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Abstract For a graph G, let h(G; x) = h(G) and [G]h denote the adjoint polynomial and the

adjoint equivalence class of G, respectively. In this paper, a new application of [G]h is given.

Making use of [G]h, we give a necessary and suffcient condition for adjoint uniqueness of the

graph H such that H 6= G, where H = (
⋃

i∈A Pi)
⋃

(
⋃

j∈B Uj), A ⊆ A′ = {1, 2, 3, 5}
⋃
{2n|n ∈

N, n ≥ 3}, B ⊆ B′ = {7, 2n|n ∈ N, n ≥ 5} and G = aP1

⋃
a0P2

⋃
a1P3

⋃
a2P5

⋃
(
⋃n

i=3
aiP2i).

Keywords adjointly unique; minimum real root; chromatically unique.

Document code A

MR(2000) Subject Classification 05C15

Chinese Library Classification O157.5

1. Introduction

All the graphs considered here are simple and finite. Undefined notation and terminology

can be found in [1]. For a graph G, let G, V (G), E(G), p(G) and q(G), respectively, be the

complement, vertex set, edge set, order and size of G. An ideal subgraph G0 of graph G is a

spanning subgraph of G such that every component of G0 is a complete graph[2]. The adjoint

polynomial of G is defined as follows

Definition 1.1[2] Let G be a graph with p vertices and q edges. The polynomial

h(G; x) =

p∑

i=0

bi(G)xp−i

is called the adjoint polynomial of G, where bi(G) is the number of ideal subgraphs with p − i

components.

From Definition 1.1, it is not difficult to get that b1(G) = q(G)[2]. Thus q(G) = p(H) and

p(G) = p(H) if h(G; x) = h(H ; x).

Two graphs G and H are said to be adjointly equivalent, denoted by G
h
∼ H , if h(G; x) =

h(H ; x). Clearly, “
h
∼ ” is an equivalence relation on the family of all graphs. Let [G]h = {H

h
∼
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G}. A graph G is adjointly unique if h(H ; x) = h(G; x) implies that G∼=H . It has been well-

known that G is chromatically unique if and only if G is adjointly unique[2].

Definition 1.2[2] Let G be a graph and h1(G; x) the polynomial with a nonzero constant term

such that h(G; x) = xα(G)h1(G; x). If h1(G; x) is an irreducible polynomial over the rational

number field, then G is called irreducible graph.

For convenience, we simply denote h(G; x) by h(G) and h1(G; x) by h1(G), respectively. Let

β(G) denote the minimum real root of h(G). For two graphs G and H , G
⋃

H denotes the disjoint

union of G and H , and mH stands for the disjoint union of m copies.

Now we define some classes of graphs, which will be used throughout the paper.

(1) Cn (resp. Pn) denotes the cycle (resp. the path) of order n, and write C = {Cn|n≥3},

P = {Pn|n≥2}.

(2) Dn (n ≥ 4) denotes the graph obtained from C3 and Pn−2 by identifying a vertex C3

with an end–vertex of Pn−2.

(3) Tl1,l2,l3 denotes a tree with a vertex v of degree 3 such that Tl1,l2,l3 − v = Pl1

⋃
Pl2

⋃
Pl3 ,

and write T1 = {T1,1,n|n≥1}.

(4) Let Pn−2 be the path with vertex sequence x1, x2, . . . , xn−2. Un denotes the graph

obtained from Pn−2 by adding pendant edges at vertices x2 and xn−3, and write U = {Un|n≥6}.

(5) Kn denotes the complete graph with order n and K−
4 = K4 − e, where e∈E(K4).

(6) Let C4(P2) be the graph obtained from C4 and P2 by identifying a vertex of C4 with an

end–vertex of P2, and let K1,n−1 be the star with order n.

(7) C3(P2, P2) denotes the graph obtained from C3 by adding a pendant edge at any two

vertices of C3, respectively.

By the adjoint equivalence class [G]h of a graph G, the necessary and sufficient condition for

adjoint uniqueness of G can be determined. In this paper, a new application of [G]h is given.

Making use of [G]h, we establish a necessary and suffcient condition for adjoint uniqueness of

the graph H such that H 6=G, where H = (
⋃

i∈A Pi)
⋃

(
⋃

j∈B Uj), A ⊆ A′ = {1, 2, 3, 5}
⋃
{2n|n ∈

N, n ≥ 3}, B ⊆ B′ = {7, 2n|n ∈ N, n ≥ 5} and G = aP1

⋃
a0P2

⋃
a1P3

⋃
a2P5

⋃
(
⋃n

i=3aiP2i).

2. Basic lemmas

Lemma 2.1[2] Let G be a graph with k components G1, G2, . . . , Gk. Then

h(G) =
∏k

i=1
h(Gi).

For an edge e = v1v2 of a graph G, the graph G∗e is defined as follows: The vertex set of G∗e

is (V (G)−{v1, v2})
⋃
{v}(v/∈G), and the edge set of G∗e is {e′|e′ ∈ E(G), e′ is not incident with

v1 or v2}
⋃
{uv|u∈NG(v1)

⋂
NG(v2)}, where NG(v) is the set of vertices of G which are adjacent

to v.

Lemma 2.2[4] Let G be a graph with e∈E(G). Then

h(G; x) = h(G − e; x) + h(G∗e; x),
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where G − e denotes the graph obtained by deleting the edge e from G.

Lemma 2.3[5] Let G be a connected graph. Then

(1) β(G) = −4 if and only if

G ∈ G1 = {T1,2,5, T2,2,2, T1,3,3, K1,4, C4(P2), C3(P2, P2), K
−
4 , D8}∪U .

(2) β(G)> − 4 if and only if

G ∈ G2 = {P1, T1,2,i(2 ≤ i ≤ 4), Di(4 ≤ i ≤ 7)} ∪ P ∪ C ∪ T1.

(3) β(G)≥ − 3 if and only if

G∈G3 = {P1, P2, P3, P4, P5, C3, T1,1,1}.

Lemma 2.4 (1)[2] h(P2n+1) = h(Pn

⋃
Cn+1), where n≥3.

(2)[5] h(Un) = x3(x + 4)h(Pn−4), h(U6) = h(2K1

⋃
K−

4 ), h(U8) = h(C3

⋃
K1,4), h(U9) =

h(K1

⋃
K1,3

⋃
K−

4 ), and h(U2m+1) = h(Um+2

⋃
Cm−1), where m≥5.

(3) h(P1

⋃
Um) = h(K1,4

⋃
Pm−4), where m≥6.

(4) For n≥2, m≥6 and m 6=n + 4, h(Pn

⋃
Um) = h(Un+4

⋃
Pm−4).

Proof of (3) We have, from (2) of the lemma, that

h(P1

⋃
Um) = x4(x + 4)h(Pm−4) = h(K1,4

⋃
Pm−4).

Proof of (4) It follows, from (2) of the lemma, that

h(Pn

⋃
Um) = (x4(x + 4)h(Pm−4))h(Pn) = (x4(x + 4)h(Pn))h(Pm−4) = h(Un+4

⋃
Pm−4).

Lemma 2.5 (1)[6] For n≥2, β(Pn)>β(Pn+1)>β(Cn+1)>β(Cn+2).

(2)[5] β(C4) = β(D4) = β(P7), β(T (1, 2, 2)) = β(D5) = β(P11), β(T (1, 2, 3)) = β(D6) =

β(P17), β(T (1, 2, 4)) = β(D7) = β(P29).

(3)[2,5] For m≥4 and l≥1, (h1(Cm), h1(P2l)) = 1 and β(P2m−1) = β(Cm) = β(T1,1,m−2).

3. The chromaticity of graphs

Lemma 3.1 Let G = aP1

⋃
a0P2

⋃
a1P3

⋃
a2P5, where a and ai (i = 0, 1, 2) are nonnegative

integers. Then

[G]h = G4 = {(a − r)P1

⋃
(a0 + r)P2

⋃
a1P3

⋃
(a2 − r)P5

⋃
rT1,1,1|0≤r≤min{a, a2}}.

Proof Obviously, G4⊆[G]h. Now, we need only prove [G]h⊆G4.

Let an any graph H∈[G]h and H =
⋃

i Hi. Then h(H) = h(G). By (3) of Lemma 2.3, we

have that Hi∈G3. By Lemma 2.2 and calculation, it follows that

h1(P4) = h1(C3) = x2 + 3x + 1, h1(P5) = h1(P2)h1(T1,1,1) = (x + 1)(x + 3),

h1(P3) = x + 2, h1(C3)6 |h1(Pi) (i = 2, 3, 5) and h1(C3)6 |h1(T (1, 1, 1)).

This implies h1(C3)6 |h1(G). Simultaneously, h1(C3)6 |h1(H). Hence H contains no C3 and P4 as
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its components. Without loss of generality, let

H = bP1

⋃
b0P2

⋃
b1P3

⋃
b2P5

⋃
sT1,1,1.

Comparing the common factors x + 3, x + 2 and x + 1 of h(H) with those of h(G), we have

b2 + s = a2, b1 = a1 and b0 + b2 = a0 + a2, respectively. So b2 = a2 − s and b0 = a0 + s. Hence

H = bP1

⋃
(a0 + s)P2

⋃
a1P3

⋃
(a2 − s)P5

⋃
sT1,1,1 and 0≤s≤a2.

Note that hs(P2)h
s(T1,1,1) = hs(P1)h

s(P5). Then we eliminate the common factors of h(H) and

h(G). So, we obtain b + s = a, that is, b = a − s and 0≤s≤a. Thus

H = (a − s)P1

⋃
(a0 + s)P2

⋃
a1P3

⋃
(a2 − s)P5

⋃
sT1,1,1 and 0≤s≤{a, a2},

which imply H∈G4 and [G]h⊆G4. This completes the proof of the lemma. 2

Theorem 3.1 Let G = aP1

⋃
a0P2

⋃
a1P3

⋃
a2P5

⋃
(
⋃n

i=3 aiP2i), where a and ai (0≤i≤n) are

nonnegative integers. Then

[G]h = G5 = {(a−r)P1

⋃
(a0 +r)P2

⋃
a1P3

⋃
(a2−r)P5

⋃
rT1,1,1

⋃
(

n⋃

i=3

aiP2i)|0≤r≤min{a, a2}}.

Proof Obviously, G5⊆[G]h, so we should prove [G]h⊆G5.

Let an any graph H∈[G]h and H =
⋃

k∈A Hk, where Hk is a connected graph. From h(H) =

h(G) and (2) of Lemma 2.3, we have Hk∈G2. If ai = 0 for 3≤i≤n, from Lemma 3.1, we know

that the theorem holds.

If ai0 6=0 for some i0∈[3, n], from (1) of Lemma 2.5, it follws that β(G) = β(P2i0 ). By (2) and

(3) of Lemma 2.5, we obtain that

Hk∈{Pi, P2l, C3, T1,1,1)|1≤i≤5, l≥3}.

So there exists a number k∈A such that β(Hk) = β(H) = β(G) = β(P2i0 ) and Hk
∼=P2i0 .

Eliminating the common factor h(P2i0) of h(H) and h(G) and repeating the above process until

P2i 6⊆G for 3≤i≤n, we have that

⋃

i∈A1

Hk
∼=

n⋃

i=3

aiP2i and G′ = aP1

⋃
a0P2

⋃
a1P3

⋃
a2P5. (3.1)

Let H ′ =
⋃

i∈A−A1
Hk. Eliminating the common factor h(

⋃n
i=3 aiP2i) of h(H) and h(G), we

have h(H ′) = h(G′), that is, H ′∈[G′]h. From (3.1) and Lemma 3.1, it follows that

H = (a − r)P1

⋃
(a0 + r)P2

⋃
a1P3

⋃
(a2 − r)P5

⋃
rT1,1,1

⋃
(

n⋃

i=3

aiPi), 0≤r≤min{a, a2}.

Hence H∈G5, that is, [G]h⊆G5. This completes the proof of the theorem. 2

Corollary 3.1 Let G ∈ {aP1

⋃
a0P2

⋃
a1P3

⋃
(
⋃n

i=3 aiP2i), a0P2

⋃
a1P3

⋃
a2P5

⋃
(
⋃n

i=3 aiP2i)},

where a and ai (0≤i≤n) are nonnegative integers. Then G is adjoint uniqueness.

Lemma 3.2 Let H =
⋃s

k=1 Hk and G = a0P2

⋃
a1P3

⋃
a2P5

⋃
(
⋃n

i=3aiP2i). If h1(H) = h1(G),

then α(H)≥α(G). Furthermore,
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(1) If α(H)=α(G), then H∼=G and s =
∑n

i=0 ai.

(2) If α(H)>α(G), then H∼=(a − r)P1

⋃
(a0 + r)P2

⋃
a1P3

⋃
(a2 − r)P5

⋃
rT1,1,1

⋃
(
⋃n

i=3aiP2i)

and s = a +
∑n

i=0 ai, where a = α(H)−α(G) and 0≤r≤min{a1, a2}.

Proof Suppose that α(H)<α(G). From h1(H) = h1(G) and α(G)−α(H) = b, we have that

xbh(H) = h(G), that is, h(bP1

⋃
H) = h(G). By Corollary 3.1, we obtain that bP1

⋃
H∼=G which

is a contradiction. Hence α(H)≥α(G).

(1) If α(H)=α(G), then h(H) = h(G). By Corollary 3.1, it follows that H∼=G and s =
∑n

i=0 ai.

(2) If α(H)>α(G), from h1(H) = h1(G) and α(H)−α(G) = a, we have h(H) = h(aP1

⋃
G).

From Theorem 3.1, we get that the result holds. 2

Lemma 3.3[5]
⋃

n∈A Un is adjointly unique for A = {7, 2n|n∈N, n≥5}, where N is the set of

positive integers.

Theorem 3.2 Let A = {1, 2, 3, 5}
⋃
{2n|n ∈ N, n ≥ 3} and B = {7, 2n|n ∈ N, n ≥ 5}. Let

G = (
⋃

i∈A1
Pi)

⋃
(
⋃

j∈B1
Uj), where A1⊆A, B1⊆B and N is the set of positive integers. Then G

is adjointly unique if and only if

(1) A = ∅.

(2) A = {1, 3, 2b|b ≥ 1, b 6= 2} and B = ∅.

(3) A = {3, 5, 2b|b ≥ 1, b 6= 2} and B = ∅.

(4) A = {3, 5, 2b|b ≥ 1, b 6= 2} and B = {j|j = i + 4, i∈A\{2, 5}}.

Proof The necessity of the theorem follows from Lemma 2.4. Now, we prove the sufficiency of

the theorem.

(1) If A = ∅, then A1 = ∅. From Lemma 3.3, we obtain that the result holds.

(2) and (3) From Corollary 3.1, we obtain that the results hold.

(4) Suppose that any graph H =
⋃s

k=1Hk satisfies h(H) = h(G). It follows, from Lemma

2.1, that ∏

k∈S

h(Hk) =
∏

i∈A1

h(Pi)
∏

j∈B1

h(Uj). (3.2)

By Lemma 2.3, we have Hk∈G1

⋃
G2.

By Lemma 2.2 and calculation, we have

h1(T (2, 2, 2)) = h2
1(P2)h1(K1,4).

h1(T (1, 3, 3)) = h1(P2)h1(P3)h1(K1,4),

h1(D8) = h1(T (1, 2, 5)) = h1(P2)h1(P4)h1(K1,4),

h1(C3(P2, P2)) = h1(C4(P2)) = h1(K
−
4 ) = h1(P2)h1(K1,4).

Since h1(K1,4) = x+4, eliminating all the factors x+4 and x in the two sides of (3.2), we obtain,

from Lemma 2.4 and j = i + 4, that
∏

k∈S1

h1(H
′

k) =
∏

i∈A1

h1(Pi)
∏

j∈B2

h1(Pj−4) =
∏

i∈S2

h1(Pi) and |S1|≤|S|, (3.3)
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where S2 = {3, 5, 2l|l≥1, l 6=2}, |S2| = |A1| + |B1| and H ′
k∈{T (1, 2, i)(2≤i≤4), Di(4 ≤ i ≤

7)}
⋃
P

⋃
C

⋃
T1. Obviously, H ′

k 6=P1 for k∈S1. From Lemma 3.2, it follows that
∑

k∈S1

α(Hk)≥
∑

i∈S2

α(Pi). (3.4)

Claim.
⋃

k∈S1
H ′

k
∼=

⋃
i∈S2

Pi.

To prove the claim, we distinguish the following two cases from (3.4):

Case 1
∑

k∈S1
α(Hk) =

∑
i∈S2

α(Pi). By (3.3), we have
∏

k∈S1
h(H ′

k) =
∏

i∈S2
h(Pi). From

Corollary 3.1, we get that the claim holds.

Case 2
∑

k∈S1
α(Hk) >

∑
i∈S2

α(Pi). Without loss of generality, let

⋃

i∈S2

Pi = a0P2

⋃
a1P3

⋃
a2P5

⋃
(

n⋃

i=3

aiP2i),

where |S2| =
∑n

i=0 ai. Set
∑

k∈S1
α(Hk) −

∑
i∈S2

α(Pi) = a > 0. From (3.3), it follows that

h(
⋃

k∈S1

H ′
k) = h(aP1

⋃
(

⋃

i∈S2

P2i)).

By Lemma 3.2 and H ′
k 6=P1, we have that

⋃

k∈S1

H ′
k
∼=

⋃
(a0 + r)P2

⋃
a1P3

⋃
(a2 − r)P5

⋃
rT1,1,1

⋃
(

n⋃

i=3

aiP2i),

a = r and |S1| = a +
∑n

i=0 ai. (3.5)

Hence Hk∈{K1,4, P1}
⋃
P

⋃
U . Obviously, for each component Hk, we get that q(Hk) − p(Hk) =

−1 for 1≤k≤|S|. Hence q(H) − p(H) = −|S|. Since q(G) − p(G) = −|A| − |B| = −
∑n

i=0 ai and

q(H) − p(H) = q(G) − p(G), we have

|S| =
n∑

i=0

ai. (3.6)

From (3.3), (3.5) and (3.6), it follows that a = 0, which contradicts a > 0. This completes the

proof of the claim. 2

By Claim and the above analysis, we have

Hk∈{P1, K1,4}
⋃

P
⋃

U and |S| = |S1| = |A1| + |B1|.

By |S| = |S1|, we have Hk /∈{P1, K1,4}. Hence Hk∈P
⋃
U . Since H must have exactly |B1|

components Hj such that β(Hj) = −4 for 1≤j≤|B1|, we have
⋃

k∈S3

Hk
∼=

⋃

j∈B1

Uj, where |S3| = |B1|. (3.7)

From (3.2) and (3.7), it follows that
∏

k∈S\S3

h(Hk) =
∏

i∈A1

h(Pi), h(
⋃

k∈S\S3

Hk) = h(
⋃

i∈A1

Pi).

We obtain, from Corollary 3.1, that
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⋃

k∈S−S3

Hk
∼=

⋃

i∈A1

Pi. (3.8)

By (3.7) and (3.8), it is easy to get that
⋃

k∈S

Hk
∼=(

⋃

i∈A1

Pi)
⋃

(
⋃

j∈B1

Uj), H∼=G.

This completes the proof of the theorem. 2

Corollary 3.2 Let A = {1, 2, 3, 5}
⋃
{2n|n ∈ N, n ≥ 3} and B = {7, 2n|n ∈ N, n ≥ 5}. Let

G = (
⋃

i∈A1
Pi)

⋃
(
⋃

j∈B1
Uj), where A1⊆A, B1⊆B and N is the set of positive integers. Then G

is chromatically unique if and only if

(1) A = ∅.

(2) A = {1, 3, 2b|b ≥ 1, b 6= 2} and B = ∅.

(3) A = {3, 5, 2b|b ≥ 1, b 6= 2} and B = ∅.

(4) A = {3, 5, 2b|b ≥ 1, b 6= 2} and B = {j|j = i + 4, i∈A\{2, 5}}.
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