# Strongly Regular ( $\alpha, \beta$ )-Families and Translation Strongly Regular ( $\alpha, \beta$ )-Geometries 

LI Xiu Li<br>(School of Mathematics and Physics, Qingdao University of Science and Technology, Shandong 266042, China)<br>(E-mail: lixiuli2004@tom.com)


#### Abstract

In this paper, we introduce the concept of a strongly regular ( $\alpha, \beta$ )-family. It generalizes the concept of an SPG-family in [4] and [5]. We provide a method of constructing strongly regular $(\alpha, \beta)$-geometries from strongly regular $(\alpha, \beta)$-families. Furthermore, we prove that each strongly regular $(\alpha, \beta)$-geometry constructed from a strongly regular $(\alpha, \beta)$-regulus translation is isomorphic to a translation strongly regular $(\alpha, \beta)$-geometry; while $t-r>\beta$, the converse is also true.


Keywords projective space; strongly regular ( $\alpha, \beta$ )-regulus; strongly regular ( $\alpha, \beta$ )-geometry.
Document code A
MR(2000) Subject Classification 05B25; 51D20
Chinese Library Classification O157.3

## 1. Introduction

A partial linear space of order $(s, t)$ is a connected incidence structure $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathbf{I})$, with $\mathcal{P}$ a finite non-empty set of elements called points, $\mathcal{L}$ a family of subsets of $\mathcal{P}$ called lines and $\mathbf{I}$ an incidence relation satisfying the following axioms.
(1) Any two distinct points are incident with at most one line;
(2) Each line is incident with exactly $s+1$ points $(s \geq 1)$;
(3) Each point is incident with exactly $t+1$ lines $(t \geq 1)$.

For a partial linear space $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathbf{I})$, the graph $\Gamma$ with vertex set $\mathcal{P}$ such that two distinct vertices are adjacent if they are collinear in $\mathcal{S}$ is called the point graph of $\mathcal{S}$.

An anti-flag in a partial linear space $\mathcal{S}$ is a pair $(p, L)$ with $p \in \mathcal{P}$ and $L \in \mathcal{L}$ such that $p$ is not incident with $L$. For a given anti-flag $(p, L)$ of $\mathcal{S}$, the incidence number of $(p, L)$, denoted by $i(p, L)$, is the number of points collinear with $p$ and incident with $L$. A (finite) $(\alpha, \beta)$-geometry of order $(s, t)$ is a partial linear space $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathbf{I})$ of order $(s, t)$ for some $s$ and $t$, such that for any anti-flag $(p, L)$ of $\mathcal{S}$ we have $i(p, L)=\alpha$ or $i(p, L)=\beta$, and each of these two cases occurs. For an anti-flag $(p, L), L$ is called an $\alpha$-line with respect to $p$ if $i(p, L)=\alpha$, similarly for a $\beta$-line.

An $(\alpha, \beta)$-geometry is strongly regular if there exist integers $p$ and $r$ such that the following conditions are satisfied.
Received date: 2006-06-22; Accepted date: 2008-04-18
Foundation item: the Scientific Research Start-Up Foundation of Qingdao University of Science and Technology in China. (No. 0022327).
(1) If points $x$ and $y$ are collinear, then there exist $p$ lines on $x$ that are $\alpha$-lines with respect to $y$;
(2) If points $x$ and $y$ are not collinear, then there exist $r$ lines on $x$ that are $\alpha$-lines with respect to $y$.

It is known that if $\alpha \neq \beta$, the point graph of a strongly regular $(\alpha, \beta)$-geometry is strongly regular ${ }^{[7]}$.

If $i(p, L)=\alpha$ for every anti-flag $(p, L)$ of $\mathcal{S}$ of order $(s, t)$, then $\mathcal{S}$ is called a partial geometry of order $(s, t)$ and denoted by $\operatorname{pg}(s, t, \alpha)^{[1]}$. It is clear that the point graph of a partial geometry is strongly regular. The point graph of a $(0, \alpha)$-geometry is not necessarily strongly regular. The $(0, \alpha)$-geometry of order $(s, t)$ having a strongly regular point graph is called a semipartial geometry of order $(s, t)$ and denoted by $\operatorname{spg}(s, t, \alpha, \mu)^{[2]}$. Here $\mu$ is the number of vertices adjacent to two non-adjacent vertices.

Let $\mathcal{R}=\left\{\mathrm{PG}^{(0)}(m, q), \mathrm{PG}^{(1)}(m, q), \ldots, \mathrm{PG}^{(t)}(m, q)\right\}, t \geq 1$, be $t+1$ mutually disjoint $\mathrm{PG}(m, q)$ in a projective space $\mathrm{PG}(n, q)$, which generates $\operatorname{PG}(n, q)$. Now embed $\operatorname{PG}(n, q)$ in $\mathrm{PG}(n+1, q)$ as a hyperplane $\Pi$ at infinity. We define the following incidence structure $\mathcal{S}(\mathcal{R})=(\mathcal{P}, \mathcal{L}, \mathbf{I})$. The point set $\mathcal{P}$ consists of all points of $\mathrm{PG}(n+1, q) \backslash \Pi$. The line set $\mathcal{L}$ is the set of all $(m+1)$-dimensional subspaces of $\operatorname{PG}(n+1, q)$ intersecting $\Pi$ in an element of $\mathcal{R}$ and not contained in $\Pi$. The incidence relation $\mathbf{I}$ is the incidence relation inherited from $\mathrm{PG}(n+1, q)$. The geometry $\mathbf{S}(\mathcal{R})$ is called the generalized linear representation of $\mathcal{R}$. In the case $m=0$ the geometry is called the linear representation of $\mathcal{R}$. Suppose that $\mathcal{H}$ is a point set in $\operatorname{PG}(n, q)$. Then the linear representation of $\mathcal{H}$ is usually denoted by $\mathrm{T}_{n}^{*}(\mathcal{H})$. For more properties, we refer to [3].

A strongly regular $(\alpha, \beta)$-regulus is a collection $\mathcal{R}$ of $m$-dimensional subspaces of $\operatorname{PG}(n, q)$, $|\mathcal{R}|>1$, satisfying
(1) $\Sigma_{i} \cap \Sigma_{j}=\emptyset$, for every $\Sigma_{i}, \Sigma_{j} \in \mathcal{R}, \Sigma_{i} \neq \Sigma_{j}$.
(2) If an $(m+1)$-dimensional subspace contains some $\Sigma_{i} \in \mathcal{R}$, then it has a point in common with $\alpha$ or $\beta$ subspaces of $\mathcal{R} \backslash \Sigma_{i}$. Such an $(m+1)$-dimensional subspace that meets $\alpha$ elements of $\mathcal{R} \backslash \Sigma_{i}$ is said to be an $\alpha$-secant to $\mathcal{R}$ at $\Sigma_{i}$, similarly for a $\beta$-secant.
(3) If a point of $\operatorname{PG}(n, q)$ is contained in an element $\Sigma$ of $\mathcal{R}$, then it is contained in a constant number $p$ of $\alpha$-secant $(m+1)$-dimensional subspaces on elements of $\mathcal{R} \backslash \Sigma$.
(4) If a point of $\mathrm{PG}(n, q)$ is contained in no element of $\mathcal{R}$, then it is contained in a constant number $r$ of $\alpha$-secant $(m+1)$-dimensional subspaces of $\mathcal{R}$.

In [7] it was proved that a generalized linear representation $S(\mathcal{R})$ constructed from a strongly regular $(\alpha, \beta)$-regulus $R$ is a strongly regular $(\alpha, \beta)$-geometry.

In [4] and [5] De Clerck and De Winter et al. introduced a theory of elation and translation semipartial geometries and provided a group theoretical characterization of semipartial geometries constructed from SPG-reguli. In this paper, we will introduce the concept of strongly regular $(\alpha, \beta)$-families, which generalizes the concept of SPG-families in [4] and [5]. We will construct elation and translation strongly regular $(\alpha, \beta)$-geometries from strongly regular $(\alpha, \beta)$ families. Furthermore, we will show that when $t-r>\beta$, the theory of translation strongly
regular $(\alpha, \beta)$-geometries is equivalent to the theory of strongly regular $(\alpha, \beta)$-reguli.

## 2. Strongly regular $(\alpha, \beta)$-families

In this paper, let $I$ denote the set $\{0,1,2, \ldots, t\}, t \geq 1$.
Definition 2.1 Let $G$ be a finite group. Except in a few mentioned cases we will use a multiplicative notation for $G$. Suppose that $J=\left\{S_{0}, S_{1}, \ldots, S_{t}\right\}$ is a set of $t+1(t \geq 1)$ subgroups of order $s+1$ of $G(s \geq 1)$ with $S_{i} \cap S_{j}=\{i d\}$ whenever $i \neq j$, for $i, j \in I$. Then the pair $(G, J)$ is called a geometric family. We say the pair $(G, J)$ is a strongly regular $(\alpha, \beta)$-family with parameters $(s, t, \alpha, \beta, p, r)$ if the following conditions are satisfied.
(1) There exist two integers $\alpha$ and $\beta(0 \leq \alpha<\beta<s+1)$ such that for each $S_{i}(i \in I)$ and each $g \notin S_{i}$, there either exists a unique set $\left\{j_{1}, j_{2}, \ldots, j_{\alpha}\right\} \subset I$ with the property that $S_{i} g \cap S_{j_{k}} \neq \emptyset, \forall k \in\{1,2, \ldots, \alpha\}$, or exists a unique set $\left\{j_{1}, j_{2}, \ldots, j_{\beta}\right\} \subset I$ with the property that $S_{i} g \cap S_{j_{k}} \neq \emptyset, \forall k \in\{1,2, \ldots, \beta\}$, and both of these two cases occur. The pair $\left(S_{i}, g\right)$ is called an $\alpha$-pair in the former case, while $\left(S_{i}, g\right)$ is called a $\beta$-pair in the latter case.
(2) For each $g \in \bigcup_{i \in I} S_{i} \backslash\{i d\}$, there exists an integer $p$ such that there exists a unique set $\left\{j_{1}, j_{2}, \ldots, j_{p}\right\}$ with the property that $\left(S_{j_{k}}, g\right)$ is an $\alpha$-pair, $\forall k \in\{1,2, \ldots, p\}$.
(3) For each $g \in G \backslash \bigcup_{i \in I} S_{i}$, there exists an integer $r$ such that there exists a unique set $\left\{j_{1}, j_{2}, \ldots, j_{r}\right\}$ with the property that $\left(S_{j_{k}}, g\right)$ is an $\alpha$-pair, $\forall k \in\{1,2, \ldots, r\}$.

This definition generalizes the concept of an SPG-family in [4] and [5]. We will introduce a new method of constructing strongly regular $(\alpha, \beta)$-geometries from strongly regular $(\alpha, \beta)$ families. At first, we will introduce the concept of a (right) coset geometry ${ }^{[5]}$.

Definition 2.2 Let $G$ be a group and let $J=\left\{S_{i} \mid i \in I\right\}$ be a set of subgroups of $G$. Then the right coset geometry $S(G, J)$ is the incidence geometry with as points, the elements of $G$, as lines the right cosets $S_{i} g, i \in I$ and $g \in G$, and for which the incidence relation is containment.

The proof of the following lemma can be found in [5] and is included here for completeness.
Lemma 2.3 Let $(G, J)$ be a strongly regular $(\alpha, \beta)$-family. Then
(1) $\left|S_{i} g \cap S_{j} h\right| \in\{0,1\}, i \neq j, \forall g, h \in G$;
(2) $G=\left\langle S_{0}, S_{1}, \ldots, S_{t}>\right\rangle$.

Proof (1) Suppose that $y, z \in S_{i} g \cap S_{j} h$. This implies the existence of elements $s_{i_{y}}, s_{i_{z}} \in S_{i}$ and $s_{j_{y}}, s_{j_{z}} \in S_{j}$, for which $y=s_{i_{y}} g=s_{j_{y}} h$ and $z=s_{i_{z}} g=s_{j_{z}} h$. Hence $y z^{-1}=s_{i_{y}} s_{i_{z}}^{-1}=s_{j_{y}} s_{j_{z}}^{-1}$, yielding $y z^{-1} \in S_{i} \cap S_{j}$, that is, $y=z$.
(2) At first we will prove $r<t+1$. Suppose $r=t+1$. Without loss of generality, assume that $s_{0} \in S_{0} \backslash\{i d\}$ and $\left(S_{1}, s_{0}\right)$ is a $\beta$-pair. If each element of $S_{1} s_{0}$ would belong to a certain $S_{j}$, then we would find for each $s_{1} \in S_{1}$ a $j \in I$ such that $s_{1} s_{0}=s_{j}$, with $s_{j} \in S_{j}$. From (1) it follows easily that distinct elements of $S_{1}$ determine distinct indices $j$, yielding $\beta \geq s+1$, a contradiction. Hence there exists a $g \in S_{1} s_{0}$ such that $g \in G \backslash \bigcup_{i \in I} S_{i}$. Clearly, $\left(S_{1}, g\right)$ is a $\beta$-pair, a contradiction.

Thus for each $g \in G \backslash \bigcup_{i \in I} S_{i}$, there exists a $S_{i} \in J$ for which $\left(S_{i}, g\right)$ is a $\beta$-pair. Then there exists a set $S_{j}(j \neq i)$ satisfying $S_{i} g \cap S_{j} \neq \emptyset$. Hence there exist $s_{i} \in S_{i}, s_{j} \in S_{j}$ with $s_{i} g=s_{j}$, and so $g=s_{i}^{-1} s_{j} \in\left\langle S_{0}, S_{1}, \ldots, S_{t}\right\rangle$.

Theorem 2.4 The right coset geometry $S(G, J)$ is a strongly regular $(\alpha, \beta)$-geometry with parameters $(s, t, \alpha, \beta, p, r)$.

Proof From Lemma 2.3 we see that $S(G, J)$ is a partial linear space of order $(s, t)$.
(1) Let $S_{i} h(i \in I)$ be any line of $S(G, J)$ and let $g$ be any point of $S(G, J)$ not contained in $S_{i} h$. Since $g \notin S_{i} h, h g^{-1} \notin S_{i}$. From the definition of strongly regular $(\alpha, \beta)$-families we have that there exists a unique set $\left\{j_{1}, j_{2}, \ldots, j_{\delta}\right\} \subset I$ with the property that $S_{i} h g^{-1} \cap S_{j_{k}} \neq \emptyset$, $\forall k \in\{1,2, \ldots, \delta\}, \delta=\alpha$ or $\beta$. Consequently, there exist elements $s_{i_{k}} \in S_{i}$ and $s_{j_{k}} \in S_{j}$, for $k \in\{1,2, \ldots, \delta\}$, such that $s_{i_{k}} h=s_{j_{k}} g, \delta=\alpha$ or $\beta$. Hence we have constructed $\delta$ points of $S_{i} h$ collinear with $g$ in $S(G, J)$. On the other hand it is clear that each point of $S_{i} h$ collinear with $g$ must be constructed as above. This implies that $S(G, J)$ is a $(\alpha, \beta)$-geometry.
(2) Suppose that $g$ and $h$ are two collinear points of $S(G, J)$. This is equivalent to $g h^{-1} \in$ $\bigcup_{i \in I} S_{i}$. Without loss of generality, assume that $g h^{-1} \in S_{0}$. From the definition of strongly regular $(\alpha, \beta)$-families it follows that there exists a unique set $\left\{j_{1}, j_{2}, \ldots, j_{p}\right\} \subset I$, with the property that $\left(S_{j_{k}}, g h^{-1}\right)$ is an $\alpha$-pair, $\forall k \in\{1,2, \ldots, p\}$. This yields $p$ lines of $S(G, J)$ on $g$ that are $\alpha$-lines with respect to $h$. On the other hand, each $\alpha$-line of $S(G, J)$ on $g$ with respect to $h$ must be constructed as above.
(3) Suppose that $g$ and $h$ are two non-collinear points of $S(G, J)$. This is equivalent to $g h^{-1} \notin \bigcup_{i \in I} S_{i}$. From the definition of strongly regular $(\alpha, \beta)$-families it follows that there exists a unique set $\left\{j_{1}, j_{2}, \ldots, j_{r}\right\} \subset I$, with the property that $\left(S_{j_{k}}, g h^{-1}\right)$ is an $\alpha$-pair, $\forall k \in$ $\{1,2, \ldots, r\}$. This yields $r$ lines of $S(G, J)$ on $g$ that are $\alpha$-lines with respect to $h$. On the other hand, each $\alpha$-line of $S(G, J)$ on $g$ with respect to $h$ must be constructed as above.

Thus we conclude that $S(G, J)$ is a strongly regular $(\alpha, \beta)$-geometry with parameters $(s, t, p, r)$.

A strongly regular $(\alpha, \beta)$-geometry constructed as above will be called an elation strongly regular $(\alpha, \beta)$-geometry. Whenever $G$ is abelian it will be called a translation strongly regular ( $\alpha, \beta$ )-geometry.

## 3. Translation strongly regular $(\alpha, \beta)$-geometries

In this section, we suppose that $(G, J)$ is a strongly regular $(\alpha, \beta)$-family with parameters $(s, t, \alpha, \beta, p, r)$ and $G$ is abelian. Let $K$ be the set of all endomorphisms $\sigma$ of $G$ satisfying $S_{i}^{\sigma} \subset S_{i}(\forall i \in I)$. From the fact that $G$ is abelian it follows that $(K,+, \cdot)$, with the usual addition and multiplication of endomorphisms, is a ring. This ring will be called the kernel of the translation strongly regular $(\alpha, \beta)$-geometry $S(G, J)$.

Similarly to the proofs of Theorems 2.4 and 2.5 , we may obtain the following results.
Lemma 3.1 If $t-r>\beta$, then $(K,+, \cdot)$ is a field.

Theorem 3.2 Each translation strongly regular $(\alpha, \beta)$-geometry with $t-r>\beta$ is isomorphic to a strongly regular $(\alpha, \beta)$-geometry constructed from a strongly regular $(\alpha, \beta)$-regulus $\mathcal{R}$ in $\mathrm{PG}(n, q)$, where $\mathrm{GF}(q)$ is a subfield of the kernel.

Let $\mathcal{P}=\mathrm{PG}(n, q)$ be a Desarguesian projective space of dimension at least 2 . Let $\Pi$ be a fixed hyperplane of $\mathcal{P}$ and $p$ be a fixed point of $\mathcal{P}$. Then, $\operatorname{Persp}(\Pi, p)$ is the set of all automorphisms of $\mathcal{P}$ fixing $\Pi$ point wise and fixing all hyperplanes containing $p$. It follows that $\operatorname{Persp}(\Pi, p)$ constitutes a group. The elements of $\operatorname{Persp}(\Pi, p)$ are called perspectivities with axis $\Pi$ and center $p$. More specifically the elements of $\operatorname{Persp}(\Pi, p)$ are called elations if $p \in \Pi$, and homologies if $p \notin \Pi$. Furthermore, it is clear that the set of all perspectivities of $\mathcal{P}$ with a given axis or with a given center forms a group. Finally notice that the set of all elations with a given axis $\Pi$ constitutes a group acting regularly on the point set of $\mathcal{P} \backslash \Pi$.

The following observation is important in the theory of Desarguesian projective spaces.
Lemma 3.3 ${ }^{[8]}$ Let $\operatorname{PG}(n, q)$ be a Desarguesian projective space of dimension at least 2. Then the group of all homologies with axis a fixed hyperplane $\Pi$ and with center a fixed point $p \notin \Pi$ is isomorphic to the multiplicative group of $\mathrm{GF}(q)$.

Suppose that $p_{1}, p_{2}$ and $p_{3}$ are two by two distinct points on a projective line $\mathrm{PG}(1, q)$, and that $p_{4}$ is a fourth point on that line. If one chooses homogeneous coordinates in such a way that the coordinates of $p_{1}, p_{2}$ and $p_{3}$, are $(0,1),(1,0)$ and $(1,1)$, respectively, then the cross ratio $\left(p_{1}, p_{2} ; p_{3}, p_{4}\right)$ of the 4 -tuple $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ is the affine coordinate of the point $p_{4}$ with respect to the chosen coordinates if $p_{4} \neq p_{1}$, and equals $\infty$ if $p_{4}=p_{1}$.

We have the following interesting property.
Lemma 3.4 ${ }^{[8]}$ Every linear automorphism of $\mathrm{PG}(1, q)$ preserves the cross ratio.
Now we may get the following result.
Theorem 3.5 Every strongly regular ( $\alpha, \beta$ )-geometry constructed from a strongly regular ( $\alpha, \beta$ )regulus $\mathcal{R}$ in $\mathrm{PG}(n, q)$ is isomorphic to a translation strongly regular $(\alpha, \beta)$-geometry $S(G, J)$, with $G$ the group of all elations of $\operatorname{PG}(n+1, q)$ with axis $\operatorname{PG}(n, q)$, and with the elements of $\mathrm{GF}(q)$ in the kernel.

Proof Let $S(R)$ be a strongly regular $(\alpha, \beta)$-geometry with parameters $(s, t, p, r)$ constructed from a strongly regular $(\alpha, \beta)$-regulus $R$ in $\Pi:=\mathrm{PG}(n, q)$. Let $G$ be the group of all elations of $\mathrm{PG}(n+1, q)$ with axis $\Pi$. Then $G$ is a regular group of automorphisms of $S(R)$. Choose a point $x$ of $S(R)$ and denote by $L_{0}, L_{1}, \ldots, L_{t}$ the lines of $S(R)$ through $x$. Define $S_{i}:=\left\{g \in G \mid L_{i}^{g}=L_{i}\right\}$ $(i \in I)$, which are subgroups of $G$ of order $s+1$. Clearly $S_{i} \cap S_{j}=\{i d\}$ for all $i \neq j$, with $i, j \in I$.
(1) Consider $S_{i}$ and $g \notin S_{i}(g \in G)$. Then the point $x^{g}$ is not on $L_{i}$, and so $x^{g}$ is collinear with $\delta$ distinct points $x^{h_{1}}, x^{h_{2}}, \ldots, x^{h_{\delta}}$ on the line $L_{i}$, with $\left\{h_{1}, h_{2}, \ldots, h_{\delta}\right\} \subset S_{i}$, where $\delta=\alpha$ or $\beta$. This implies that $x$ is collinear with $x^{h_{k} g^{-1}}$ in $S(R), k=1,2, \ldots, \delta$, with $\delta=\alpha$ or $\beta$. Hence there exists a $j_{k} \in I$ such that $h_{k} g^{-1} \in S_{j_{k}}$, that is, $S_{j_{k}} g \cap S_{i} \neq \emptyset, k=1,2, \ldots, \delta$, with $\delta=\alpha$ or $\beta$. Conversely, it is now obvious that every $S_{l}$ for $S_{l} g \cap S_{i} \neq \emptyset$ gives rise to a point $L_{i}$ collinear with $x^{g}$.
(2) Suppose that $g \in \bigcup_{i \in I} S_{i} \backslash\{i d\}$. Without loss of generality, assume that $g \in S_{0}$. Then $x$ is collinear with $x^{g}$ in $S(R)$. So there are $p$ distinct lines $L_{j_{1}}, L_{j_{2}}, \ldots, L_{j_{p}}$ such that $i\left(x^{g}, L_{j_{k}}\right)=$ $\alpha\left(j_{k} \neq 0\right), k=1,2, \ldots, p$. Similarly as in (1) we know that $\left(S_{j_{k}}, g\right)$ is an $\alpha$-pair, $k \in\{1,2, \ldots, p\}$. And for any $j \in\{0,1, \ldots, t\} \backslash\left\{j_{1}, j_{2}, \ldots, j_{p}, 0\right\}$, we have that $\left(S_{j}, g\right)$ is a $\beta$-pair.
(3) Suppose that $g \in G \backslash \bigcup_{i \in I} S_{i}$. Then $x$ is not collinear with $x^{g}$ in $S(R)$. So there are $r$ distinct lines $L_{j_{1}}, L_{j_{2}}, \ldots, L_{j_{r}}$ such that $i\left(x^{g}, L_{j_{k}}\right)=\alpha, k=1,2, \ldots, r$. Similarly to (1), we know that $\left(S_{j_{k}}, g\right)$ is an $\alpha$-pair, $k \in\{1,2, \ldots, r\}$. And for any line $j \in\{0,1, \ldots, t\} \backslash\left\{j_{1}, j_{2}, \ldots, j_{r}\right\}$, we have that $\left(S_{j}, g\right)$ is a $\beta$-pair.

Thus we conclude that $(G, J)$ is a strongly regular $(\alpha, \beta)$-family. It is now easily seen that $\phi: G \rightarrow S(R): g \rightarrow x^{g}$ determines an isomorphism between $S(G, J)$ and $S(R)$.

Let $x$ be the point of $P G(n+1, q) \backslash \Pi$ corresponding to $i d \in G$. From Lemma 3.3 it follows that the multiplicative group of $\mathrm{GF}(q)$ is isomorphic to the group of homologies of $\mathrm{PG}(n+1)$ with axis $\Pi$ and center $x$. We will show that it can be seen as a group of automorphism of $G$. We will identity the elements of $G$ with the corresponding points of $\mathrm{PG}(n+1, q) \backslash \Pi$. Let $\sigma \neq 1$ be a homology of $\operatorname{PG}(n+1, q)$ with axis $\Pi$ and center $x$ and let $g \neq h$ be elements of $G \backslash\{x\}$. First suppose that $x, g$ and $h$ are not collinear in $\mathrm{PG}(n+1, q)$. Define $g_{\infty}:=\langle x, g\rangle \cap \Pi$, $h_{\infty}:=\langle x, h\rangle \cap \Pi$ and $l_{\infty}:=\langle g, h\rangle \cap \Pi$. Then the triangle with vertices $g, g^{\sigma}, h_{\infty}$ and the triangle with vertices $h, h^{\sigma}, g_{\infty}$ are perspective triangles with center $l_{\infty}$. From Desargues Theorem it follows that $x, g h$ and $g^{\sigma} h^{\sigma}$ are collinear, which implies that $g^{\sigma} h^{\sigma}$ and $(g h)^{\sigma}$ must coincide, that is, $g^{\sigma} h^{\sigma}=(g h)^{\sigma}$. The cross ratio $\left(x, g_{\infty} ; g, g^{-1}\right)=-1$. From Lemma 3.4 it follows that $\left(x^{\sigma}, g_{\infty}^{\sigma} ; g^{\sigma},\left(g^{-1}\right)^{\sigma}\right)=\left(x, g_{\infty} ; g, g^{-1}\right)=-1$, implying $\left(g^{-1}\right)^{\sigma}=\left(g^{\sigma}\right)^{-1}$. Finally suppose that $x$, $g$ and $h$ are collinear and that $h \neq g^{-1}$. Choose any $l$ not on $\langle x, g\rangle$. Then $x, g l$ and $l^{-1} h$ are not collinear in $\operatorname{PG}(n+1, q)$ since otherwise $g l l^{-1} h=g h$ would be a point of $\langle x, g l\rangle$, implying that $h=g^{-1}$ as $\langle x, g h\rangle \cap\langle x, g l\rangle=\{x\}$. Hence $(g h)^{\sigma}=\left(g l l^{-1} h\right)^{\sigma}=(g l)^{\sigma}\left(l^{-1} h\right)^{\sigma}=g^{\sigma} l^{\sigma}\left(l^{-1}\right)^{\sigma} h^{\sigma}=$ $g^{\sigma} h^{\sigma}$. It is now clear that the group of homologies of $\operatorname{PG}(n+1)$ with axis $\Pi$ and center $x$ can indeed be seen as a group of automorphisms of $G$.

For any fixed $S_{i}$, let $g$ be an element in $S_{i}$ and $\sigma$ be an element in $\operatorname{GF}(q)$. Then we have $L_{i}^{g}=L_{i}$. Hence for any $h$ on $L_{i}$, we know that $g, h g$ are on the line $L_{i}$. On the other hand, $x, g$ and $g^{\sigma}$ are collinear in $S(R)$. So $g^{\sigma}$ must be on the line $L_{i}$. Now it is easily seen that $h g^{\sigma} \in L_{i}$. Thus $L_{i}^{g^{\sigma}}=L_{i}$, that is, $g^{\sigma} \in S_{i}$. Thus we conclude that the elements of GF $(q)$ are in the kernel of the corresponding translation strongly regular $(\alpha, \beta)$-geometry. When $t-r>\beta, \operatorname{GF}(q)$ is a subfield of the kernel.

Hence we have shown that whenever $t-r>\beta$, the theory of translation strongly regular $(\alpha, \beta)$-geometries is equivalent to the theory of strongly regular $(\alpha, \beta)$-reguli. Furthermore it follows that in this case $K$ is the largest field such that there exists a strongly regular $(\alpha, \beta)$ reguli $R$ in $\mathrm{PG}(n, K)$ with the property that $S(G, J) \cong S(R)$.

## References

[1] BOSE R C. Strongly regular graphs, partial geometries and partially balanced designs [J]. Pacific J. Math., 1963, 13: 389-419.
[2] DEBROEY I, THAS J A. On semipartial geometries [J]. J. Combin. Theory Ser. A, 1978, 25(3): 242-250.
[3] DE CLERCK F, DELANOTE M. On ( $0, \alpha$ )-geometries and dual semipartial geometries fully embedded in an affine space [J]. Des. Codes Cryptogr., 2004, 32(1-3): 103-110.
[4] DE CLERCK F, GEVAERT H, THAS J A. Translation partial geometries [J]. Ann. Discrete Math., 1988, 37: 117-135.
[5] DE WINTER S. Elation and translation semipartial geometries [J]. J. Combin. Theory Ser. A, 2004, 108(2): 313-330.
[6] DE WINTER S, THAS J A. SPG-reguli satisfying the polar property and a new semipartial geometry [J]. Des. Codes Cryptogr., 2004, 32(1-3): 153-166.
[7] HAMILTON N, MATHON R. Strongly regular ( $\alpha, \beta$ )-geometries [J]. J. Combin. Theory Ser. A, 2001, 95(2): 234-250.
[8] HIRSCHFELD J W P. Projective Geometries over Finite Fields [M]. Oxford University Press, New York, 1998.
[9] LUYCKX D. m-systems of polar spaces and SPG reguli [J]. Bull. Belg. Math. Soc. Simon Stevin, 2002, 9(2): 177-183.
[10] WILBRINK H A, BROUWER A E. A characterization of two classes of semipartial geometries by their parameters [J]. Simon Stevin, 1984, 58(4): 273-288.

