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Abstract In this paper, we introduce the concept of a strongly regular (a, 3)-family. It gener-
alizes the concept of an SPG-family in [4] and [5]. We provide a method of constructing strongly
regular (a, 3)-geometries from strongly regular («, 3)-families. Furthermore, we prove that each
strongly regular (o, 3)-geometry constructed from a strongly regular («, 3)-regulus translation
is isomorphic to a translation strongly regular («, 3)-geometry; while ¢ — r > (3, the converse is
also true.
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1. Introduction

A partial linear space of order (s,t) is a connected incidence structure S = (P, £,I), with P
a finite non-empty set of elements called points, £ a family of subsets of P called lines and I an
incidence relation satisfying the following axioms.

(1) Any two distinct points are incident with at most one line;

(2) Each line is incident with exactly s + 1 points (s > 1);

(3) Each point is incident with exactly ¢ + 1 lines (¢ > 1).

For a partial linear space S = (P, L, I), the graph I with vertex set P such that two distinct
vertices are adjacent if they are collinear in S is called the point graph of S.

An anti-flag in a partial linear space S is a pair (p, L) with p € P and L € £ such that p is
not incident with L. For a given anti-flag (p, L) of S, the incidence number of (p, L), denoted by
i(p, L), is the number of points collinear with p and incident with L. A (finite) («, 3)-geometry
of order (s,t) is a partial linear space S = (P, L,I) of order (s,t) for some s and ¢, such that for
any anti-flag (p, L) of S we have i(p, L) = « or i(p, L) = /3, and each of these two cases occurs.
For an anti-flag (p, L), L is called an a-line with respect to p if i(p, L) = «, similarly for a G-line.

An (a, 8)-geometry is strongly regular if there exist integers p and r such that the following

conditions are satisfied.
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(1) If points x and y are collinear, then there exist p lines on z that are a-lines with respect
to y;

(2) If points « and y are not collinear, then there exist r lines on = that are o-lines with
respect to y.

It is known that if @ # (3, the point graph of a strongly regular (a, 3)-geometry is strongly
regular!7.

If i(p, L) = « for every anti-flag (p, L) of S of order (s,t), then S is called a partial geometry
of order (s,t) and denoted by pg(s,t, ). It is clear that the point graph of a partial geometry
is strongly regular. The point graph of a (0, «)-geometry is not necessarily strongly regular.
The (0, a)-geometry of order (s,t) having a strongly regular point graph is called a semipartial
geometry of order (s, t) and denoted by spg(s, t, o, 1), Here p is the number of vertices adjacent
to two non-adjacent vertices.

Let R = {PG(O)(m,q),PG(l)(m,q),...,PG(t)(m,q)}, t > 1, be t + 1 mutually disjoint
PG(m,q) in a projective space PG(n,q), which generates PG(n,q). Now embed PG(n,q)
in PG(n+1,q) as a hyperplane II at infinity. We define the following incidence structure
S(R) = (P,L,I). The point set P consists of all points of PG(n +1,¢) \ II. The line set £
is the set of all (m + 1)-dimensional subspaces of PG(n + 1, ¢q) intersecting II in an element of
R and not contained in II. The incidence relation I is the incidence relation inherited from
PG(n+1,q). The geometry S(R) is called the generalized linear representation of R. In the
case m = 0 the geometry is called the linear representation of R. Suppose that H is a point
set in PG(n,q). Then the linear representation of H is usually denoted by T (H). For more
properties, we refer to [3].

A strongly regular («, 3)-regulus is a collection R of m-dimensional subspaces of PG(n, q),
|R| >1, satisfying

(1) Z,NXE; =0, for every ¥;,3;, € R, X; # X;.

(2) If an (m+1)-dimensional subspace contains some ¥; € R, then it has a point in common
with a or 3 subspaces of R\X;. Such an (m + 1)-dimensional subspace that meets « elements
of R\Y; is said to be an a-secant to R at X;, similarly for a (-secant.

(3) If a point of PG(n, ¢) is contained in an element ¥ of R, then it is contained in a constant
number p of a-secant (m + 1)-dimensional subspaces on elements of R\X.

(4) If a point of PG(n, q) is contained in no element of R, then it is contained in a constant
number r of a-secant (m + 1)-dimensional subspaces of R.

In [7] it was proved that a generalized linear representation S(R) constructed from a strongly
regular (a, §)-regulus R is a strongly regular («, 3)-geometry.

In [4] and [5] De Clerck and De Winter et al. introduced a theory of elation and trans-
lation semipartial geometries and provided a group theoretical characterization of semipartial
geometries constructed from SPG-reguli. In this paper, we will introduce the concept of strongly
regular (a, §)-families, which generalizes the concept of SPG-families in [4] and [5]. We will
construct elation and translation strongly regular («, 3)-geometries from strongly regular («, 3)-

families. Furthermore, we will show that when t —r > [, the theory of translation strongly
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regular («, §)-geometries is equivalent to the theory of strongly regular (o, 3)-reguli.

2. Strongly regular (o, §)-families
In this paper, let T denote the set {0,1,2,...,t}, ¢t > 1.

Definition 2.1 Let G be a finite group. Except in a few mentioned cases we will use a
multiplicative notation for G. Suppose that J = {So,S1,...,5t} is aset of t+1 (t > 1)
subgroups of order s+ 1 of G (s > 1) with S; N S; = {id} whenever i # j, for i,j € I. Then the
pair (G, J) is called a geometric family. We say the pair (G, J) is a strongly regular («, 3)-family
with parameters (s, t,«, 3, p,r) if the following conditions are satisfied.

(1) There exist two integers o and 3 (0 < oo < § < s+ 1) such that for each S; (i € I)
and each g ¢ S;, there either exists a unique set {j1,j2,...,ja} C I with the property that
SigNSj, #0,V ke {1,2,...,a}, or exists a unique set {ji1, jo,...,js} C I with the property
that S;g N S, # 0, Vk € {1,2,...,3}, and both of these two cases occur. The pair (S;,g) is
called an a-pair in the former case, while (S;, g) is called a [3-pair in the latter case.

(2) For each g € J;¢;
{j1, 42, .., jp} with the property that (S;,,g) is an a-pair, Vk € {1,2,...,p}.

(3) For each g € G\ ;¢
{j1, 42, .., jr} with the property that (S;,,g) is an a-pair, Vk € {1,2,...,r}.

Si\{id}, there exists an integer p such that there exists a unique set
S;, there exists an integer r such that there exists a unique set

This definition generalizes the concept of an SPG-family in [4] and [5]. We will introduce
a new method of constructing strongly regular («, 3)-geometries from strongly regular (o, (3)-

families. At first, we will introduce the concept of a (right) coset geometry!®l.

Definition 2.2 Let G be a group and let J = {S;|i € I} be a set of subgroups of G. Then
the right coset geometry S(G, J) is the incidence geometry with as points, the elements of G, as
lines the right cosets S;g, i € I and g € G, and for which the incidence relation is containment.

The proof of the following lemma can be found in [5] and is included here for completeness.

Lemma 2.3 Let (G, J) be a strongly regular («, 3)-family. Then
(1) |Sign Sjh| €{0,1}, i # j, Vg, h € G;
(2) G = <S()7Sla' "7St >>

Proof (1) Suppose that y, z € S;gNS;h. This implies the existence of elements s; ,s;, € S; and
sj,,84, € Sj, for which y = s;,g = s;, h and 2 = s;,9 = 5;,h. Hence yz~l = siyszzl = sjysj:l,
yielding yz=1 € S; N S;, that is, y = 2.

(2) At first we will prove r < t + 1. Suppose r =t + 1. Without loss of generality, assume
that sg € Sp\{id} and (S1,sg) is a O-pair. If each element of Sjsy would belong to a certain
S;, then we would find for each s; € S1 a j € I such that s;s9 = s;, with s; € S;. From (1)
it follows easily that distinct elements of S; determine distinct indices j, yielding 0 > s + 1,
a contradiction. Hence there exists a g € Sysg such that g € G\ J,; Si. Clearly, (S1,g) is a
[-pair, a contradiction.
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Thus for each g € G\ |J;¢; Si, there exists a S; € J for which (S;, g) is a #-pair. Then there
exists a set S; (j # 1) satisfying S;g N S; # (). Hence there exist s; € S;,s; € S; with s;9 = sj,
and so g = s; 's; € (Sp,S1,...,S). O

Theorem 2.4 The right coset geometry S(G,J) is a strongly regular («, 3)-geometry with

parameters (s,t,a, 3,p,7).

Proof From Lemma 2.3 we see that S(G, J) is a partial linear space of order (s,t).

(1) Let S;h (i € I) be any line of S(G, J) and let g be any point of S(G, J) not contained
in S;h. Since g € S;h, hg™' ¢ S;. From the definition of strongly regular (o, 3)-families we
have that there exists a unique set {41, jo,...,js} C I with the property that S;hg=t N S;, # 0,
Vke{l,2,...,6}, d = o« or . Consequently, there exist elements s;, € S; and s;, € S;, for
ke{l1,2,...,6}, such that s;, h = s;,9, 6 = a or . Hence we have constructed J points of S;h
collinear with g in S(G, J). On the other hand it is clear that each point of S;h collinear with g
must be constructed as above. This implies that S(G, J) is a (o, 3)-geometry.

(2) Suppose that g and h are two collinear points of S(G, J). This is equivalent to gh~! €
U,es Si- Without loss of generality, assume that gh™! € Sp. From the definition of strongly
regular (o, §)-families it follows that there exists a unique set {j1,Jj2,...,7p} C I, with the
property that (Sj,,gh™!) is an a-pair, V k € {1,2,...,p}. This yields p lines of S(G,J) on g
that are a-lines with respect to h. On the other hand, each «-line of S(G, J) on g with respect
to h must be constructed as above.

(3) Suppose that g and h are two non-collinear points of S(G,J). This is equivalent to
gh™ & Uicr Si- From the definition of strongly regular (o, 3)-families it follows that there
exists a unique set {j1,j2,...,4-} C I, with the property that (Sj,,gh™!) is an a-pair, V k €
{1,2,...,r}. This yields r lines of S(G, J) on g that are a-lines with respect to h. On the other
hand, each a-line of S(G, J) on g with respect to h must be constructed as above.

Thus we conclude that S(G, J) is a strongly regular(«, 3)-geometry with parameters (s, t, p, r).

O

A strongly regular (o, 3)-geometry constructed as above will be called an elation strongly

regular (o, 3)-geometry. Whenever G is abelian it will be called a translation strongly regular

(o, B)-geometry.

3. Translation strongly regular («a, 3)-geometries

In this section, we suppose that (G,J) is a strongly regular (o, §)-family with parameters
(s,t,a,B,p,r) and G is abelian. Let K be the set of all endomorphisms o of G satisfying
S7 C S; (Vi € I). From the fact that G is abelian it follows that (K, +,-), with the usual
addition and multiplication of endomorphisms, is a ring. This ring will be called the kernel of
the translation strongly regular (a, 5)-geometry S(G, J).

Similarly to the proofs of Theorems 2.4 and 2.5, we may obtain the following results.

Lemma 3.1 Ift—r > (8, then (K, +,-) is a field.
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Theorem 3.2 FEach translation strongly regular («, 3)-geometry with t — r > (3 is isomorphic
to a strongly regular (a, §)-geometry constructed from a strongly regular («, 3)-regulus R in
PG(n, q), where GF(q) is a subfield of the kernel.

Let P = PG(n, ¢) be a Desarguesian projective space of dimension at least 2. Let I be a fixed
hyperplane of P and p be a fixed point of P. Then, Persp(Il, p) is the set of all automorphisms of P
fixing IT point wise and fixing all hyperplanes containing p. It follows that Persp(II, p) constitutes
a group. The elements of Persp(Il, p) are called perspectivities with axis IT and center p. More
specifically the elements of Persp(Il, p) are called elations if p € II, and homologies if p & II.
Furthermore, it is clear that the set of all perspectivities of P with a given axis or with a given
center forms a group. Finally notice that the set of all elations with a given axis II constitutes
a group acting regularly on the point set of P\IL.

The following observation is important in the theory of Desarguesian projective spaces.

Lemma 3.38 Let PG(n,q) be a Desarguesian projective space of dimension at least 2. Then
the group of all homologies with axis a fixed hyperplane II and with center a fixed point p & 11
is isomorphic to the multiplicative group of GF(q).

Suppose that p1, ps and ps are two by two distinct points on a projective line PG(1, ¢), and
that p4 is a fourth point on that line. If one chooses homogeneous coordinates in such a way that
the coordinates of p1, p2 and ps, are (0,1), (1,0) and (1, 1), respectively, then the cross ratio
(p1, p2; p3,pa) of the 4-tuple (p1,p2, p3,p4) is the affine coordinate of the point ps with respect
to the chosen coordinates if ps # p1, and equals oo if py = p1.

We have the following interesting property.

(8]

Lemma 3.4%) Every linear automorphism of PG(1, q) preserves the cross ratio.

Now we may get the following result.

Theorem 3.5 Every strongly regular («, 3)-geometry constructed from a strongly regular («, (3)-
regulus R in PG(n,q) is isomorphic to a translation strongly regular (a, 3)-geometry S(G,J),
with G the group of all elations of PG(n + 1,q) with axis PG(n,q), and with the elements of
GF(q) in the kernel.

Proof Let S(R) be a strongly regular («, 8)-geometry with parameters (s,¢,p,r) constructed
from a strongly regular («, §)-regulus R in II := PG(n, ¢). Let G be the group of all elations of
PG(n+1, q) with axis II. Then G is a regular group of automorphisms of S(R). Choose a point x
of S(R) and denote by Lo, L1, ..., L; the lines of S(R) through z. Define S; := {g € G|LY = L;}
(¢ € I), which are subgroups of G of order s+ 1. Clearly S;NS; = {id} for all i # j, with i, j € I.

(1) Consider S; and g € S; (g9 € G). Then the point 29 is not on L;, and so z9 is collinear
with § distinct points 2"t 22, ... 2" on the line L;, with {hy, hs,..., hs} C S;, where § = a or
(. This implies that z is collinear with zhee™ in S(R), k=1,2,...,d, with 6 = a or 3. Hence
there exists a ji, € I such that hyg=' € Sj,, that is, S;,gNS; #0, k=1,2,...,5, with § = a or
3. Conversely, it is now obvious that every S; for S;g N'S; # () gives rise to a point L; collinear

with 29.
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(2) Suppose that g € J,¢;

is collinear with x9 in S(R). So there are p distinct lines Lj,, Lj,, ..., L;, such that i(x9, L;, ) =

Si\{id}. Without loss of generality, assume that g € Sy. Then x

a(r #0),k=1,2,...,p. Similarly as in (1) we know that (S}, , ¢) is an a-pair, k € {1,2,...,p}.
And for any j € {0,1,...,t}\{Jj1,72,...,7p, 0}, we have that (S}, g) is a G-pair.

(3) Suppose that g € G\ |J,;c; Si- Then x is not collinear with x9 in S(R). So there are r
distinct lines Lj,, Lj,, ..., L;, such that i(z?, L;, ) =, k =1,2,...,r. Similarly to (1), we know
that (Sj,,9) is an a-pair, k € {1,2,...,7}. And for any line j € {0,1,...,t}\{j1,j2,-..jr}, we
have that (S}, ¢) is a B-pair.

Thus we conclude that (G, J) is a strongly regular (o, 8)-family. It is now easily seen that
¢:G— S(R):g— z9 determines an isomorphism between S(G, J) and S(R).

Let = be the point of PG(n + 1,¢)\II corresponding to id € G. From Lemma 3.3 it follows
that the multiplicative group of GF(q) is isomorphic to the group of homologies of PG(n + 1)
with axis II and center z. We will show that it can be seen as a group of automorphism of
G. We will identity the elements of G with the corresponding points of PG(n + 1,¢)\II. Let
o # 1 be a homology of PG(n + 1,q) with axis IT and center x and let g # h be elements of
G\{z}. First suppose that x, g and h are not collinear in PG(n + 1, ¢). Define g := (z,g) N1I,
hoo := {x,h) NII and Il := (g, h) NTI. Then the triangle with vertices g, g7, hoo and the triangle
with vertices h, h?, g are perspective triangles with center /... From Desargues Theorem it
follows that z, gh and ¢g°h? are collinear, which implies that g°h° and (gh)® must coincide,
that is, g°h® = (gh)°. The cross ratio (,ge0; 9,9~ ') = —1. From Lemma 3.4 it follows that
(27,9%:97,(971)7) = (¢, 9003 9,97 ") = —1, implying (¢g7")7 = (¢7)~'. Finally suppose that z,
g and h are collinear and that h # g~!. Choose any [ not on (z, g). Then x, gl and [~*h are not
collinear in PG(n + 1, ¢) since otherwise gll=*h = gh would be a point of (z, gl), implying that
h =g~ ! as (x,gh) N (z,gl) = {x}. Hence (gh)° = (gll= h)° = (gl)° (17 h)° = g°l°(I"1)7h° =
g% h?. It is now clear that the group of homologies of PG(n + 1) with axis II and center x can
indeed be seen as a group of automorphisms of G.

For any fixed S;, let g be an element in S; and o be an element in GF(g). Then we have
LY = L;. Hence for any h on L;, we know that g, hg are on the line L;. On the other hand, z, g
and g7 are collinear in S(R). So ¢g° must be on the line L;. Now it is easily seen that hg? € L;.
Thus ng = L;, that is, g° € S;. Thus we conclude that the elements of GF(q) are in the kernel
of the corresponding translation strongly regular («, 3)-geometry. When ¢ —r > 3, GF(q) is a
subfield of the kernel. O

Hence we have shown that whenever ¢ — r > 3, the theory of translation strongly regular
(o, B)-geometries is equivalent to the theory of strongly regular («, 3)-reguli. Furthermore it
follows that in this case K is the largest field such that there exists a strongly regular («, §)-
reguli R in PG(n, K) with the property that S(G, J) = S(R).
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