# Necessary and Sufficient Condition for Adjoint Uniqueness of the Graph $\left(\bigcup_{i \in A} P_{i}\right) \bigcup\left(\bigcup_{j \in B} U_{j}\right)$ 

WANG Jian Feng ${ }^{1,2}$, HUANG Qiong Xiang ${ }^{2}$, LIU Ru Ying ${ }^{1}$, YE Cheng Fu ${ }^{1}$<br>(1. Department of Mathematics and Information Science, Qinghai Normal University, Qinghai 810008, China;<br>2. College of Mathematics and System Science, Xinjiang University, Xinjiang 830046, China)<br>(E-mail: jfwang4@yahoo.com.cn)


#### Abstract

For a graph $G$, let $h(G ; x)=h(G)$ and $[G]_{h}$ denote the adjoint polynomial and the adjoint equivalence class of $G$, respectively. In this paper, a new application of $[G]_{h}$ is given. Making use of $[G]_{h}$, we give a necessary and suffcient condition for adjoint uniqueness of the graph $H$ such that $H \neq G$, where $H=\left(\bigcup_{i \in A} P_{i}\right) \bigcup\left(\bigcup_{j \in B} U_{j}\right), A \subseteq A^{\prime}=\{1,2,3,5\} \bigcup\{2 n \mid n \in$ $N, n \geq 3\}, B \subseteq B^{\prime}=\{7,2 n \mid n \in N, n \geq 5\}$ and $G=a P_{1} \bigcup a_{0} P_{2} \bigcup a_{1} P_{3} \bigcup a_{2} P_{5} \bigcup\left(\bigcup_{i=3}^{n} a_{i} P_{2 i}\right)$.


Keywords adjointly unique; minimum real root; chromatically unique.
Document code A
MR(2000) Subject Classification 05C15
Chinese Library Classification O157.5

## 1. Introduction

All the graphs considered here are simple and finite. Undefined notation and terminology can be found in [1]. For a graph $G$, let $\bar{G}, V(G), E(G), p(G)$ and $q(G)$, respectively, be the complement, vertex set, edge set, order and size of $G$. An ideal subgraph $G_{0}$ of graph $G$ is a spanning subgraph of $G$ such that every component of $G_{0}$ is a complete graph ${ }^{[2]}$. The adjoint polynomial of $G$ is defined as follows

Definition 1.1 ${ }^{[2]}$ Let $G$ be a graph with $p$ vertices and $q$ edges. The polynomial

$$
h(G ; x)=\sum_{i=0}^{p} b_{i}(G) x^{p-i}
$$

is called the adjoint polynomial of $G$, where $b_{i}(G)$ is the number of ideal subgraphs with $p-i$ components.

From Definition 1.1, it is not difficult to get that $b_{1}(G)=q(G)^{[2]}$. Thus $q(G)=p(H)$ and $p(G)=p(H)$ if $h(G ; x)=h(H ; x)$.

Two graphs $G$ and $H$ are said to be adjointly equivalent, denoted by $G \stackrel{h}{\sim} H$, if $h(G ; x)=$ $h(H ; x)$. Clearly, " $\stackrel{h}{\sim}$ " is an equivalence relation on the family of all graphs. Let $[G]_{h}=\{H \stackrel{h}{\sim}$

Received date: 2006-09-09; Accepted date: 2007-10-30
Foundation item: the National Natural Science Foundation of China (No. 10761008); the Science Foundation of the State Education Ministry of China (No. 205170).
$G\}$. A graph $G$ is adjointly unique if $h(H ; x)=h(G ; x)$ implies that $G \cong H$. It has been wellknown that $\bar{G}$ is chromatically unique if and only if $G$ is adjointly unique ${ }^{[2]}$.

Definition 1.2 ${ }^{[2]}$ Let $G$ be a graph and $h_{1}(G ; x)$ the polynomial with a nonzero constant term such that $h(G ; x)=x^{\alpha(G)} h_{1}(G ; x)$. If $h_{1}(G ; x)$ is an irreducible polynomial over the rational number field, then $G$ is called irreducible graph.

For convenience, we simply denote $h(G ; x)$ by $h(G)$ and $h_{1}(G ; x)$ by $h_{1}(G)$, respectively. Let $\beta(G)$ denote the minimum real root of $h(G)$. For two graphs $G$ and $H, G \bigcup H$ denotes the disjoint union of $G$ and $H$, and $m H$ stands for the disjoint union of $m$ copies.

Now we define some classes of graphs, which will be used throughout the paper.
(1) $C_{n}$ (resp. $P_{n}$ ) denotes the cycle (resp. the path) of order $n$, and write $\mathcal{C}=\left\{C_{n} \mid n \geq 3\right\}$, $\mathcal{P}=\left\{P_{n} \mid n \geq 2\right\}$.
(2) $D_{n}(n \geq 4)$ denotes the graph obtained from $C_{3}$ and $P_{n-2}$ by identifying a vertex $C_{3}$ with an end-vertex of $P_{n-2}$.
(3) $T_{l_{1}, l_{2}, l_{3}}$ denotes a tree with a vertex $v$ of degree 3 such that $T_{l_{1}, l_{2}, l_{3}}-v=P_{l_{1}} \bigcup P_{l_{2}} \bigcup P_{l_{3}}$, and write $\mathcal{T}_{1}=\left\{T_{1,1, n} \mid n \geq 1\right\}$.
(4) Let $P_{n-2}$ be the path with vertex sequence $x_{1}, x_{2}, \ldots, x_{n-2} . U_{n}$ denotes the graph obtained from $P_{n-2}$ by adding pendant edges at vertices $x_{2}$ and $x_{n-3}$, and write $\mathcal{U}=\left\{U_{n} \mid n \geq 6\right\}$.
(5) $K_{n}$ denotes the complete graph with order $n$ and $K_{4}^{-}=K_{4}-e$, where $e \in E\left(K_{4}\right)$.
(6) Let $C_{4}\left(P_{2}\right)$ be the graph obtained from $C_{4}$ and $P_{2}$ by identifying a vertex of $C_{4}$ with an end-vertex of $P_{2}$, and let $K_{1, n-1}$ be the star with order $n$.
(7) $C_{3}\left(P_{2}, P_{2}\right)$ denotes the graph obtained from $C_{3}$ by adding a pendant edge at any two vertices of $C_{3}$, respectively.

By the adjoint equivalence class $[G]_{h}$ of a graph $G$, the necessary and sufficient condition for adjoint uniqueness of $G$ can be determined. In this paper, a new application of $[G]_{h}$ is given. Making use of $[G]_{h}$, we establish a necessary and suffcient condition for adjoint uniqueness of the graph $H$ such that $H \neq G$, where $H=\left(\bigcup_{i \in A} P_{i}\right) \bigcup\left(\bigcup_{j \in B} U_{j}\right), A \subseteq A^{\prime}=\{1,2,3,5\} \bigcup\{2 n \mid n \in$ $N, n \geq 3\}, B \subseteq B^{\prime}=\{7,2 n \mid n \in N, n \geq 5\}$ and $G=a P_{1} \bigcup a_{0} P_{2} \bigcup a_{1} P_{3} \bigcup a_{2} P_{5} \bigcup\left(\bigcup_{i=3}^{n} a_{i} P_{2 i}\right)$.

## 2. Basic lemmas

Lemma 2.1 ${ }^{[2]}$ Let $G$ be a graph with $k$ components $G_{1}, G_{2}, \ldots, G_{k}$. Then

$$
h(G)=\prod_{i=1}^{k} h\left(G_{i}\right)
$$

For an edge $e=v_{1} v_{2}$ of a graph $G$, the graph $G * e$ is defined as follows: The vertex set of $G * e$ is $\left(V(G)-\left\{v_{1}, v_{2}\right\}\right) \bigcup\{v\}(v \notin G)$, and the edge set of $G * e$ is $\left\{e^{\prime} \mid e^{\prime} \in E(G), e^{\prime}\right.$ is not incident with $v_{1}$ or $\left.v_{2}\right\} \bigcup\left\{u v \mid u \in N_{G}\left(v_{1}\right) \bigcap N_{G}\left(v_{2}\right)\right\}$, where $N_{G}(v)$ is the set of vertices of $G$ which are adjacent to $v$.

Lemma 2.2 ${ }^{[4]}$ Let $G$ be a graph with $e \in E(G)$. Then

$$
h(G ; x)=h(G-e ; x)+h(G * e ; x),
$$

where $G-e$ denotes the graph obtained by deleting the edge $e$ from $G$.
Lemma 2.3 ${ }^{[5]}$ Let $G$ be a connected graph. Then
(1) $\beta(G)=-4$ if and only if

$$
G \in \mathcal{G}_{1}=\left\{T_{1,2,5}, T_{2,2,2}, T_{1,3,3}, K_{1,4}, C_{4}\left(P_{2}\right), C_{3}\left(P_{2}, P_{2}\right), K_{4}^{-}, D_{8}\right\} \cup \mathcal{U}
$$

(2) $\beta(G)>-4$ if and only if

$$
G \in \mathcal{G}_{2}=\left\{P_{1}, T_{1,2, i}(2 \leq i \leq 4), D_{i}(4 \leq i \leq 7)\right\} \cup \mathcal{P} \cup \mathcal{C} \cup \mathcal{T}_{1}
$$

(3) $\beta(G) \geq-3$ if and only if

$$
G \in \mathcal{G}_{3}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, C_{3}, T_{1,1,1}\right\}
$$

Lemma $2.4(1)^{[2]} h\left(P_{2 n+1}\right)=h\left(P_{n} \bigcup C_{n+1}\right)$, where $n \geq 3$.
$(2)^{[5]} \quad h\left(U_{n}\right)=x^{3}(x+4) h\left(P_{n-4}\right), h\left(U_{6}\right)=h\left(2 K_{1} \bigcup K_{4}^{-}\right), h\left(U_{8}\right)=h\left(C_{3} \bigcup K_{1,4}\right), h\left(U_{9}\right)=$ $h\left(K_{1} \bigcup K_{1,3} \bigcup K_{4}^{-}\right)$, and $h\left(U_{2 m+1}\right)=h\left(U_{m+2} \bigcup C_{m-1}\right)$, where $m \geq 5$.
(3) $h\left(P_{1} \bigcup U_{m}\right)=h\left(K_{1,4} \bigcup P_{m-4}\right)$, where $m \geq 6$.
(4) For $n \geq 2, m \geq 6$ and $m \neq n+4, h\left(P_{n} \bigcup U_{m}\right)=h\left(U_{n+4} \bigcup P_{m-4}\right)$.

Proof of (3) We have, from (2) of the lemma, that

$$
h\left(P_{1} \bigcup U_{m}\right)=x^{4}(x+4) h\left(P_{m-4}\right)=h\left(K_{1,4} \bigcup P_{m-4}\right)
$$

Proof of (4) It follows, from (2) of the lemma, that

$$
h\left(P_{n} \bigcup U_{m}\right)=\left(x^{4}(x+4) h\left(P_{m-4}\right)\right) h\left(P_{n}\right)=\left(x^{4}(x+4) h\left(P_{n}\right)\right) h\left(P_{m-4}\right)=h\left(U_{n+4} \bigcup P_{m-4}\right)
$$

Lemma 2.5 (1) ${ }^{[6]}$ For $n \geq 2, \beta\left(P_{n}\right)>\beta\left(P_{n+1}\right)>\beta\left(C_{n+1}\right)>\beta\left(C_{n+2}\right)$.
$(2)^{[5]} \quad \beta\left(C_{4}\right)=\beta\left(D_{4}\right)=\beta\left(P_{7}\right), \beta(T(1,2,2))=\beta\left(D_{5}\right)=\beta\left(P_{11}\right), \beta(T(1,2,3))=\beta\left(D_{6}\right)=$ $\beta\left(P_{17}\right), \beta(T(1,2,4))=\beta\left(D_{7}\right)=\beta\left(P_{29}\right)$.
$(3)^{[2,5]}$ For $m \geq 4$ and $l \geq 1,\left(h_{1}\left(C_{m}\right), h_{1}\left(P_{2 l}\right)\right)=1$ and $\beta\left(P_{2 m-1}\right)=\beta\left(C_{m}\right)=\beta\left(T_{1,1, m-2}\right)$.

## 3. The chromaticity of graphs

Lemma 3.1 Let $G=a P_{1} \bigcup a_{0} P_{2} \bigcup a_{1} P_{3} \bigcup a_{2} P_{5}$, where $a$ and $a_{i}(i=0,1,2)$ are nonnegative integers. Then

$$
[G]_{h}=\mathcal{G}_{4}=\left\{(a-r) P_{1} \bigcup\left(a_{0}+r\right) P_{2} \bigcup a_{1} P_{3} \bigcup\left(a_{2}-r\right) P_{5} \bigcup r T_{1,1,1} \mid 0 \leq r \leq \min \left\{a, a_{2}\right\}\right\}
$$

Proof Obviously, $\mathcal{G}_{4} \subseteq[G]_{h}$. Now, we need only prove $[G]_{h} \subseteq \mathcal{G}_{4}$.
Let an any graph $H \in[G]_{h}$ and $H=\bigcup_{i} H_{i}$. Then $h(H)=h(G)$. By (3) of Lemma 2.3, we have that $H_{i} \in \mathcal{G}_{3}$. By Lemma 2.2 and calculation, it follows that

$$
\begin{gathered}
h_{1}\left(P_{4}\right)=h_{1}\left(C_{3}\right)=x^{2}+3 x+1, h_{1}\left(P_{5}\right)=h_{1}\left(P_{2}\right) h_{1}\left(T_{1,1,1}\right)=(x+1)(x+3), \\
h_{1}\left(P_{3}\right)=x+2, h_{1}\left(C_{3}\right) \nmid h_{1}\left(P_{i}\right)(i=2,3,5) \text { and } h_{1}\left(C_{3}\right) \nmid h_{1}(T(1,1,1)) .
\end{gathered}
$$

This implies $h_{1}\left(C_{3}\right) \not \backslash h_{1}(G)$. Simultaneously, $h_{1}\left(C_{3}\right) \nmid h_{1}(H)$. Hence $H$ contains no $C_{3}$ and $P_{4}$ as
its components. Without loss of generality, let

$$
H=b P_{1} \bigcup b_{0} P_{2} \bigcup b_{1} P_{3} \bigcup b_{2} P_{5} \bigcup s T_{1,1,1}
$$

Comparing the common factors $x+3, x+2$ and $x+1$ of $h(H)$ with those of $h(G)$, we have $b_{2}+s=a_{2}, b_{1}=a_{1}$ and $b_{0}+b_{2}=a_{0}+a_{2}$, respectively. So $b_{2}=a_{2}-s$ and $b_{0}=a_{0}+s$. Hence

$$
H=b P_{1} \bigcup\left(a_{0}+s\right) P_{2} \bigcup a_{1} P_{3} \bigcup\left(a_{2}-s\right) P_{5} \bigcup s T_{1,1,1} \text { and } 0 \leq s \leq a_{2}
$$

Note that $h^{s}\left(P_{2}\right) h^{s}\left(T_{1,1,1}\right)=h^{s}\left(P_{1}\right) h^{s}\left(P_{5}\right)$. Then we eliminate the common factors of $h(H)$ and $h(G)$. So, we obtain $b+s=a$, that is, $b=a-s$ and $0 \leq s \leq a$. Thus

$$
H=(a-s) P_{1} \bigcup\left(a_{0}+s\right) P_{2} \bigcup a_{1} P_{3} \bigcup\left(a_{2}-s\right) P_{5} \bigcup s T_{1,1,1} \text { and } 0 \leq s \leq\left\{a, a_{2}\right\}
$$

which imply $H \in \mathcal{G}_{4}$ and $[G]_{h} \subseteq \mathcal{G}_{4}$. This completes the proof of the lemma.
Theorem 3.1 Let $G=a P_{1} \bigcup a_{0} P_{2} \bigcup a_{1} P_{3} \bigcup a_{2} P_{5} \bigcup\left(\bigcup_{i=3}^{n} a_{i} P_{2 i}\right)$, where $a$ and $a_{i}(0 \leq i \leq n)$ are nonnegative integers. Then
$[G]_{h}=\mathcal{G}_{5}=\left\{(a-r) P_{1} \bigcup\left(a_{0}+r\right) P_{2} \bigcup a_{1} P_{3} \bigcup\left(a_{2}-r\right) P_{5} \bigcup r T_{1,1,1} \bigcup\left(\bigcup_{i=3}^{n} a_{i} P_{2 i}\right) \mid 0 \leq r \leq \min \left\{a, a_{2}\right\}\right\}$.
Proof Obviously, $\mathcal{G}_{5} \subseteq[G]_{h}$, so we should prove $[G]_{h} \subseteq \mathcal{G}_{5}$.
Let an any graph $H \in[G]_{h}$ and $H=\bigcup_{k \in A} H_{k}$, where $H_{k}$ is a connected graph. From $h(H)=$ $h(G)$ and (2) of Lemma 2.3, we have $H_{k} \in \mathcal{G}_{2}$. If $a_{i}=0$ for $3 \leq i \leq n$, from Lemma 3.1, we know that the theorem holds.

If $a_{i_{0}} \neq 0$ for some $i_{0} \in[3, n]$, from (1) of Lemma 2.5, it follws that $\beta(G)=\beta\left(P_{2 i_{0}}\right)$. By (2) and (3) of Lemma 2.5, we obtain that

$$
\left.H_{k} \in\left\{P_{i}, P_{2 l}, C_{3}, T_{1,1,1}\right) \mid 1 \leq i \leq 5, l \geq 3\right\}
$$

So there exists a number $k \in A$ such that $\beta\left(H_{k}\right)=\beta(H)=\beta(G)=\beta\left(P_{2 i_{0}}\right)$ and $H_{k} \cong P_{2 i_{0}}$. Eliminating the common factor $h\left(P_{2 i_{0}}\right)$ of $h(H)$ and $h(G)$ and repeating the above process until $P_{2 i} \nsubseteq G$ for $3 \leq i \leq n$, we have that

$$
\begin{equation*}
\bigcup_{i \in A_{1}} H_{k} \cong \bigcup_{i=3}^{n} a_{i} P_{2 i} \text { and } G^{\prime}=a P_{1} \bigcup a_{0} P_{2} \bigcup a_{1} P_{3} \bigcup a_{2} P_{5} \tag{3.1}
\end{equation*}
$$

Let $H^{\prime}=\bigcup_{i \in A-A_{1}} H_{k}$. Eliminating the common factor $h\left(\bigcup_{i=3}^{n} a_{i} P_{2 i}\right)$ of $h(H)$ and $h(G)$, we have $h\left(H^{\prime}\right)=h\left(G^{\prime}\right)$, that is, $H^{\prime} \in\left[G^{\prime}\right]_{h}$. From (3.1) and Lemma 3.1, it follows that

$$
H=(a-r) P_{1} \bigcup\left(a_{0}+r\right) P_{2} \bigcup a_{1} P_{3} \bigcup\left(a_{2}-r\right) P_{5} \bigcup r T_{1,1,1} \bigcup\left(\bigcup_{i=3}^{n} a_{i} P_{i}\right), 0 \leq r \leq \min \left\{a, a_{2}\right\}
$$

Hence $H \in \mathcal{G}_{5}$, that is, $[G]_{h} \subseteq \mathcal{G}_{5}$. This completes the proof of the theorem.
Corollary 3.1 Let $G \in\left\{a P_{1} \bigcup a_{0} P_{2} \bigcup a_{1} P_{3} \bigcup\left(\bigcup_{i=3}^{n} a_{i} P_{2 i}\right), a_{0} P_{2} \bigcup a_{1} P_{3} \bigcup a_{2} P_{5} \bigcup\left(\bigcup_{i=3}^{n} a_{i} P_{2 i}\right)\right\}$, where $a$ and $a_{i}(0 \leq i \leq n)$ are nonnegative integers. Then $G$ is adjoint uniqueness.

Lemma 3.2 Let $H=\bigcup_{k=1}^{s} H_{k}$ and $G=a_{0} P_{2} \bigcup a_{1} P_{3} \bigcup a_{2} P_{5} \bigcup\left(\bigcup_{i=3}^{n} a_{i} P_{2 i}\right)$. If $h_{1}(H)=h_{1}(G)$, then $\alpha(H) \geq \alpha(G)$. Furthermore,
(1) If $\alpha(H)=\alpha(G)$, then $H \cong G$ and $s=\sum_{i=0}^{n} a_{i}$.
(2) If $\alpha(H)>\alpha(G)$, then $H \cong(a-r) P_{1} \bigcup\left(a_{0}+r\right) P_{2} \bigcup a_{1} P_{3} \bigcup\left(a_{2}-r\right) P_{5} \bigcup r T_{1,1,1} \bigcup\left(\bigcup_{i=3}^{n} a_{i} P_{2 i}\right)$ and $s=a+\sum_{i=0}^{n} a_{i}$, where $a=\alpha(H)-\alpha(G)$ and $0 \leq r \leq \min \left\{a_{1}, a_{2}\right\}$.

Proof Suppose that $\alpha(H)<\alpha(G)$. From $h_{1}(H)=h_{1}(G)$ and $\alpha(G)-\alpha(H)=b$, we have that $x^{b} h(H)=h(G)$, that is, $h\left(b P_{1} \bigcup H\right)=h(G)$. By Corollary 3.1, we obtain that $b P_{1} \bigcup H \cong G$ which is a contradiction. Hence $\alpha(H) \geq \alpha(G)$.
(1) If $\alpha(H)=\alpha(G)$, then $h(H)=h(G)$. By Corollary 3.1, it follows that $H \cong G$ and $s=$ $\sum_{i=0}^{n} a_{i}$.
(2) If $\alpha(H)>\alpha(G)$, from $h_{1}(H)=h_{1}(G)$ and $\alpha(H)-\alpha(G)=a$, we have $h(H)=h\left(a P_{1} \bigcup G\right)$. From Theorem 3.1, we get that the result holds.

Lemma 3.3 ${ }^{[5]} \bigcup_{n \in A} U_{n}$ is adjointly unique for $A=\{7,2 n \mid n \in N, n \geq 5\}$, where $N$ is the set of positive integers.

Theorem 3.2 Let $A=\{1,2,3,5\} \bigcup\{2 n \mid n \in N, n \geq 3\}$ and $B=\{7,2 n \mid n \in N, n \geq 5\}$. Let $G=\left(\bigcup_{i \in A_{1}} P_{i}\right) \bigcup\left(\bigcup_{j \in B_{1}} U_{j}\right)$, where $A_{1} \subseteq A, B_{1} \subseteq B$ and $N$ is the set of positive integers. Then $G$ is adjointly unique if and only if
(1) $A=\emptyset$.
(2) $A=\{1,3,2 b \mid b \geq 1, b \neq 2\}$ and $B=\emptyset$.
(3) $A=\{3,5,2 b \mid b \geq 1, b \neq 2\}$ and $B=\emptyset$.
(4) $A=\{3,5,2 b \mid b \geq 1, b \neq 2\}$ and $B=\{j \mid j=i+4, i \in A \backslash\{2,5\}\}$.

Proof The necessity of the theorem follows from Lemma 2.4. Now, we prove the sufficiency of the theorem.
(1) If $A=\emptyset$, then $A_{1}=\emptyset$. From Lemma 3.3, we obtain that the result holds.
(2) and (3) From Corollary 3.1, we obtain that the results hold.
(4) Suppose that any graph $H=\bigcup_{k=1}^{s} H_{k}$ satisfies $h(H)=h(G)$. It follows, from Lemma 2.1, that

$$
\begin{equation*}
\prod_{k \in S} h\left(H_{k}\right)=\prod_{i \in A_{1}} h\left(P_{i}\right) \prod_{j \in B_{1}} h\left(U_{j}\right) \tag{3.2}
\end{equation*}
$$

By Lemma 2.3, we have $H_{k} \in \mathcal{G}_{1} \bigcup \mathcal{G}_{2}$.
By Lemma 2.2 and calculation, we have

$$
\begin{gathered}
h_{1}(T(2,2,2))=h_{1}^{2}\left(P_{2}\right) h_{1}\left(K_{1,4}\right) \\
h_{1}(T(1,3,3))=h_{1}\left(P_{2}\right) h_{1}\left(P_{3}\right) h_{1}\left(K_{1,4}\right), \\
h_{1}\left(D_{8}\right)=h_{1}(T(1,2,5))=h_{1}\left(P_{2}\right) h_{1}\left(P_{4}\right) h_{1}\left(K_{1,4}\right), \\
h_{1}\left(C_{3}\left(P_{2}, P_{2}\right)\right)=h_{1}\left(C_{4}\left(P_{2}\right)\right)=h_{1}\left(K_{4}^{-}\right)=h_{1}\left(P_{2}\right) h_{1}\left(K_{1,4}\right) .
\end{gathered}
$$

Since $h_{1}\left(K_{1,4}\right)=x+4$, eliminating all the factors $x+4$ and $x$ in the two sides of (3.2), we obtain, from Lemma 2.4 and $j=i+4$, that

$$
\begin{equation*}
\prod_{k \in S_{1}} h_{1}\left(H_{k}^{\prime}\right)=\prod_{i \in A_{1}} h_{1}\left(P_{i}\right) \prod_{j \in B_{2}} h_{1}\left(P_{j-4}\right)=\prod_{i \in S_{2}} h_{1}\left(P_{i}\right) \text { and }\left|S_{1}\right| \leq|S| \tag{3.3}
\end{equation*}
$$

where $S_{2}=\{3,5,2 l \mid l \geq 1, l \neq 2\},\left|S_{2}\right|=\left|A_{1}\right|+\left|B_{1}\right|$ and $H_{k}^{\prime} \in\left\{T(1,2, i)(2 \leq i \leq 4), D_{i}(4 \leq i \leq\right.$ 7) $\} \bigcup \mathcal{P} \bigcup \mathcal{C} \bigcup \mathcal{T}_{1}$. Obviously, $H_{k}^{\prime} \neq P_{1}$ for $k \in S_{1}$. From Lemma 3.2, it follows that

$$
\begin{equation*}
\sum_{k \in S_{1}} \alpha\left(H_{k}\right) \geq \sum_{i \in S_{2}} \alpha\left(P_{i}\right) \tag{3.4}
\end{equation*}
$$

Claim. $\bigcup_{k \in S_{1}} H_{k}^{\prime} \cong \bigcup_{i \in S_{2}} P_{i}$.
To prove the claim, we distinguish the following two cases from (3.4):
Case $1 \sum_{k \in S_{1}} \alpha\left(H_{k}\right)=\sum_{i \in S_{2}} \alpha\left(P_{i}\right)$. By (3.3), we have $\prod_{k \in S_{1}} h\left(H_{k}^{\prime}\right)=\prod_{i \in S_{2}} h\left(P_{i}\right)$. From Corollary 3.1, we get that the claim holds.

Case $2 \sum_{k \in S_{1}} \alpha\left(H_{k}\right)>\sum_{i \in S_{2}} \alpha\left(P_{i}\right)$. Without loss of generality, let

$$
\bigcup_{i \in S_{2}} P_{i}=a_{0} P_{2} \bigcup a_{1} P_{3} \bigcup a_{2} P_{5} \bigcup\left(\bigcup_{i=3}^{n} a_{i} P_{2 i}\right)
$$

where $\left|S_{2}\right|=\sum_{i=0}^{n} a_{i}$. Set $\sum_{k \in S_{1}} \alpha\left(H_{k}\right)-\sum_{i \in S_{2}} \alpha\left(P_{i}\right)=a>0$. From (3.3), it follows that

$$
h\left(\bigcup_{k \in S_{1}} H_{k}^{\prime}\right)=h\left(a P_{1} \bigcup\left(\bigcup_{i \in S_{2}} P_{2 i}\right)\right) .
$$

By Lemma 3.2 and $H_{k}^{\prime} \neq P_{1}$, we have that

$$
\begin{equation*}
\bigcup_{k \in S_{1}} H_{k}^{\prime} \cong \bigcup\left(a_{0}+r\right) P_{2} \bigcup a_{1} P_{3} \bigcup\left(a_{2}-r\right) P_{5} \bigcup_{r T_{1,1,1}} \bigcup\left(\bigcup_{i=3}^{n} a_{i} P_{2 i}\right), \tag{3.5}
\end{equation*}
$$

$a=r$ and $\left|S_{1}\right|=a+\sum_{i=0}^{n} a_{i}$.
Hence $H_{k} \in\left\{K_{1,4}, P_{1}\right\} \bigcup \mathcal{P} \cup \mathcal{U}$. Obviously, for each component $H_{k}$, we get that $q\left(H_{k}\right)-p\left(H_{k}\right)=$ -1 for $1 \leq k \leq|S|$. Hence $q(H)-p(H)=-|S|$. Since $q(G)-p(G)=-|A|-|B|=-\sum_{i=0}^{n} a_{i}$ and $q(H)-p(H)=q(G)-p(G)$, we have

$$
\begin{equation*}
|S|=\sum_{i=0}^{n} a_{i} \tag{3.6}
\end{equation*}
$$

From (3.3), (3.5) and (3.6), it follows that $a=0$, which contradicts $a>0$. This completes the proof of the claim.

By Claim and the above analysis, we have

$$
H_{k} \in\left\{P_{1}, K_{1,4}\right\} \bigcup \mathcal{P} \bigcup \mathcal{U} \text { and }|S|=\left|S_{1}\right|=\left|A_{1}\right|+\left|B_{1}\right| .
$$

By $|S|=\left|S_{1}\right|$, we have $H_{k} \notin\left\{P_{1}, K_{1,4}\right\}$. Hence $H_{k} \in \mathcal{P} \bigcup \mathcal{U}$. Since $H$ must have exactly $\left|B_{1}\right|$ components $H_{j}$ such that $\beta\left(H_{j}\right)=-4$ for $1 \leq j \leq\left|B_{1}\right|$, we have

$$
\begin{equation*}
\bigcup_{k \in S_{3}} H_{k} \cong \bigcup_{j \in B_{1}} U_{j}, \quad \text { where } \quad\left|S_{3}\right|=\left|B_{1}\right| . \tag{3.7}
\end{equation*}
$$

From (3.2) and (3.7), it follows that

$$
\prod_{k \in S \backslash S_{3}} h\left(H_{k}\right)=\prod_{i \in A_{1}} h\left(P_{i}\right), \quad h\left(\bigcup_{k \in S \backslash S_{3}} H_{k}\right)=h\left(\bigcup_{i \in A_{1}} P_{i}\right) .
$$

We obtain, from Corollary 3.1, that

$$
\begin{equation*}
\bigcup_{k \in S-S_{3}} H_{k} \cong \bigcup_{i \in A_{1}} P_{i} \tag{3.8}
\end{equation*}
$$

By (3.7) and (3.8), it is easy to get that

$$
\bigcup_{k \in S} H_{k} \cong\left(\bigcup_{i \in A_{1}} P_{i}\right) \bigcup\left(\bigcup_{j \in B_{1}} U_{j}\right), \quad H \cong G
$$

This completes the proof of the theorem.
Corollary 3.2 Let $A=\{1,2,3,5\} \bigcup\{2 n \mid n \in N, n \geq 3\}$ and $B=\{7,2 n \mid n \in N, n \geq 5\}$. Let $G=\left(\bigcup_{i \in A_{1}} P_{i}\right) \bigcup\left(\bigcup_{j \in B_{1}} U_{j}\right)$, where $A_{1} \subseteq A, B_{1} \subseteq B$ and $N$ is the set of positive integers. Then $\bar{G}$ is chromatically unique if and only if
(1) $A=\emptyset$.
(2) $A=\{1,3,2 b \mid b \geq 1, b \neq 2\}$ and $B=\emptyset$.
(3) $A=\{3,5,2 b \mid b \geq 1, b \neq 2\}$ and $B=\emptyset$.
(4) $A=\{3,5,2 b \mid b \geq 1, b \neq 2\}$ and $B=\{j \mid j=i+4, i \in A \backslash\{2,5\}\}$.

Acknowledgments The authors are grateful to the referees for their careful reading of the paper, and for their comments and suggestions, which are very helpful for improving the presentation of this paper.

## References

[1] BONDY J A, MURTY U S R. Graph Theory with Applications[M]. Amsterdam, North-Holland, 1976.
[2] LIU Ruying. Adjoint polynomials and chromatically unique graphs [J]. Discrete Math., 1997, 172(1-3): 85-92.
[3] LIU Ruying, ZHAO Lianchang. A new method for proving chromatic uniqueness of graphs [J]. Discrete Math., 1997, 171(1-3): 169-177.
[4] LIU Ruying. Adjoint polynomials of graphs [J]. J. Qinghai Normal Univ., 1990, 3: 1-8.
[5] ZHAO Haixing, LI Xueliang, ZHANG Shenggui. et al. On the minimum real roots of the $\sigma$-polynomials and chromatic uniqueness of graphs [J]. Discrete Math., 2004, 281(1-3): 277-294.
[6] WANG Shouzhong, Liu Ruying. Chromatic uniqueness of the complements of cycle and $D_{n}$ [J]. J. Math. Res. Exposition, 1998, 18(2): 296. (in Chinese)

