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Abstract In this paper, by using new analysis techniques, we have studied iterative construc-
tion problem for finding zeros of accretive mappings in uniformly smooth Banach spaces, and
improved a theorem due to Reich. As its application, we have deduced a strong convergence
theorem of fixed points for continuous pseudo-contractions.
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1. Introduction

Let E be a real Banach space with dual £*. We denote by J the normalized duality mapping
from E to 2€" defined by

J(z) = {a" € E*: (z,2") = |al|* = [|2*]*},

where (-, ) denotes the generalized duality pairing. It is well known that if E* is strictly convex,
then J is single-valued. In the sequel, we shall denote the single-valued normalized duality map by
j. A mapping A : E — 2% is called accretive, if for all 2,y € D(A) there exists j(x—y) € J(z—1y)
such that

(u—wv,j(x—y)) =0 (1)

for all u € Az and all v € Ay. The mapping A is called strongly accretive if right side of (1) is
replaced by k||z — y||?, where k € (0,1). It is well known that the mapping A is accretive if and
only if for all z,y € D(A) and Vs > 0 there holds

lz =yl < llz —y + s(u—v) (2)

for all u € Az and all v € Ay. An accretive mapping A is called m-accretive if range of (I +1rA4)
is E for all r > 0, i.e., R(I +rA) = E. The class that is closely related to the class of accretive

mappings is the class of pseudocontractions. Let K be a nonempty subset of £. The mapping
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T : K — K is called pseudocontractive if A = I — T is accretive. Accordingly, the mapping
T : K — K is called strongly pseudocontractive if A = I — T is stongly accretive.

Interest of accretive mappings stems mainly from their firm connection with equations of
evolution (for example, heat, wave, or Schrodinger equations). Thanks to mathematicians’ ef-
forts, since 1967, the theory of the accretive operators has been well developed, and research on
the zeros of the accretive operators has been attracting a lot of excellent mathematicians. In
1974, Bruck!!l adopted a regularization iteration algorithm to construct zeros of maximal mono-

B]' developed the main results of Bruck!! into

tone operators in a Hilbert space. In 1980, Reich
uniformly smooth Banach spaces more general than Hilbert spaces. To be specific, Reich proved

the following convergence theorem.

Theorem R1 Let E be a uniformly smooth Banach space and A C E x E be an m-accretive
mapping with A=*0 # (. Suppose that {\,} and {6, } are two positive sequences satisfying the
following control conditions: (i) 8, — 0 (n — c0); (i) Yo" | Anb,, = oo; (iii) 9’;—;1 —1=0(A\n0n);
(iv) b(An) = 0(6,,), where b : Rt — R™ is the function appearing in the Reich inequality (RI) in
the Section 2. Let a sequence {z,,} C D(A) be generated from arbitrary xo € D(A) by

ZTpt1 € Tnp — M (Azp + 0p2,), n>0. (3)

If both {z,,} and {u,} are bounded for all u,, € Az, then z,, — x* € A~1(0), n — oo.

In the light of [1] iterative algorithm (3) is called a regularization iteration algorithm.

Question Can the boundedness of {z,} be dropped?

Recently, Chidume and Zegeyel®!

studied this question. They proved that the conclusion of
Theorem R1 still holds without boundedness of {x,,} if real sequences {\,} and {6, } satisfy an
additional condition: there exists a positive constant d such that 2—: < d for all n > 0. We note
that this restriction on {A,} and {6,} is not convenient.

The purpose of this paper is to prove that the conclusion of Theorem R1 indeed holds without

boundedness of {x,,}.

2. Preliminaries

Let F be a real normed linear space with dimFE > 2. The modulus of smoothness of E is
defined by

rT+y|+ilr—y
pE(T)zsup{| ”2H |—1:||:C|:1,|y|:T}, 7> 0.

If pp(7) > 0, V7 > 0, then E is said to be smooth. If there exists constant ¢ > 0 and a real

number 1 < ¢ < 00, such that pg(7) < ¢7%, then F is said to be g-uniformly smooth. A Banach
space F is called uniformly smooth if lim,_.o pg(7)/7 = 0. Typical examples of such spaces are
the Lebesgue L, the sequence [, and the Sobolev W)™ spaces for 1 < p < oo.

Uniformly smooth Banach spaces enjoy very nice geometrical properties. In 1978, Reich[?!

established the following famous inequality, which is called Reich inequality in the light of [2].

Theorem R2[ Let E be a real uniformly smooth Banach space. Then there exists a continuous
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increasing function b : RT™ — RT which satisfies:

(i) b(ct) < eb(t), Ye > 1;

(ii) b(0) = 0;

(i) [l +yl? < ll2l)® +2 (g, j @) + max{llzll , 1} llyl bClly]), ¥,y € . (RI)

Let K C E be a closed convex subset, and P : E — K be a mapping of F into K. Then P
is said to be sunny if

P(Px +t(x — Px)) = Px

for x € E and t > 0. A mapping P is said to be a retraction if P? = P. K C E is said to be a
sunny nonexpansive retract if there exists a sunny nonexpansive retraction P : £ — K.

We need following famous convergence theorem due to Reich.

Theorem R3" Let E be a real uniformly smooth Banach space, and let A C E x E be an

accretive mapping satisfying the range condition:

D(A) C R(I+rA)
for all r > 0, where D(A) is a closed convex set of E. If A=*(0) # 0, then, for all x € D(A), the
limit lim;_, o Ji () exists and belongs to A=1(0). In this case, by putting Pz = lim;_, Ji(z),

then P : D(A) — A=%(0) is a sunny nonexpansive retraction.

Lemma Weng X® Let {a,} and {b,} be two non-negative real sequences such that
an+1 < (1 - tn)an + bnv vn > no,

where 0 < ¢, < 1, Y. t, = 0o and b, = o(t,). Then a, — 0(n — o). For the rest of this
paper, let z* € A=1(0) be such that J;(0) — z* as t — oo, which is guaranteed by Theorem R2.

3. Main results

Theorem 1 Let E be a real uniformly smooth Banach space and A C E x E be an accretive

mapping satisfying the range condition
D(A) C R(I +rA), ¥r >0,

where D(A) is a closed convex subset of E. Let z € D(A) and x1 € D(A) be arbitrary, and let
a sequence {z,} be defined iteratively by

Tnt1 € Tp — An(Azy + 05 (2, — 2)), n > 1, (4)

where {\,} and {0, } satisfies conditions (i)—(iv) in Theorem R1I.
Suppose there exists a constant C' > 1 such that

lunll < CA+ ||znl]), un € Axy, n > 1. (5)

If A=1(0) # 0, then {=,},>1 converges strongly to z* € A=1(0).

Proof Without loss of generality, we may assume that z = 0. Otherwise, we consider D(4) =
D(A) — z, Az = A(z + 2), = € D(A). By the range condition, we know that the equation

0e(l+0,"Az (6)
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has a unique solution y,, € D(A), Vn > 1, i.e., 0 € 0y, + Ayn, Yn > 1, and hence
0 € Mbnyn + \nAyn, n>1. (7)

By Theorem R3, we conclude that y, = J,-1(0) — P(0) = 2* € A7(0), (n — oc), in particular
{yn} is bounded. Since 0 € 0,,y, + Ayn, n > 1, there exists v, € Ay, such that 0,y, + v, = 0.
Therefore {v, } is also bounded. Set

M = max {sup {yall} , sup {all} }- (8)
n>0 n>0
By using the linear growth condition (5), we obtain that 1%;” T < C for all u,, € Az,. Thus,
for each v, € Ay, we have
[[un — vl l[unll + [lvall M
< <CH ——. 9)
L+ [|an| L+ [|lzn]| L+ |||
As A is accretive, for v, € Ay, it follows from (2) and (7) that
Hyn_yn—ln < Hyn_yn—l + 9 1(Un _'Un—l)”
1 1 1 1
= [[(yn + Evn) = (Yn—1 + ﬁvn,l) + g E“n”
1 1 1 1
- - nil = |57 —— — 5 on n
= = gl = 15— = -6l
On
——" il 10
[ (10

By using Theorem R2 (i), (iii), algorithm (4) and (7)—(10), we have, for all u, € Ax,,
v, € Ay, that

Tn+1 — Yn 2 (:En - yn) )\n
= 17 =11 = Anby) -

1+ [Jzn || Lt flanll 14 [zl
o [l — yn||2 20 (1 = Anb)

(un - Un)||2

<1_)\n6‘n - n nu' n_n+
<( S TealE @ )z ™ V(@ = 0m))

20 — ynll [[un — vnll l[un — vl

;1\, b(A,
e T M T e (M T )
”xn_ynH2 M 2

<(1-=-MX,0,)———=+ (M + DA, (C + ————)*b(\,). 11
<( T Taalyz ™M DA(CH ) o) 1D

Multiplying both sides of (11) by (1 + ||x,||)? gives

[#nt1 = ynll® (1= Xl 1z — yall® + (M + D[C(1+ [|lza]l) + MI*Anb(Xn)
<1 = Mbo)||n — ynl|® + 2(M + 1[C2(1 + ||z |)? + M2]Anb(\n)
<(1 = M) [0 — ynll? + 2(M + DRCA(1 + [ 2) + M2Ab(A)
<1 = M) — ynll? + 2(M + 1)(202 + M)Anb(An)+

4(M + 1)C?||zr — Yn + Ynl*Anb(An)
<(1 = M)l — ynll? + 2(M + 1)(2C% + M*)Nb( M)+
8(M 4 1)C?|zn — Yn||*Aab(An) + 8(M + 1)C?||yn||*Aub(An)
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<[(1 = Anbn) + 8(M + 1)C*Aub(An)] ||z — yn|*+
2(M +1)(2C% + M? + 4C% M?)\,.b(\n). (12)
By Theorem R1 (iv), we can take ng large enough. When n > ng, we obtain

bA) _ 1

. 13
0, ~ 16(M +1)C? (13)
Using (12) in (11) and Theorem (iv), we have for all n > ng that
1
Zn+1 — yn||2 <(1- 5)‘71971)”3371 - ynH2 + 0(Anbr)
1
S(l - 5)\71971)”5[:71 — Yn-—1 + Yn—1 — ynH2 + O(Anen)
1
S(l - 5)\719”)(”.%'” - yn—1||2 + 2”xn - yn—IHHyn—l - ynH+
Hyn—l - yn||2) + 0(Anby)
1 971—1
(1= 5Anbn)[l2n — Yn—1lI” + 2)|zn = yn-1ll| o~ Hliyall+
en—l
|9— - 1|2||ynH2] +0(Anbn)
1 onfl 2
=(1- 5)‘71971)[”51771 = Y- +| 0 1M]” + o(Anbh). (14)
Squaring on both sides of (14), we have that
1 en—l
[Zn+1 —ynll < (1 - Z)‘nen)Hxn — Yn—1|l + M| 0. 1] + o(Anbn)
1
= (1= = bn)|zn — Yn-1l + 0o(Anbn), (15)

4
where we have used conditions (iii),(iv) in Theorem 1 and (10).

Noting that Y ° | A\,6, = 0o, we know from Lemma Weng X that 2,41 — y,, — 0, (n — o).
Thus z, — P(0) = 2* € A71(0), (n — ).

Remark 1 If {u,}, u, € Ax,, is bounded, then there exists a constant C' > 1 such that
[un|l < C < C+ Cllzn|| = CA+ [l2nl),
which shows that Theorem RI1 is still true without assuming the boundedness of {z,}.
Remark 2 If A is Lipschitz continuous such that A=1(0) # ), then
Junll < Lilzn —2*|| = Lilza| + Lll2*]| < C(1L + [[zn]),

where L > 1 is the Lipschtz constant of A, z* € A~'(0), and C = max{L||z*||,L} =

L max {||z*|,1}. In particular, if A is a single valued and bounded linear mapping, then
[Azn || < [|A]l zn ]l < [[A] (1 + [z ])-
Remark 3 If A is a bounded mapping, then for large enough r > 1,

M(r) =sup{||lu| : v € Azx,z € D(A), ||z — 1] < 2r} < cc.
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If b(An) < 2r
(M(r)+ %r)
Therefore ||u,| < C(1 + ||znll), Yun € Azy, n > 1.

As an application of Theorem 1, we have

7, Vn > 1, by induction, we can prove that |z, —a*|| < r, Vn > 1.

Theorem 2 Let E be a real uniformly smooth Banach space, K be a closed convex subset
of E, and T : K — K be a continuous pseudocontraction such that F(T) # 0. Let {\,} and
{0, } be two positive sequences such that: (i) 6, — 0 (n — o00); (ii) \(1+0,) <1, n>1;
(i) > Al = 007 (iv) B2 — 1 = 0o(Aub); (v) b(An) = 0(6,), where b : R — R* is the
functi?);llappearing in the Reich inequality (RI). For arbitrary fixed vector z € K and arbitrary
initial value x1 € K, let the sequence {x,} be defined iteratively by

Tnt1 = (L= Ap)xn + AT + Mpbn(z — 2,), n > 1. (16)
If {x,} satisfies the linear growth condition:
o — Toall < O+ lzal)n > 1, € > 1,
then x,, — z* € F(T), (n — 00).

Proof Putting A =1 —T, we see that A : K — F is an accretive mapping such that A=1(0) =
F(T) # 0 and satisfies the range condition K C R(I 4+ rA), ¥Vr > 0. (16) reduces to

Tn+1 = Tn — )\n(Axn + en(ilfn — z)),n > 1.

By Theorem 1, we have that z,, — z* € A=1(0) = F(T).

Remark 4 If K is a bounded closed convex subset of a uniformly smooth Banach space E and

T : K — K is a continuous pseudocontraction, then F(T) # (.

Remark 5 We do not know whether or not Theorems 1 and 2 are true in more general Banach

spaces.

Remark 6 We do not know whether or not condition (iv) can be weakened to A, = o(6,,).
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