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1. Introduction and preliminaries

Weak bialgebra and weak Hopf algebras given in [1] are generalizations of ordinary bialgebra

and Hopf algebras in the following sense: the defining axioms are the same, but the multiplica-

tivity of the counit and the comultiplicativity of unit are replaced by weaker axioms.

Many results of classical Hopf algebra theory can be generalized to weak Hopf algebras. For

examples, a duality theorem for weak module algebras[2] was given by Nikshych; a Maschke-type

theorem for weak module algebras[3] was given by Zhang, which extends the famous Maschke

theorem[4] for usual module algebras given by Cohen and Fishman; the fundamental theorem of

weak Doi-Hopf modules[5] was given by Zhang and Zhu, which not only extends the fundamental

theorem of weak Hopf modules given in [1], but also extends the fundamental theorem of relative

Hopf modules given in [6].

In this paper, we firstly introduce the concept of two-sided weak smash products and give

some examples of two-sided weak smash products. Then, we give the Maschke-type theorem of

two-sided weak smash products over semisimple weak Hopf algebras, which extends Theorem 1

given in [3].

We always work over a fixed field k and follow Montgomery’s book[7] for terminologies on

coalgebras and comodules.

We recall some concepts and results used in this paper.
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Definition 1.1[1] Let H be both an algebra and a coalgebra. If H satisfies the conditions

(1.1)–(1.3) below, then it is called a weak bialgebra given in [1]. If it satisfies the conditions

(1.1)–(1.4) below, then it is called a weak Hopf algebra with weak antipode SH .

For any x, y, z ∈ H,

(1.1): ∆H(xy) = ∆H(x)∆H(y).

(1.2): (a) ∆2
H(1H) = (∆H(1H)⊗1H)(1H⊗∆H(1H)); (b) ∆2

H(1H) = (1H⊗∆H(1H))(∆H(1H)⊗

1H), where ∆2
H = (∆H ⊗ idH) ◦ ∆H .

(1.3): (a) εH(xyz) = ΣεH(xy1)εH(y2z); (b) εH(xyz) = ΣεH(xy2)εH(y1z).

(1.4): (a) Σx1SH(x2) = ΣεH(11x)12; (b) ΣSH(x1)x2 = Σ11εH(x12); (c) ΣSH(x1)x2SH(x3) =

SH(x), where ∆H(1H) = Σ11 ⊗ 12.

For any weak bialgebra H , define the maps ⊓L
H ,⊓R

H : H → H by the formulas

⊓L
H(x) = ΣεH(11x)12;⊓

R
H(x) = Σ11εH(x12).

Denote the image ⊓L
H(H) by HL and the image ⊓R

H(H) by HR.

Note that H is an ordinary bialgebra if and only if ∆H(1H) = 1H ⊗ 1H , and if and only if

εH is an algebra map.

By [1], we have the following conclusions.

• (W1) HL and HR are subalgebras of H and ∆H(1H) = Σ11 ⊗ 12 ∈ HR ⊗ HL.

• (W2) For any x ∈ HL, y ∈ HR, xy = yx.

• (W3) For any x ∈ HL, y ∈ HR, ∆H(x) = Σ11x ⊗ 12, ∆H(y) = Σ11 ⊗ y12.

• (W4) ⊓R
H ◦ SH = ⊓R

H ◦ ⊓L
H = SH ◦ ⊓L

H .

• (W5) For any h ∈ H, Σ⊓L
H (h1)⊗h2 = ΣSH(11)⊗12h and Σh1⊗⊓R

H(h2) = Σh11⊗SH(12).

So Σ ⊓L
H (11) ⊗ 12 = ΣSH(11) ⊗ 12, Σ11 ⊗ ⊓R

H(12) = Σ11 ⊗ SH(12).

• (W6) For any h ∈ H , Σ ⊓R
H (h1) ⊗ h2 = Σ11 ⊗ h12; Σh1 ⊗ ⊓L

H(h2) = Σ11h ⊗ 12.

According to [3], we have the following results:

• (W7) S−1
H ◦ ⊓R

H = ⊓L
H ◦ S−1

H ; S−1
H ◦ ⊓L

H = ⊓R
H ◦ S−1

H .

• (W8) Σ ⊓L
H (h)SH(x1) ⊗ x2 = ΣSH(x1) ⊗ x2 ⊓

L
H (h), for any h, x ∈ H .

Let H be a finite-dimensional weak Hopf algebra. Then, by [1], the weak antipode SH is a

bijection with inverse S−1
H . Hence, by [8], we have

• (W9) Σh2S
−1
H (h1) = ⊓R

HS−1
H (h), for any h, x ∈ H .

• (W10) S−1
H is both an anti-algebra map and an anti-coalgebra map.

Definition 1.2 Let H be a weak bialgebra. A k-algebra A is called a weak left H-module

algebra in [2] if A is a left H-module via h ⊗ a 7→ h · a such that for any a, b ∈ A, h ∈ H,

(1.5) h · (ab) = Σ(h1 · a)(h2 · b)

(1.6) h · 1A = ⊓L
H(h) · 1A.

Similarly, we can define a weak right H-module algebra.

Definition 1.3 Let H be a weak Hopf algebra, and A a weak left H-module algebra. A weak

smash product A#H in [2] can be defined as follows:
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A#H = A ⊗HL H(relative tensor product) as a k-module and its multiplication is given by

the formula

(a#h)(b#g) = Σa(h1 · b)#h2g

for any a, b ∈ A, g, h ∈ H .

Note here that H is a left HL-module via its multiplication, and A is a right HL-module via

defining: for any a ∈ A, x ∈ HL,

a ↼ x = S−1
H (x) · a = a(x · 1A).

By [2], we know that A#H is an algebra with unit 1A#1H .

2. Two-sided weak smash products

Definition 2.1 Let A be a weak left H-module algebra and B be a weak right H-module

algebra. A two-sided weak smash product A#H#B is defined as follows:

A#H#B = A ⊗HL H ⊗HR B(relative tensor product) as a k-module and its multiplication

is given by the formula

(a ⊗ h ⊗ b)(a′ ⊗ h′ ⊗ b′) = Σa(h1 ⇀ a′) ⊗ h2h
′

1 ⊗ (b ↼ h′

2)b
′

for any a, a′ ∈ A, h, h′ ∈ H, b, b′ ∈ B.

Note here that H is both a left HL-module and a right HR-module via its multiplication,

and A is a right HL-module via defining:

a ↼ x = S−1
H (x) · a = a(x · 1A)

for any a ∈ A, x ∈ HL, and B is a left HR-module via defining:

y ⇀ b = (1B · y)b

for any y ∈ HR, b ∈ B.

Then, by the above multiplication, A#H#B is an algebra with unit 1A#1H#1B.

As a matter of fact, for any a ∈ A, h ∈ H, b ∈ B, we have

(1A#1H#1B)(a#h#b) = Σ(11 · a)#12h1#(1B · h2)b

= Σ(11 · a)#12h1#(1B · ⊓R
H(h2))b

(W5)
= Σ(11 · a)#12h1′1#(1B · SH(1′2))b (∆H(1H) = Σ1′1 ⊗ 1′2)

(W1)
= Σ(11 · a) · 12#h#1′1 · ((1B · SH(1′2))b)

(1.5)
= Σ(11 · a)(12 · 1A)#h#(1B · 1′1)(1B · SH(1′2))b

(W5)
= Σa#h#(1B · 1′1)(1B · ⊓R

H(1′2))b

= Σa#h#(1B · 1′1)(1B · 1′2)b

= a#h#b,

(a#h#b)(1A#1H#1B) = Σa(h1 · 1A)#h21
′

1#(b · 1′2) = Σa(h1 · 1A)#h2#1′1 · (b · 1
′

2)

= Σa(h1 · 1A)#h2#(1B · 1′1)(b · 1
′

2)
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= Σa(h1 · 1A)#h2#b = Σa(⊓L
H(h1) · 1A)#h2#b

(W5)
= Σa(SH(11) · 1A)#12h#b = Σ(a(⊓L

H(11) · 1A)) · 12#h#b

= Σa(⊓L
H(11) · 1A)(12 · 1A)#h#b = Σa(11 · 1A)(12 · 1A)#h#b

= a#h#b.

It is easy to prove that the associativity of A#H#B is satisfied, so A#H#B is an algebra

with unit 1A#1H#1B.

Remark 2.2 (1) By [2], A = HL is a weak left H-module algebra via the trivial action

h · hL = ⊓L
H(hhL). Then A#H#B = HL#H#B ∼= H#B with muitiplication given by

(h#b)(h′#b′) = Σhh′

1#(b · h′

2)b
′

and hence H#B is an algebra with unit 1H#1B.

(2) By [1], B = HR is a weak right H-module algebra via the trivial action hR · h =

⊓R
H(hRh). Then A#H#B = A#H#HR ∼= A#H (the weak smash product in Definition 1.3)

with muitiplication given by

(a#h)(a′#h′) = Σa(h1 · a
′)#h2h

′

and so A#H is an algebra with unit 1A#1H .

Example 2.3 (1) Let B be a weak right H-module algebra with the right H-module action

“↼ ”. On the opposite algebra Bop, we may define the left H-module action “⇀ ” as follows:

for any h ∈ H, b ∈ Bop,

h ⇀ b = b ↼ SH(h).

Since for any h ∈ H ,

⊓L
H(h) ⇀ 1B = 1B ↼ SH(⊓L

H(h))
(W4)
= 1B ↼ ⊓R

HSH(h)

= 1B ↼ SH(h) = h ⇀ 1B,

it is easy to prove that (Bop, ⇀) is a weak left H-module algebra. Then, by Definition 2.1,

Bop#H#B is a two-sided weak smash product with multiplication as follows: for any b, b′ ∈

Bop, h, h′ ∈ H, p, p′ ∈ B,

(b#h#p)(b′#h′#p′) = Σ(b′ ↼ SH(h1))b#h2h
′

1#(p ↼ h′

2)p
′.

(2) Let A be a weak left H-module algebra with the left H-module action “⇀ ”. On

the opposite algebra Aop, we may define the right H-module action “↼ ” as follows: for any

h ∈ H, a ∈ A,

a ↼ h = SH(h) ⇀ a.

It is easy to prove that (Aop, ↼) is a weak right H-module algebra. Then, by Definition 2.1,

A#H#Aop is a two-sided weak smash product with multiplication as follows: for any a, a′ ∈

A, h, h′ ∈ H, p, p′ ∈ Aop,

(a#h#p)(a′#h′#p′) = Σa(h1 ⇀ a′)#h2h
′

1#p′(SH(h′

2) ⇀ p).
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(3) Let H be a weak bialgebra, and A a weak (H, H)-bimodule algebra (that is, A is both an

(H, H)-bimodule and a weak left H-module algebra and a weak right H-module algebra). Then,

by Definition 2.1, A#H#A is a two-sided weak smash product with the following multiplication:

for any a, a′, p, p′ ∈ A, h, h′ ∈ H ,

(a#h#p)(a′#h′#p′) = Σa(h1 ⇀ a′)#h2h
′

1#(p ↼ h′

2)p
′.

(4) Let H be a finite-dimensional weak Hopf algebra. Define the actions as follows: for any

h ∈ H, f ∈ H∗,

f ⇀ h = Σ〈f, h2〉h1; h ↼ f = Σ〈f, h1〉h2.

It is easy to prove that (H, ⇀) is a weak left H∗-module algebra, and (H, ↼) is a weak

right H∗-module algebra. So H#H∗#H is a two-sided weak smash product with the following

multiplication: for any h, h′, g, g′ ∈ H, β, β′ ∈ H∗,

(h#β#g)(h′#β′#g′) = Σh(β1 ⇀ h′)#β2β
′

1#(g ↼ β′

2)g
′

= Σhh′

1〈β1, h
′

2〉#β2β
′

1#〈β′

2, g1〉g2g
′.

3. Maschke-type theorem for two-sided weak smash products

Let H be a weak bialgebra, and (A, ⇀) a weak left H-module algebra, and (B, ↼) a weak

right H-module algebra, and A#H#B be a two-sided weak smash product.

It is easy to show that the following maps are injective algebra maps:

i1 : A → A#H#B, a 7→ a#1H#1B

i2 : H → A#H#B, h 7→ 1A#h#1B

i3 : B → A#H#B, b 7→ 1A#1H#b

i4 : A#H → A#H#B, a#h 7→ a#h#1B

i5 : H#B → A#H#B, h#b 7→ 1A#h#b.

So A, B, H, A#H, H#B are thought as subalgebras of the two-sided weak smash product A#H#B.

Denote a#h#b by ahb.

Lemma 3.1 Let H be a finite-dimensional weak Hopf algebra with a bijective weak antipode

SH , and A#H#B a two-sided weak smash product. Then, for any a ∈ A, g, h ∈ H, b ∈ B,

(1) g(ahb) = Σ(g1 ⇀ a)g2hb;

(2) (ahb)g = Σh2g2(S
−1
H (h1g1) ⇀ a)(b ↼ g3).

Proof (1) For any a ∈ A, g, h ∈ H, b ∈ B,

g(ahb) = (1A#g#1B)(a#h#b) = Σ(g1 ⇀ a)#g2h1#(1B ↼ h2)b

= Σ(g1 ⇀ a)#g2h1#(1B ↼ ⊓R
H(h2))b

(W5)
= Σ(g1 ⇀ a)#g2h11#(1B ↼ SH(12))b
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= Σ(g1 ⇀ a)#g2h#(1B ↼ 11)(1B ↼ SH(12))b

= Σ(g1 ⇀ a)#g2h#(1B ↼ 11)(1B ↼ ⊓R
H(12))b

= Σ(g1 ⇀ a)#g2h#(1B ↼ 11)(1B ↼ 12)b

= Σ(g1 ⇀ a)#g2h#b = Σ(g1 ⇀ a)g2hb.

(2) By (1), for any h ∈ H, a ∈ A,

ha = Σ(h1 ⇀ a)h2. (A)

The following equality (B) holds. For any a ∈ A, h ∈ H,

Σh2(S
−1
H (h1) ⇀ a) = ah. (B)

As a matter of fact, we have

Σh2(S
−1
H (h1) ⇀ a)

(A)
= Σ(h2 ⇀ (S−1

H (h1) ⇀ a))h3

= Σ(h2S
−1
H (h1) ⇀ a)h3

(W9)
= Σ(⊓R

H(S−1
H (h1)) ⇀ a)h2

(W7)
= Σ(S−1

H (⊓L
H(h1)) ⇀ a)h2 = Σ(S−1

H (SH(11) ⇀ a))12h

= Σ(11 ⇀ a)12h

= ah.

By (A), it is easy to prove that (B) is equivalent to the following equality: for any a ∈ A, h ∈

H,

ah = Σh1(a ↼ h2). (C)

So

(ahb)g = (ah)(bg)
(B,C)
= Σh2(S

−1
H (h1) ⇀ a)g1(b ↼ g2)

(B)
= Σh2 g2(S

−1
H (g1) ⇀ (S−1

H (h1) ⇀ a))
︸ ︷︷ ︸

(b ↼ g3)

(W10)
= Σh2g2(S

−1
H (h1g1) ⇀ a)(b ↼ g3).

Lemma 3.2 Let H be a finite-dimensional weak Hopf algebra, and A a weak left H-module

algebra, and B a weak right H-module algebra, and A#H#B a two-sided weak smash product.

Let x ∈
∫ r

H
(that is, for any h ∈ H, xh = x⊓R

H (h)). Assume that V, W are left A#H#B-modules,

and there is a left (A, B)-module map λ : V → W , that is, λ : V → W is both a left A-module

map and a left B-module map, and for any h ∈ H, b ∈ B,

(3.2) Σb ↼ h2 ⊗ h1 = Σb ↼ h1 ⊗ h2.

Then the following map λ̃ is a left A#H#B−module map.

λ̃ : V → W, v 7→ ΣSH(x1) · λ(x2 · v).

Proof Firstly, we prove that λ̃ : V → W is a left H-module map.

As a matter of fact, for any h ∈ H , by xh = x ⊓R
H (h) we know

Σx1h1 ⊗ x2h2 = ∆H(xh) = ∆H(x ⊓R
H (h))
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= Σx1 ⊓
R
H (h)1 ⊗ x2 ⊓

R
H (h)2

(W3)
= Σx111 ⊗ x2 ⊓

R
H (h)12

(W2)
= Σx111 ⊗ x212 ⊓

R
H (h)

(1.1)
= Σx1 ⊗ x2 ⊓

R
H (h).

So we have

Σx1h1 ⊗ x2h2 ⊗ h3 = Σx1 ⊗ x2 ⊓
R
H (h1) ⊗ h2. (D)

Then, for any g ∈ H, v ∈ V ,

g · λ̃(v) = SH(h) · λ̃(v) = ΣSH(h)SH(x1) · λ(x2 · v)

= ΣSH(h1)h2SH(h3)SH(x1) · λ(x2 · v)

= ΣSH(h1) ⊓
L
H (h2)SH(x1) · λ(x2 · v)

(W8)
= ΣSH(h1)SH(x1) · λ(x2 ⊓

L
H (h2) · v)

= ΣSH(x1h1) · λ(x2h2SH(h3) · v)

(D)
= ΣSH(x1) · λ(x2 ⊓

R
H (h1)SH(h2) · v)

= ΣSH(x1) · λ(x2SH(h) · v) (Σ ⊓R
H (h1)SH(h2) = SH(h))

= λ̃(g · v).

Secondly, we prove that λ̃ : V → W is a left A-module map.

For any a ∈ A, then, by (B), we get

aSH(x) = ΣSH(x1)(x2 ⇀ a) (E)

and hence

a · λ̃(v) = ΣaSH(x1) · λ(x2 · v)
(E)
= ΣSH(x1)(x2 ⇀ a) · λ(x3 · v)

= ΣSH(x1) · λ((x2 ⇀ a)x3 · v)
(C)
= ΣSH(x1) · λ(x2a · v)

= λ̃(a · v).

Then, we prove that λ̃ : V → W is a left B-module map.

As a matter of fact, for any b ∈ B, v ∈ V ,

b · λ̃(v) = ΣbSH(x1) · λ(x2 · v) = ΣSH(x2)(b ↼ SH(x1)) · λ(x3 · v)

= ΣSH(x2) · λ((b ↼ SH(x1))x3 · v) = ΣSH(x2) · λ(x3(b ↼ SH(x1)x4) · v)

(3.2)
= ΣSH(x1) · λ(x2(b ↼ SH(x3)x4) · v) = ΣSH(x1) · λ(x2(b ↼ ⊓R

H(x3)) · v)

= ΣSH(x1) · λ(x3(b ↼ ⊓R
H(x2)) · v)

(W6)
= ΣSH(x1) · λ(x212(b ↼ 11) · v)

= ΣSH(x1) · λ(x2 11(b ↼ 12)
︸ ︷︷ ︸

·v)
(C)
= ΣSH(x1) · λ(x2b · v)

= λ̃(b · v).

Lemma 3.3 Let H be a finite-dimensional weak Hopf algebra. Then, by [1], the following are

equivalent.

(1) H is semisimple;

(2) There exists a normalized right integral e ∈
∫ r

H
such that ⊓R

H(e) = 1H .
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Lemma 3.4 Let H be a finite-dimensional semisimple weak Hopf algebra, and e ∈
∫ r

H
be a

normalized right integral. Let A be a weak left H-module algebra, and B a weak right H-module

algebra, and A#H#B a two-sided weak smash product. Let M be a left A#H#B-module, and

W a left A#H#B-submodule of M , and (3.2) hold. If W is a direct summand of M as (A, B)-

modules, then W is a direct summand of M as A#H#B-modules.

Proof Let λ : V → W be a projection of left (A, B)-modules. That is, λ is both a left A-module

map and a left B-module map, and for any w ∈ W , λ(w) = w.

Define

λ̃ : V → W, v 7→ ΣSH(e1) · λ(e2 · v).

Then, by Lemma 3.2, we know that λ̃ is a left A#H#B-module map. In the following, we

have only to check that λ̃ is a projection.

As a matter of fact, for any w ∈ W ,

λ̃(w) = ΣSH(e1) · λ(e2 · w) = ΣSH(e1) · (e2 · w)

= ΣSH(e1)e2 · w = ⊓R
H(e) · w

= 1H · w = w.

By the above lemmas, we have

Theorem 3.5 (Maschke theorem) Let H be a finite-dimensional semisimple weak Hopf algebra,

and e ∈
∫ r

H
be a normalized right integral. Let A be a weak left H-module algebra, and B a

weak right H-module algebra, and A#H#B a two-sided weak smash product, and (3.2) hold.

If A and B are semisimple algebras, then A#H#B is also a semisimple algebra.

By Remark 2.2 and Theorem 3.5, we obtain Theorem 1 given in [3].

Corollary 3.6 Let H be a finite-dimensional semisimple weak Hopf algebra. Let A be a weak

left H-module algebra, and B a weak right H-module algebra.

(1) If A is semisimple, then A#H is also semisimple.

(2) If B is semisimple and (3.2) holds, then H#B is also semisimple.

Let H be a finite-dimensional semisimple weak Hopf algebra. If H is cocommutative, then

it is easy to see that HL = HR. So, by Theorem 6.9 in [9], H∗ is semisimple. Hence, according

to Example 2.3 and Theorem 3.5, H∗∗ ∼= H as Hopf algebras, we obtain

Corollary 3.7 Let H be a finite-dimensional weak Hopf algebra. If H is commutative and

cosemisimple, then the two-sided weak smash product H#H∗#H is semisimple.

Let H be a finite-dimensional weak Hopf algebra. Then, by [10], A is a weak left (right)

H-comodule algebra if and only if A is a weak right (left) H∗-module algebra. It is obvious that

by (W3) HL is a weak left H-comodule algebra via ∆H and HR is a weak right H-comodule

algebra via ∆H , so HL is a weak right H∗-module algebra and HR is a weak left H∗-module

algebra. According to Proposition 2.11 in [1], HL and HR are separable algebras, so we have

Corollary 3.8 Let H be a finite-dimensional commutative and cosemisimple weak Hopf algebra.
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Then HR#H∗#HL is semisimple.

Corollary 3.9 Let H be a finite-dimensional cocommutative semisimple weak Hopf algebra,

and A be a weak (H, H)-bimodule algebra. If A is semisimple, then A#H#A is also semisimple.
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