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Abstract In this paper, we introduce the concept of a strongly regular (α, β)-family. It gener-

alizes the concept of an SPG-family in [4] and [5]. We provide a method of constructing strongly

regular (α, β)-geometries from strongly regular (α, β)-families. Furthermore, we prove that each

strongly regular (α, β)-geometry constructed from a strongly regular (α, β)-regulus translation

is isomorphic to a translation strongly regular (α, β)-geometry; while t − r > β, the converse is

also true.
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1. Introduction

A partial linear space of order (s, t) is a connected incidence structure S = (P ,L, I), with P

a finite non-empty set of elements called points, L a family of subsets of P called lines and I an

incidence relation satisfying the following axioms.

(1) Any two distinct points are incident with at most one line;

(2) Each line is incident with exactly s + 1 points (s ≥ 1);

(3) Each point is incident with exactly t + 1 lines (t ≥ 1).

For a partial linear space S = (P ,L, I), the graph Γ with vertex set P such that two distinct

vertices are adjacent if they are collinear in S is called the point graph of S.

An anti-flag in a partial linear space S is a pair (p, L) with p ∈ P and L ∈ L such that p is

not incident with L. For a given anti-flag (p, L) of S, the incidence number of (p, L), denoted by

i(p, L), is the number of points collinear with p and incident with L. A (finite) (α, β)-geometry

of order (s, t) is a partial linear space S = (P ,L, I) of order (s, t) for some s and t, such that for

any anti-flag (p, L) of S we have i(p, L) = α or i(p, L) = β, and each of these two cases occurs.

For an anti-flag (p, L), L is called an α-line with respect to p if i(p, L) = α, similarly for a β-line.

An (α, β)-geometry is strongly regular if there exist integers p and r such that the following

conditions are satisfied.
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(1) If points x and y are collinear, then there exist p lines on x that are α-lines with respect

to y;

(2) If points x and y are not collinear, then there exist r lines on x that are α-lines with

respect to y.

It is known that if α 6= β, the point graph of a strongly regular (α, β)-geometry is strongly

regular[7].

If i(p, L) = α for every anti-flag (p, L) of S of order (s, t), then S is called a partial geometry

of order (s, t) and denoted by pg(s, t, α)[1]. It is clear that the point graph of a partial geometry

is strongly regular. The point graph of a (0, α)-geometry is not necessarily strongly regular.

The (0, α)-geometry of order (s, t) having a strongly regular point graph is called a semipartial

geometry of order (s, t) and denoted by spg(s, t, α, µ)[2]. Here µ is the number of vertices adjacent

to two non-adjacent vertices.

Let R = {PG(0)(m, q), PG(1)(m, q), . . . , PG(t)(m, q)}, t ≥ 1, be t + 1 mutually disjoint

PG(m, q) in a projective space PG(n, q), which generates PG(n, q). Now embed PG(n, q)

in PG(n + 1, q) as a hyperplane Π at infinity. We define the following incidence structure

S(R) = (P ,L, I). The point set P consists of all points of PG(n + 1, q) \ Π. The line set L

is the set of all (m + 1)-dimensional subspaces of PG(n + 1, q) intersecting Π in an element of

R and not contained in Π. The incidence relation I is the incidence relation inherited from

PG(n + 1, q). The geometry S(R) is called the generalized linear representation of R. In the

case m = 0 the geometry is called the linear representation of R. Suppose that H is a point

set in PG(n, q). Then the linear representation of H is usually denoted by T∗

n(H). For more

properties, we refer to [3].

A strongly regular (α, β)-regulus is a collection R of m-dimensional subspaces of PG(n, q),

|R| >1, satisfying

(1) Σi ∩ Σj = ∅, for every Σi, Σj ∈ R, Σi 6= Σj .

(2) If an (m+1)-dimensional subspace contains some Σi ∈ R, then it has a point in common

with α or β subspaces of R\Σi. Such an (m + 1)-dimensional subspace that meets α elements

of R\Σi is said to be an α-secant to R at Σi, similarly for a β-secant.

(3) If a point of PG(n, q) is contained in an element Σ of R, then it is contained in a constant

number p of α-secant (m + 1)-dimensional subspaces on elements of R\Σ.

(4) If a point of PG(n, q) is contained in no element of R, then it is contained in a constant

number r of α-secant (m + 1)-dimensional subspaces of R.

In [7] it was proved that a generalized linear representation S(R) constructed from a strongly

regular (α, β)-regulus R is a strongly regular (α, β)-geometry.

In [4] and [5] De Clerck and De Winter et al. introduced a theory of elation and trans-

lation semipartial geometries and provided a group theoretical characterization of semipartial

geometries constructed from SPG-reguli. In this paper, we will introduce the concept of strongly

regular (α, β)-families, which generalizes the concept of SPG-families in [4] and [5]. We will

construct elation and translation strongly regular (α, β)-geometries from strongly regular (α, β)-

families. Furthermore, we will show that when t − r > β, the theory of translation strongly



930 LI X L

regular (α, β)-geometries is equivalent to the theory of strongly regular (α, β)-reguli.

2. Strongly regular (α, β)-families

In this paper, let I denote the set {0, 1, 2, . . . , t}, t ≥ 1.

Definition 2.1 Let G be a finite group. Except in a few mentioned cases we will use a

multiplicative notation for G. Suppose that J = {S0, S1, . . . , St} is a set of t + 1 (t ≥ 1)

subgroups of order s + 1 of G (s ≥ 1) with Si ∩ Sj = {id} whenever i 6= j, for i, j ∈ I. Then the

pair (G, J) is called a geometric family. We say the pair (G, J) is a strongly regular (α, β)-family

with parameters (s, t, α, β, p, r) if the following conditions are satisfied.

(1) There exist two integers α and β (0 ≤ α < β < s + 1) such that for each Si (i ∈ I)

and each g 6∈ Si, there either exists a unique set {j1, j2, . . . , jα} ⊂ I with the property that

Sig ∩ Sjk
6= ∅, ∀ k ∈ {1, 2, . . . , α}, or exists a unique set {j1, j2, . . . , jβ} ⊂ I with the property

that Sig ∩ Sjk
6= ∅, ∀k ∈ {1, 2, . . . , β}, and both of these two cases occur. The pair (Si, g) is

called an α-pair in the former case, while (Si, g) is called a β-pair in the latter case.

(2) For each g ∈
⋃

i∈I Si\{id}, there exists an integer p such that there exists a unique set

{j1, j2, . . . , jp} with the property that (Sjk
, g) is an α-pair, ∀k ∈ {1, 2, . . . , p}.

(3) For each g ∈ G\
⋃

i∈I Si, there exists an integer r such that there exists a unique set

{j1, j2, . . . , jr} with the property that (Sjk
, g) is an α-pair, ∀k ∈ {1, 2, . . . , r}.

This definition generalizes the concept of an SPG-family in [4] and [5]. We will introduce

a new method of constructing strongly regular (α, β)-geometries from strongly regular (α, β)-

families. At first, we will introduce the concept of a (right) coset geometry[5].

Definition 2.2 Let G be a group and let J = {Si|i ∈ I} be a set of subgroups of G. Then

the right coset geometry S(G, J) is the incidence geometry with as points, the elements of G, as

lines the right cosets Sig, i ∈ I and g ∈ G, and for which the incidence relation is containment.

The proof of the following lemma can be found in [5] and is included here for completeness.

Lemma 2.3 Let (G, J) be a strongly regular (α, β)-family. Then

(1) |Sig ∩ Sjh| ∈ {0, 1}, i 6= j, ∀g, h ∈ G;

(2) G = 〈S0, S1, . . . , St >〉.

Proof (1) Suppose that y, z ∈ Sig∩Sjh. This implies the existence of elements siy
, siz

∈ Si and

sjy
, sjz

∈ Sj , for which y = siy
g = sjy

h and z = siz
g = sjz

h. Hence yz−1 = siy
s−1

iz
= sjy

s−1
jz

,

yielding yz−1 ∈ Si ∩ Sj , that is, y = z.

(2) At first we will prove r < t + 1. Suppose r = t + 1. Without loss of generality, assume

that s0 ∈ S0\{id} and (S1, s0) is a β-pair. If each element of S1s0 would belong to a certain

Sj , then we would find for each s1 ∈ S1 a j ∈ I such that s1s0 = sj , with sj ∈ Sj . From (1)

it follows easily that distinct elements of S1 determine distinct indices j, yielding β ≥ s + 1,

a contradiction. Hence there exists a g ∈ S1s0 such that g ∈ G\
⋃

i∈I Si. Clearly, (S1, g) is a

β-pair, a contradiction.
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Thus for each g ∈ G\
⋃

i∈I Si, there exists a Si ∈ J for which (Si, g) is a β-pair. Then there

exists a set Sj (j 6= i) satisfying Sig ∩ Sj 6= ∅. Hence there exist si ∈ Si, sj ∈ Sj with sig = sj ,

and so g = s−1
i sj ∈ 〈S0, S1, . . . , St〉. 2

Theorem 2.4 The right coset geometry S(G, J) is a strongly regular (α, β)-geometry with

parameters (s, t, α, β, p, r).

Proof From Lemma 2.3 we see that S(G, J) is a partial linear space of order (s, t).

(1) Let Sih (i ∈ I) be any line of S(G, J) and let g be any point of S(G, J) not contained

in Sih. Since g 6∈ Sih, hg−1 6∈ Si. From the definition of strongly regular (α, β)-families we

have that there exists a unique set {j1, j2, . . . , jδ} ⊂ I with the property that Sihg−1 ∩ Sjk
6= ∅,

∀ k ∈ {1, 2, . . . , δ}, δ = α or β. Consequently, there exist elements sik
∈ Si and sjk

∈ Sj, for

k ∈ {1, 2, . . . , δ}, such that sik
h = sjk

g, δ = α or β. Hence we have constructed δ points of Sih

collinear with g in S(G, J). On the other hand it is clear that each point of Sih collinear with g

must be constructed as above. This implies that S(G, J) is a (α, β)-geometry.

(2) Suppose that g and h are two collinear points of S(G, J). This is equivalent to gh−1 ∈
⋃

i∈I Si. Without loss of generality, assume that gh−1 ∈ S0. From the definition of strongly

regular (α, β)-families it follows that there exists a unique set {j1, j2, . . . , jp} ⊂ I, with the

property that (Sjk
, gh−1) is an α-pair, ∀ k ∈ {1, 2, . . . , p}. This yields p lines of S(G, J) on g

that are α-lines with respect to h. On the other hand, each α-line of S(G, J) on g with respect

to h must be constructed as above.

(3) Suppose that g and h are two non-collinear points of S(G, J). This is equivalent to

gh−1 6∈
⋃

i∈I Si. From the definition of strongly regular (α, β)-families it follows that there

exists a unique set {j1, j2, . . . , jr} ⊂ I, with the property that (Sjk
, gh−1) is an α-pair, ∀ k ∈

{1, 2, . . . , r}. This yields r lines of S(G, J) on g that are α-lines with respect to h. On the other

hand, each α-line of S(G, J) on g with respect to h must be constructed as above.

Thus we conclude that S(G, J) is a strongly regular(α, β)-geometry with parameters (s, t, p, r).

2

A strongly regular (α, β)-geometry constructed as above will be called an elation strongly

regular (α, β)-geometry. Whenever G is abelian it will be called a translation strongly regular

(α, β)-geometry.

3. Translation strongly regular (α, β)-geometries

In this section, we suppose that (G, J) is a strongly regular (α, β)-family with parameters

(s, t, α, β, p, r) and G is abelian. Let K be the set of all endomorphisms σ of G satisfying

Sσ
i ⊂ Si (∀i ∈ I). From the fact that G is abelian it follows that (K, +, ·), with the usual

addition and multiplication of endomorphisms, is a ring. This ring will be called the kernel of

the translation strongly regular (α, β)-geometry S(G, J).

Similarly to the proofs of Theorems 2.4 and 2.5, we may obtain the following results.

Lemma 3.1 If t − r > β, then (K, +, ·) is a field.
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Theorem 3.2 Each translation strongly regular (α, β)-geometry with t − r > β is isomorphic

to a strongly regular (α, β)-geometry constructed from a strongly regular (α, β)-regulus R in

PG(n, q), where GF(q) is a subfield of the kernel.

Let P = PG(n, q) be a Desarguesian projective space of dimension at least 2. Let Π be a fixed

hyperplane of P and p be a fixed point of P . Then, Persp(Π, p) is the set of all automorphisms of P

fixing Π point wise and fixing all hyperplanes containing p. It follows that Persp(Π, p) constitutes

a group. The elements of Persp(Π, p) are called perspectivities with axis Π and center p. More

specifically the elements of Persp(Π, p) are called elations if p ∈ Π, and homologies if p 6∈ Π.

Furthermore, it is clear that the set of all perspectivities of P with a given axis or with a given

center forms a group. Finally notice that the set of all elations with a given axis Π constitutes

a group acting regularly on the point set of P\Π.

The following observation is important in the theory of Desarguesian projective spaces.

Lemma 3.3
[8] Let PG(n, q) be a Desarguesian projective space of dimension at least 2. Then

the group of all homologies with axis a fixed hyperplane Π and with center a fixed point p 6∈ Π

is isomorphic to the multiplicative group of GF(q).

Suppose that p1, p2 and p3 are two by two distinct points on a projective line PG(1, q), and

that p4 is a fourth point on that line. If one chooses homogeneous coordinates in such a way that

the coordinates of p1, p2 and p3, are (0, 1), (1, 0) and (1, 1), respectively, then the cross ratio

(p1, p2; p3, p4) of the 4-tuple (p1, p2, p3, p4) is the affine coordinate of the point p4 with respect

to the chosen coordinates if p4 6= p1, and equals ∞ if p4 = p1.

We have the following interesting property.

Lemma 3.4
[8] Every linear automorphism of PG(1, q) preserves the cross ratio.

Now we may get the following result.

Theorem 3.5 Every strongly regular (α, β)-geometry constructed from a strongly regular (α, β)-

regulus R in PG(n, q) is isomorphic to a translation strongly regular (α, β)-geometry S(G, J),

with G the group of all elations of PG(n + 1, q) with axis PG(n, q), and with the elements of

GF(q) in the kernel.

Proof Let S(R) be a strongly regular (α, β)-geometry with parameters (s, t, p, r) constructed

from a strongly regular (α, β)-regulus R in Π := PG(n, q). Let G be the group of all elations of

PG(n+1, q) with axis Π. Then G is a regular group of automorphisms of S(R). Choose a point x

of S(R) and denote by L0, L1, . . . , Lt the lines of S(R) through x. Define Si := {g ∈ G|Lg
i = Li}

(i ∈ I), which are subgroups of G of order s+1. Clearly Si∩Sj = {id} for all i 6= j, with i, j ∈ I.

(1) Consider Si and g 6∈ Si (g ∈ G). Then the point xg is not on Li, and so xg is collinear

with δ distinct points xh1 , xh2 , . . . , xhδ on the line Li, with {h1, h2, . . . , hδ} ⊂ Si, where δ = α or

β. This implies that x is collinear with xhkg−1

in S(R), k = 1, 2, . . . , δ, with δ = α or β. Hence

there exists a jk ∈ I such that hkg−1 ∈ Sjk
, that is, Sjk

g ∩ Si 6= ∅, k = 1, 2, . . . , δ, with δ = α or

β. Conversely, it is now obvious that every Sl for Slg ∩ Si 6= ∅ gives rise to a point Li collinear

with xg.
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(2) Suppose that g ∈
⋃

i∈I Si\{id}. Without loss of generality, assume that g ∈ S0. Then x

is collinear with xg in S(R). So there are p distinct lines Lj1 , Lj2 , . . . , Ljp
such that i(xg, Ljk

) =

α (jk 6= 0), k = 1, 2, . . . , p. Similarly as in (1) we know that (Sjk
, g) is an α-pair, k ∈ {1, 2, . . . , p}.

And for any j ∈ {0, 1, . . . , t}\{j1, j2, . . . , jp, 0}, we have that (Sj , g) is a β-pair.

(3) Suppose that g ∈ G\
⋃

i∈I Si. Then x is not collinear with xg in S(R). So there are r

distinct lines Lj1 , Lj2 , . . . , Ljr
such that i(xg, Ljk

) = α, k = 1, 2, . . . , r. Similarly to (1), we know

that (Sjk
, g) is an α-pair, k ∈ {1, 2, . . . , r}. And for any line j ∈ {0, 1, . . . , t}\{j1, j2, . . . , jr}, we

have that (Sj , g) is a β-pair.

Thus we conclude that (G, J) is a strongly regular (α, β)-family. It is now easily seen that

φ : G → S(R) : g → xg determines an isomorphism between S(G, J) and S(R).

Let x be the point of PG(n + 1, q)\Π corresponding to id ∈ G. From Lemma 3.3 it follows

that the multiplicative group of GF(q) is isomorphic to the group of homologies of PG(n + 1)

with axis Π and center x. We will show that it can be seen as a group of automorphism of

G. We will identity the elements of G with the corresponding points of PG(n + 1, q)\Π. Let

σ 6= 1 be a homology of PG(n + 1, q) with axis Π and center x and let g 6= h be elements of

G\{x}. First suppose that x, g and h are not collinear in PG(n + 1, q). Define g∞ := 〈x, g〉 ∩Π,

h∞ := 〈x, h〉∩Π and l∞ := 〈g, h〉∩Π. Then the triangle with vertices g, gσ, h∞ and the triangle

with vertices h, hσ, g∞ are perspective triangles with center l∞. From Desargues Theorem it

follows that x, gh and gσhσ are collinear, which implies that gσhσ and (gh)σ must coincide,

that is, gσhσ = (gh)σ. The cross ratio (x, g∞; g, g−1) = −1. From Lemma 3.4 it follows that

(xσ, gσ
∞

; gσ, (g−1)σ) = (x, g∞; g, g−1) = −1, implying (g−1)σ = (gσ)−1. Finally suppose that x,

g and h are collinear and that h 6= g−1. Choose any l not on 〈x, g〉. Then x, gl and l−1h are not

collinear in PG(n + 1, q) since otherwise gll−1h = gh would be a point of 〈x, gl〉, implying that

h = g−1 as 〈x, gh〉 ∩ 〈x, gl〉 = {x}. Hence (gh)σ = (gll−1h)σ = (gl)σ(l−1h)σ = gσlσ(l−1)σhσ =

gσhσ. It is now clear that the group of homologies of PG(n + 1) with axis Π and center x can

indeed be seen as a group of automorphisms of G.

For any fixed Si, let g be an element in Si and σ be an element in GF(q). Then we have

L
g
i = Li. Hence for any h on Li, we know that g, hg are on the line Li. On the other hand, x, g

and gσ are collinear in S(R). So gσ must be on the line Li. Now it is easily seen that hgσ ∈ Li.

Thus L
gσ

i = Li, that is, gσ ∈ Si. Thus we conclude that the elements of GF(q) are in the kernel

of the corresponding translation strongly regular (α, β)-geometry. When t − r > β, GF(q) is a

subfield of the kernel. 2

Hence we have shown that whenever t − r > β, the theory of translation strongly regular

(α, β)-geometries is equivalent to the theory of strongly regular (α, β)-reguli. Furthermore it

follows that in this case K is the largest field such that there exists a strongly regular (α, β)-

reguli R in PG(n, K) with the property that S(G, J) ∼= S(R).
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