di Bruno’s formula (2). We guess that an appropriate estimate for |βn| via (2) may possibly

lead to some more sharp conditions than (4) or (9) for the absolute convergence of (1). Of course,

the exact radius of convergence for the series expansion of (1) is given by the Cauchy-Hadamard

formula r̄ = 1
/

limn ||βn|
1/n

. However this expression is not utilizable in practice.

3. Examples

Here we give a few examples to illustrate certain applications of the convergence result of §2.

Example 1 Consider the power series expansion (Corollary 1 of [1])

exp
(

∞
∑

n=1

αnzn
)

= 1 +

∞
∑

n=1

βnzn, (11)

where the coefficients βn’s are given by

βn =
∑

σ(n)

αk1

1 · · ·αkn

n

k1! · · · kn!
. (12)

In this example, f(z) = exp(z) = ez is an entire function. Thus by Corollary 2 we see that the

RHS of (11) is absolutely convergent for |z| < ρ, provided that
∑

∞

n=1 αnzn is analytic within the

circle |z| < ρ.

As a simple instance, consider the generating function for the Bell number–sequence {Bn}:

exp(ez − 1) = exp
(

∞
∑

n=1

1

n!
zn

)

= 1 +

∞
∑

n=1

Bn
zn

n!
, (13)

where the numbers Bn/n! are given by (12)

1

n!
Bn =

∑

σ(n)

(1/1!)k1 · · · (1/n!)kn

k1! · · ·kn!
. (14)

Since
∑

zn/n! converges absolutely for |z| < ∞, we see that the RHS of (13) is also absolutely

convergent for |z| < ∞.

Example 2 Let α ∈ R and consider the expansion (Corollary 2 of [1])

(

1 +
∞
∑

n=1

αnzn
)α

= 1 +
∞
∑

n=1

βnzn, (15)

where βn’s are given by

βn =
∑

σ(n)

(α)k
αk1

1 · · ·αkn

n

k1! · · ·kn!
, (16)
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(α)k denoting the falling factorial, namely (α)k = α(α − 1) · · · (α − k + 1), k ≥ 1 and (α)0 = 1.

In this example, f(z) = zα is an analytic function of z for |z| < 1. Thus by the convergence

theorem (§2), or its Corollary 3, we see that the RHS of (15) is absolutely convergent for z such

that

|z| < sup{ρ0/(1 + s2)1/2|0 < ρ0 < ρ}, (17)

where s = (
∑

∞

n=1 |αn|
2
ρ2n
0 )1/2, and

∑

∞

n=1 αnzn is assumed to be analytic within the circle

|z| < ρ.

Evidently, the binomial expansion theorem

(1 + z)α = 1 +

∞
∑

n=1

(

α

n

)

zn, |z| < 1 (18)

is the simplest instance implied by (15)–(17), with α1 = 1, αn = 0 (n ≥ 2), s = ρ0 and ρ = +∞.

Example 3 For α ∈ R, consider the series expansion

(1 − log(1 − z))α =
(

1 +

∞
∑

n=1

1

n
zn

)α

= 1 +

∞
∑

n=1

βnzn (19)

where
∑

∞

n=1
1
nzn is analytic for |z| < 1 = ρ. Comparing this with (15) and using (17), we see

that the RHS of (19) converges absolutely for z such that

|z| < sup{ρ/(1 + s2)1/2|0 < ρ0 < 1} (20)

where s = (
∑

∞

n=1(
1
n )2ρ2n

0 )1/2 (0 < ρ0 < 1). The RHS of (20) may be computed by letting

ρ0 → 1, so that (20) may be rewritten as

|z| < 1
/(

1 +

∞
∑

n=1

1

n2

)1/2

= 1
/(

1 +
π2

6

)1/2

≈ 0.615. (21)

On the other hand it is easily seen that for|z| > 0 required inequality |log(1 − z)| < 1

leads to the exact relation |z < (e − 1)/e|. This yields the exact radius of convergence r̄ =

(e − 1)/e ≈ 0.632 for the power series (19). From this we see that the RHS of (21) is an approx-

imate value of r̄ with a relative error (0.632 − 0.615)/0.632 ≃ 0.027. This special example may

also suggest the fact that the RHS of (4) or of (10) just gives a kind of lower approximation to

r̄ = 1/ limn|βn|
1/n for the convergence of the power series (1). As mentioned in Remark of §2,

better approximations to r̄ may possibly be obtained by some sharper estimates of βn via (2).

References

[1] CHOU W S, HSU L C, SHIUE P J S. Application of Faàdi Bruno’s formula in characterization of inverse
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