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1. Introduction

A classical problem of number theory is to study dynamics of arithmetic functions. There
are many results in the literature concerning various functions!!='*. Goldring[® established
dynamics of a type of arithmetic function w. Let A3 be the set of all positive integers pgr, where
p,q,r are primes and possibly two, but not all three of them are equal. For any n = pqr € As,
define a function w by w(n) = P(p+ q)P(p+r)P(q+r), where P(m) is the largest prime factor
of m. It is clear that if n = pqr € As, then w(n) € As. For any n € As, define w%(n) = n,
wi(n) = w(w™(n)) (i =1, 2, ...). Goldring!® proved that any element n € Aj is w-periodic,
i.e., there exists an integer i > 0 such that w'(n) = 20. For recent progress one may seell=2,

(3]

In this paper, we generalize the result of Goldring'”' and study dynamics of the arithmetic

function €.

In what follows we shall try to be consistent in our use of the following notations.

Definition 1 Let Ay, := {n € Z;|Q(n) = k}, where Q(n) is the total number of prime factors
of n.

For element n € Ay, let n = p1p2ps3 - - - Pk, where p1 > pa = --- > pi and all of them are
primes. Then p1,pa, ..., pr are not all equal. We define an arithmetic function Q: A, — Ay by

Qi(n) = P(p1 + p2) P(p2 + p3) - - - P(pk + p1)-
Definition 2 Since Qi,(Ay) C Ay, we define the Q-orbit of n by a sequence A(n) such as

A(n) =[n, Q(n), Qi(n),...,Q(n),...]
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where Q9 (n) = n, Qi (n) = Qe(Q4 ' (n)), i = 1,2,.... And let the set
A = A\ {n € A | w(Qi(n)) =1 for some i},

where w(n) is the number of distinct prime factors of n.

An element n of Ay, is Qp-periodic if its Qg-orbit is periodic, i.e. there exists a non-negative
integer s and a positive integer ¢ such that Qf(n) = Q;"(n). Only the periodic of one type of
function 2 appears in our paper, so we can just call it simply.

The smallest integer s which satisfies the above condition is called the index of periodicity of
n, denoted ind(n). The positive integer ¢ is called the periodicity of n and the smallest periodicity
t is denoted by ord(n). For example , if a € Ay, is periodic, take s = ind(a), t = ord(a), then

Aa) = [ a,Q(a),.. .,Qz_l(a), Q(a),... ,QZ"’t_l(a) ]

Definition 3 The array by,bs,...,b; (i =1,2,...,t) is called a circular array of Ay ifby,ba, bs, . . .,
b, € Ay and these numbers satisfy Qi (bs) = bsy1, s =1,2,...,t — 1, Qi(bs) = by.
In general, we regard all arrays such as b;,bjy1,...,b4,b1,...,b;-1,0 = 1,2,...,t as equal

array, denoted by b?k, where b; is any element in this circular array.

An element n of Ay, is said to lie in circular array b?k ultimately if there exists an integer j > 0
such that ch(n) € b?’“. The whole circular array in Ay, is denoted by Agk and the cardinality of
Ag’“ is denoted by |A§3’c |. The result of Goldring!! can be formulated as A$* = {20%}.

The main results in our paper are as follows:

Theorem 1 Every element of Ay is periodic and each lies in some one circular array ultimately.
When k > 5, A, has +(k—2)(k—3) circular arrays properly, that is to say, A = {(2735°) %k a +
b+c=ka>1b>2c¢>1a,bceZ}. Inaddition A = {60%,90%},

Theorem 2 Ifn € Ay and P(n) = p > 3, then P(Q}(n)) < p+ 2 for any integer i > 0.

2. Proofs of Theorems

Lemma 1 Ift,p,q are prime and t < q < p, then P(t 4+ q) < p. The equality holds if and only
ift=2, g=p-—2.

Proof If ¢,q are both odd primes, then P(t +¢) < p. If 2=1¢ < ¢ < p and ¢ + 2 is composite,
then P(t+q) = P(2+q) <q<p. If2=¢< g <pand ¢g+2is prime, then P(t+q) =2+q < p.
The equality holds if and only if ¢ = 2, ¢ = p — 2. This completes the proof. O

Lemma 2 Ifn € A, and P(n) > 5, then there exists a positive integer 1 < ¢ < 2k such that
P(Q}C(n)) < P(n).

Proof By directly verification we know that Lemma 2 is true for n with P(n) = 7. For n € Ay,
let n = p1,pa,...,pk, where p1,pa,...,pr are not all equal primes and p; > p2 > -+ > pg. Let
P(n) = p > 7 and the exponent of p is m, i.e., p™||n.

Then we consider the following three cases.

Case 1 Both p+ 2 and p — 2 are composite numbers.
If p;, p;j < p, then p;, p; < p—2. Thus P(p; +p;) < p—2 < p by Lemma 1. Since p + 2
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is composite, we know that P(p; + p) < p for any prime p; < p. Hence the exponent of p in
P(Q(n)) is less than m. Now let function Qj act m — 1 times on Q(n) continually, we have
p1 P(Q7(n)), hence P(Q7*(n)) < p.

Case 2 p+ 2 is composite and p — 2 is prime.

Noting that p > 7 and p, p — 2 are both primes, we have p — 4 is composite. Assume
(p —2)® ||n. Similarly to Case 1, we have p — 2 { P(Q;(n)), and the exponent of p in P(€2;(n))
is not larger than m + s. Now let function Q act m + s times on Qj,(n) continually, we have
p 1 P(Q]"%(n)), hence P(Q}""**(n)) < p, m + 2s < 2k.

Case 3 p+ 2 is prime.

Noting that p > 7 and p, p+ 2 are both primes, we know that p —2, p+4 are both composite
numbers and the exponent of p + 2 in Q7*(n) is not larger than m and p t P(Q7*(n)). Now let
Q. act m times on Q7 (n), we obtain that p+ 21 P(22™(n)) and prime factor p does not appear
any more during this process, hence P(Q7™(n)) < p, 2m < 2k.

This completes the proof.

Proof of Theorem 1 By Lemma 2, we need only to consider the element n in A whose largest
prime factor P(n) < 5.

When k = 4, |A$*| = 2. The elements of Ay lying in the circular array (22 -3 - 5)% are
40, 60, 54, 225, respectively. The elements lying in (2-32-5)94 are 24, 36, 100, 90, 150, 250, 135, 375.
Therefore, A% = {6024, 902},

When k = 5, the elements of A5 lying in the circular array (2% - 32 - 5)95 are 675, 162, 180,
the elements lying in (2 - 3% - 5)% are 1125, 1875, 270, 300, 500, 72, and the elements lying in
(2-32.5%)% are 405, 1250, 750, 450, 108, 120, 200, 48, 80. Therefore, we have

1

457 =3=5(6-2)(5-3),

A = {(22-32.5)%, (2-3%.5)%, (2-32.5%)%).
When k > 6, let n =2%3°5¢ anda+b+c=k, a,b,c >0, a,b,c € Z.
Ifa>1,b>2 c¢>1,then A(n) = [223%5¢, 2¢3v=15¢7 ]. There are 3(k —2)(k — 3) circular
arrays altogether. The whole of them is

{2935 % | a+b+c=k,a>1,b>2¢c>1, a,b,c € Z}. (1)

For n € A, at most one of a, b, c is 0. In the following section, we observe that if just one of
a,b,cis 0, or b =1, then n lies in some one circular array of (1) ultimately.

Then we consider the following cases.

Case 1 None of a,b,cis 0.
Ifa=b=1,c>1, then

A(n)=1[2-3-5822.552.7 32.5k3 2.32.56k=3 2.3 .5k=3. 7]

Ifa>1 ¢>2 b=1,ie,n=2F°"1.3.5 then

A(TL) — [2]{}—0—1 .3'507 2k—c—1 '50.77 2]{}—0—2 .32 '50—1 _7, 2k7c72 . 33 . 5C71, 2k7()72 . 32 . 5C71 N ]
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Ifa>1, c=1,b=1,ie,n=22.3.5, then

A(n) =[2F"2.3.5, 282 5.7 2F3.32.7 2k=4.32.52 2k—4.3.52.7]

Case 2 a=0.
If b,c > 3, ie,n=3" 5% then

A(n) = [3-5° 22.3b-1.5c-1 22.3b-2.5c-1.7],

Ifb=1,ie,n=3-5""1 then

A(n) =[3-5%71, 22.5%72 2.5k=3.72 32.5k=4.72 9.32.5k=4.7 .33 .5k—4 2.32.5k—4.7]

If b=2, ie., n=23% 52 then

A(n) = [32-5872, 22.3.5%73 92.5k=3.7 9.32.5k4.7 9.33 . 5k—4 2.32.5k—4.7],

Ifc=1,ie.,n=31.5 then

A(n) — [3]{}—1 . 57 22 . 3/6—27 2. 3]673 . 527 2. 3k74 . 52 . 7 ]

If c=2, ie., n=3¥2.52 then

A(n) =[3F2.52 22.3k=3.5 22.3k-4.5.7].
Case 3 b=0.
Ifa,c>3,ie,n=2%-5° then
A(n) = [2% - 5°, ga—1 pe-1, 727 9a=2 92 pc—2, 727 9a—2 g3 pc=2, 7,
2a—2 . 34 . 5(2727 2a—2 . 33 . 5c72 .7 ]

Ifa=1,ie,n=2-5""1 then

A(n) =[2-5F71 5272 32.5K3.7 2.32.5k=3 2.3.5k=3.7].

If a =2, ie., n=2% 52 then

A(n) = [22-5F2 2.5k=3.72 32.5k=4 .72 9.32.5k=4.7 9.33.5k—4 2.32.5k—4.7],

Ifc=1,ie.,n=251.5 then

A(n) =281 .5, 2k=2. 72 9k=3.32.7 ok—4.32.52 9k-4.3.52.7],

If c=2, ie., n=2F¥2.52 then

A(n) = [2F2 .52 k=3 .5.72 ok=4.32.72 ok=5 .32 52 .7 9k-5.33.52 2k—5.32.52.7]

Case 4 ¢c=0.
Ifa>2 b>3, ie,n=2% 3% then

A(n) =2 3b7 2a—1.3b—1.52 9a-1.3b-2.52.7],

Ifa=1,ie.,n=2-31 then

A(n)=[2-3"1 3F2.5% 22.3k=3 .5 22.3k—4.5.7].
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Ifb=1,ie.,n=2"1.3 then

A(n) = [2F71 .3, 2k=2.52 ok=3.5.72 oh=1.32 72 9ok=5 .32 .52 .7
2k=5.33.52 2k=5.32.52.7].

If b=2,ie.,n=252.32 then

A(n) = [2F72.32, 2k=3.3.52 ok=3.52.7 9ok=4.32.5.7 2ok—4.33.5 2k—4.32.5.7].
This completes the proof of Theorem 1. O

Proof of Theorem 2 For n € Ay, let n = pipaps---pg, where p1 = ps > -+ > pi and
P(n) =p > 3. Then

Qi(n) = PioPg -+ Pr_11Pr1, where P = P(p; + p;j).

Noting that P;; < p+2, 14,5 = 1,2...,k, we have P(;(n)) < p + 2. We rearrange the prime
factors of Qx(n) in descending order, so that

Qr(n) = P Py--- P, where Py >--- > Py.
Now acting function 2 on it, we have
Q2 (n) = P4Ps - P, whereP2 = P(P,+ P,), s,t=1,2,...,k.

If p+ 2 is prime, noting that p > 3, and p, p+ 2 are both primes, then p+4 is composite, and so
P2 <p+2,st=12,...,k hence P(Q%(n)) < p+ 2. If p+ 2 is composite, P(Q%(n)) < p + 2,
obviously.

By induction on i, we have P(Q%(n)) < p + 2 for any integer i > 0 if p + 2 is prime, and
P(Q%(n)) < p if p+ 2 is composite.

This completes the proof of Theorem 2. O
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