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Abstract In this paper, by using new analysis techniques, we have studied iterative construc-

tion problem for finding zeros of accretive mappings in uniformly smooth Banach spaces, and

improved a theorem due to Reich. As its application, we have deduced a strong convergence

theorem of fixed points for continuous pseudo-contractions.
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1. Introduction

Let E be a real Banach space with dual E∗. We denote by J the normalized duality mapping

from E to 2E∗

defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2},

where 〈·, ·〉 denotes the generalized duality pairing. It is well known that if E∗ is strictly convex,

then J is single-valued. In the sequel, we shall denote the single-valued normalized duality map by

j. A mapping A : E → 2E is called accretive, if for all x, y ∈ D(A) there exists j(x−y) ∈ J(x−y)

such that

〈u − v, j(x − y)〉 ≥ 0 (1)

for all u ∈ Ax and all v ∈ Ay. The mapping A is called strongly accretive if right side of (1) is

replaced by k‖x− y‖2, where k ∈ (0, 1). It is well known that the mapping A is accretive if and

only if for all x, y ∈ D(A) and ∀s > 0 there holds

‖x − y‖ ≤ ‖x − y + s(u − v)‖ (2)

for all u ∈ Ax and all v ∈ Ay. An accretive mapping A is called m-accretive if range of (I + rA)

is E for all r > 0, i.e., R(I + rA) = E. The class that is closely related to the class of accretive

mappings is the class of pseudocontractions. Let K be a nonempty subset of E. The mapping
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T : K → K is called pseudocontractive if A = I − T is accretive. Accordingly, the mapping

T : K → K is called strongly pseudocontractive if A = I − T is stongly accretive.

Interest of accretive mappings stems mainly from their firm connection with equations of

evolution (for example, heat, wave, or Schrödinger equations). Thanks to mathematicians’ ef-

forts, since 1967, the theory of the accretive operators has been well developed, and research on

the zeros of the accretive operators has been attracting a lot of excellent mathematicians. In

1974, Bruck[1] adopted a regularization iteration algorithm to construct zeros of maximal mono-

tone operators in a Hilbert space. In 1980, Reich[3] developed the main results of Bruck[1] into

uniformly smooth Banach spaces more general than Hilbert spaces. To be specific, Reich proved

the following convergence theorem.

Theorem R1 Let E be a uniformly smooth Banach space and A ⊂ E × E be an m-accretive

mapping with A−10 6= ∅. Suppose that {λn} and {θn} are two positive sequences satisfying the

following control conditions: (i) θn → 0 (n → ∞); (ii)
∑∞

n=1 λnθn = ∞; (iii) θn−1

θn

−1 = o(λnθn);

(iv) b(λn) = o(θn), where b : R+ → R+ is the function appearing in the Reich inequality (RI) in

the Section 2. Let a sequence {xn} ⊂ D(A) be generated from arbitrary x0 ∈ D(A) by

xn+1 ∈ xn − λn(Axn + θnxn), n ≥ 0. (3)

If both {xn} and {un} are bounded for all un ∈ Axn, then xn → x∗ ∈ A−1(0), n → ∞.

In the light of [1] iterative algorithm (3) is called a regularization iteration algorithm.

Question Can the boundedness of {xn} be dropped?

Recently, Chidume and Zegeye[5] studied this question. They proved that the conclusion of

Theorem R1 still holds without boundedness of {xn} if real sequences {λn} and {θn} satisfy an

additional condition: there exists a positive constant d such that λn

θn

≤ d for all n ≥ 0. We note

that this restriction on {λn} and {θn} is not convenient.

The purpose of this paper is to prove that the conclusion of Theorem R1 indeed holds without

boundedness of {xn}.

2. Preliminaries

Let E be a real normed linear space with dimE ≥ 2. The modulus of smoothness of E is

defined by

ρE(τ) = sup

{

‖x + y‖ + ‖x − y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}

, τ > 0.

If ρE(τ) > 0, ∀τ > 0, then E is said to be smooth. If there exists constant c > 0 and a real

number 1 < q < ∞, such that ρE(τ) ≤ cτq, then E is said to be q-uniformly smooth. A Banach

space E is called uniformly smooth if limτ→0 ρE(τ)/τ = 0. Typical examples of such spaces are

the Lebesgue Lp, the sequence lp and the Sobolev Wm
p spaces for 1 < p < ∞.

Uniformly smooth Banach spaces enjoy very nice geometrical properties. In 1978, Reich[2]

established the following famous inequality, which is called Reich inequality in the light of [2].

Theorem R2[2] Let E be a real uniformly smooth Banach space. Then there exists a continuous
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increasing function b : R+ → R+ which satisfies:

(i) b(ct) ≤ cb(t), ∀c ≥ 1;

(ii) b(0) = 0;

(iii) ‖x + y‖2 ≤ ‖x‖2 + 2 〈y, j(x)〉 + max{‖x‖ , 1} ‖y‖ b(‖y‖), ∀x, y ∈ E. (RI)

Let K ⊆ E be a closed convex subset, and P : E → K be a mapping of E into K. Then P

is said to be sunny if

P (Px + t(x − Px)) = Px

for x ∈ E and t ≥ 0. A mapping P is said to be a retraction if P 2 = P . K ⊆ E is said to be a

sunny nonexpansive retract if there exists a sunny nonexpansive retraction P : E → K.

We need following famous convergence theorem due to Reich.

Theorem R3[4] Let E be a real uniformly smooth Banach space, and let A ⊂ E × E be an

accretive mapping satisfying the range condition:

D(A) ⊂ R(I + rA)

for all r > 0, where D(A) is a closed convex set of E. If A−1(0) 6= ∅, then, for all x ∈ D(A), the

limit limt→∞ Jt(x) exists and belongs to A−1(0). In this case, by putting Px = limt→∞ Jt(x),

then P : D(A) → A−1(0) is a sunny nonexpansive retraction.

Lemma Weng X[6] Let {an} and {bn} be two non-negative real sequences such that

an+1 ≤ (1 − tn)an + bn, ∀n ≥ n0,

where 0 ≤ tn < 1,
∑∞

n=1 tn = ∞ and bn = o(tn). Then an → 0(n → ∞). For the rest of this

paper, let x∗ ∈ A−1(0) be such that Jt(0) → x∗ as t → ∞, which is guaranteed by Theorem R2.

3. Main results

Theorem 1 Let E be a real uniformly smooth Banach space and A ⊂ E × E be an accretive

mapping satisfying the range condition

D(A) ⊂ R(I + rA), ∀r > 0,

where D(A) is a closed convex subset of E. Let z ∈ D(A) and x1 ∈ D(A) be arbitrary, and let

a sequence {xn} be defined iteratively by

xn+1 ∈ xn − λn(Axn + θn(xn − z)), n ≥ 1, (4)

where {λn} and {θn} satisfies conditions (i)–(iv) in Theorem R1.

Suppose there exists a constant C ≥ 1 such that

‖un‖ ≤ C(1 + ‖xn‖), un ∈ Axn, n ≥ 1. (5)

If A−1(0) 6= ∅, then {xn}n≥1 converges strongly to x∗ ∈ A−1(0).

Proof Without loss of generality, we may assume that z = 0. Otherwise, we consider D(Ã) =

D(A) − z, Ãx = A(x + z), x ∈ D(Ã). By the range condition, we know that the equation

0 ∈ (I + θ−1
n A)x (6)
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has a unique solution yn ∈ D(A), ∀n ≥ 1, i.e., 0 ∈ θnyn + Ayn, ∀n ≥ 1, and hence

0 ∈ λnθnyn + λnAyn, n ≥ 1. (7)

By Theorem R3, we conclude that yn = Jθ
−1

n

(0) → P (0) = x∗ ∈ A−1(0), (n → ∞), in particular

{yn} is bounded. Since 0 ∈ θnyn + Ayn, n ≥ 1, there exists vn ∈ Ayn such that θnyn + vn = 0.

Therefore {vn} is also bounded. Set

M = max
{

sup
n≥0

{‖yn‖} , sup
n≥0

{‖vn‖}
}

. (8)

By using the linear growth condition (5), we obtain that ‖un‖
1+‖xn‖ ≤ C for all un ∈ Axn. Thus,

for each vn ∈ Ayn, we have

‖un − vn‖

1 + ‖xn‖
≤

‖un‖ + ‖vn‖

1 + ‖xn‖
≤ C +

M

1 + ‖xn‖
. (9)

As A is accretive, for vn ∈ Ayn, it follows from (2) and (7) that

‖yn − yn−1‖ ≤ ‖yn − yn−1 +
1

θn−1
(vn − vn−1)‖

= ‖(yn +
1

θn

vn) − (yn−1 +
1

θn−1
vn−1) +

1

θn−1
vn −

1

θn

vn‖

= |
1

θn−1
−

1

θn

|‖vn‖ = |
1

θn−1
−

1

θn

|θn‖yn‖

= |
θn

θn−1 − 1
|‖yn‖. (10)

By using Theorem R2 (i), (iii), algorithm (4) and (7)–(10), we have, for all un ∈ Axn,

vn ∈ Ayn that

‖
xn+1 − yn

1 + ‖xn‖
‖2 =‖(1 − λnθn)

(xn − yn)

1 + ‖xn‖
−

λn

1 + ‖xn‖
(un − vn)‖2

≤(1 − λnθn)2
‖xn − yn‖2

(1 + ‖xn‖)2
−

2λn(1 − λnθn)

(1 + ‖xn‖)2
〈un − vn, j(xn − yn)〉+

max{
‖xn − yn‖

1 + ‖xn‖
, 1}λn

‖un − vn‖

1 + ‖xn‖
b(λn

‖un − vn‖

1 + ‖xn‖
)

≤(1 − λnθn)
‖xn − yn‖2

(1 + ‖xn‖)2
+ (M + 1)λn(C +

M

1 + ‖xn‖
)2b(λn). (11)

Multiplying both sides of (11) by (1 + ‖xn‖)2 gives

‖xn+1 − yn‖
2 ≤(1 − λnθn)‖xn − yn‖

2 + (M + 1)[C(1 + ‖xn‖) + M ]2λnb(λn)

≤(1 − λnθn)‖xn − yn‖
2 + 2(M + 1[C2(1 + ‖xn‖)

2 + M2]λnb(λn)

≤(1 − λnθn)‖xn − yn‖
2 + 2(M + 1)[2C2(1 + ‖xn‖

2) + M2]λnb(λn)

≤(1 − λnθn)‖xn − yn‖
2 + 2(M + 1)(2C2 + M2)λnb(λn)+

4(M + 1)C2‖xn − yn + yn‖
2λnb(λn)

≤(1 − λnθn)‖xn − yn‖
2 + 2(M + 1)(2C2 + M2)λnb(λn)+

8(M + 1)C2‖xn − yn‖
2λnb(λn) + 8(M + 1)C2‖yn‖

2λnb(λn)
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≤[(1 − λnθn) + 8(M + 1)C2λnb(λn)]‖xn − yn‖
2+

2(M + 1)(2C2 + M2 + 4C2M2)λnb(λn). (12)

By Theorem R1 (iv), we can take n0 large enough. When n ≥ n0, we obtain

b(λn)

θn

≤
1

16(M + 1)C2
. (13)

Using (12) in (11) and Theorem (iv), we have for all n ≥ n0 that

‖xn+1 − yn‖
2 ≤(1 −

1

2
λnθn)‖xn − yn‖

2 + o(λnθn)

≤(1 −
1

2
λnθn)‖xn − yn−1 + yn−1 − yn‖

2 + o(λnθn)

≤(1 −
1

2
λnθn)(‖xn − yn−1‖

2 + 2‖xn − yn−1‖‖yn−1 − yn‖+

‖yn−1 − yn‖
2) + o(λnθn)

≤(1 −
1

2
λnθn)[‖xn − yn−1‖

2 + 2‖xn − yn−1‖|
θn−1

θn

− 1|‖yn‖+

|
θn−1

θn

− 1|2‖yn‖
2] + o(λnθn)

=(1 −
1

2
λnθn)[‖xn − yn−1‖ + |

θn−1

θn

− 1|M ]2 + o(λnθn). (14)

Squaring on both sides of (14), we have that

‖xn+1 − yn‖ ≤ (1 −
1

4
λnθn)‖xn − yn−1‖ + M |

θn−1

θn

− 1| + o(λnθn)

= (1 −
1

4
λnθn)‖xn − yn−1‖ + o(λnθn), (15)

where we have used conditions (iii),(iv) in Theorem 1 and (10).

Noting that
∑∞

n=1 λnθn = ∞, we know from Lemma Weng X that xn+1 − yn → 0, (n → ∞).

Thus xn → P (0) = x∗ ∈ A−1(0), (n → ∞).

Remark 1 If {un}, un ∈ Axn, is bounded, then there exists a constant C ≥ 1 such that

‖un‖ ≤ C ≤ C + C ‖xn‖ = C(1 + ‖xn‖),

which shows that Theorem R1 is still true without assuming the boundedness of {xn}.

Remark 2 If A is Lipschitz continuous such that A−1(0) 6= ∅, then

‖un‖ ≤ L ‖xn − x∗‖ = L ‖xn‖ + L ‖x∗‖ ≤ C(1 + ‖xn‖),

where L ≥ 1 is the Lipschtz constant of A, x∗ ∈ A−1(0), and C = max {L ‖x∗‖ , L} =

L max {‖x∗‖ , 1}. In particular, if A is a single valued and bounded linear mapping, then

‖Axn‖ ≤ ‖A‖ ‖xn‖ ≤ ‖A‖ (1 + ‖xn‖).

Remark 3 If A is a bounded mapping, then for large enough r ≥ 1,

M(r) = sup {‖u‖ : u ∈ Ax, x ∈ D(A), ‖x − x1‖ ≤ 2r} < ∞.
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If b(λn)
θn

≤ 2r
(

M(r)+
3
2r

)

2 , ∀n ≥ 1, by induction, we can prove that ‖xn − x∗‖ ≤ r, ∀n ≥ 1.

Therefore ‖un‖ ≤ C(1 + ‖xn‖), ∀un ∈ Axn, n ≥ 1.

As an application of Theorem 1, we have

Theorem 2 Let E be a real uniformly smooth Banach space, K be a closed convex subset

of E, and T : K → K be a continuous pseudocontraction such that F (T ) 6= ∅. Let {λn} and

{θn} be two positive sequences such that: (i) θn → 0 (n → ∞); (ii) λn(1 + θn) ≤ 1, n ≥ 1;

(iii)
∞
∑

n=1
λnθn = ∞; (iv) θn−1

θn

− 1 = o(λnθn); (v) b(λn) = o(θn), where b : R+ → R+ is the

function appearing in the Reich inequality (RI). For arbitrary fixed vector z ∈ K and arbitrary

initial value x1 ∈ K, let the sequence {xn} be defined iteratively by

xn+1 = (1 − λn)xn + λnTxn + λnθn(z − xn), n ≥ 1. (16)

If {xn} satisfies the linear growth condition:

‖xn − Txn‖ ≤ C(1 + ‖xn‖), n ≥ 1, C ≥ 1,

then xn → x∗ ∈ F (T ), (n → ∞).

Proof Putting A = I − T , we see that A : K → E is an accretive mapping such that A−1(0) =

F (T ) 6= ∅ and satisfies the range condition K ⊆ R(I + rA), ∀r > 0. (16) reduces to

xn+1 = xn − λn(Axn + θn(xn − z)), n ≥ 1.

By Theorem 1, we have that xn → x∗ ∈ A−1(0) = F (T ).

Remark 4 If K is a bounded closed convex subset of a uniformly smooth Banach space E and

T : K → K is a continuous pseudocontraction, then F (T ) 6= ∅.

Remark 5 We do not know whether or not Theorems 1 and 2 are true in more general Banach

spaces.

Remark 6 We do not know whether or not condition (iv) can be weakened to λn = o(θn).
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