Journal of Mathematical Research & Exposition Nov., 2008, Vol. 28, No. 4, pp. 928–934 DOI:10.3770/j.issn:1000-341X.2008.04.024 Http://jmre.dlut.edu.cn

Strongly Regular (α, β) -Families and Translation Strongly Regular (α, β) -Geometries

LI Xiu Li

(School of Mathematics and Physics, Qingdao University of Science and Technology, Shandong 266042, China) (E-mail: lixiuli2004@tom.com)

Abstract In this paper, we introduce the concept of a strongly regular (α, β) -family. It generalizes the concept of an SPG-family in [4] and [5]. We provide a method of constructing strongly regular (α, β) -geometries from strongly regular (α, β) -families. Furthermore, we prove that each strongly regular (α, β) -geometry constructed from a strongly regular (α, β) -regulus translation is isomorphic to a translation strongly regular (α, β) -geometry; while $t - r > \beta$, the converse is also true.

Keywords projective space; strongly regular (α, β) -regulus; strongly regular (α, β) -geometry.

Document code A MR(2000) Subject Classification 05B25; 51D20 Chinese Library Classification 0157.3

1. Introduction

A partial linear space of order (s, t) is a connected incidence structure $S = (\mathcal{P}, \mathcal{L}, \mathbf{I})$, with \mathcal{P} a finite non-empty set of elements called points, \mathcal{L} a family of subsets of \mathcal{P} called lines and \mathbf{I} an incidence relation satisfying the following axioms.

- (1) Any two distinct points are incident with at most one line;
- (2) Each line is incident with exactly s + 1 points $(s \ge 1)$;
- (3) Each point is incident with exactly t + 1 lines $(t \ge 1)$.

For a partial linear space $S = (\mathcal{P}, \mathcal{L}, \mathbf{I})$, the graph Γ with vertex set \mathcal{P} such that two distinct vertices are adjacent if they are collinear in S is called the point graph of S.

An anti-flag in a partial linear space S is a pair (p, L) with $p \in \mathcal{P}$ and $L \in \mathcal{L}$ such that p is not incident with L. For a given anti-flag (p, L) of S, the incidence number of (p, L), denoted by i(p, L), is the number of points collinear with p and incident with L. A (finite) (α, β) -geometry of order (s, t) is a partial linear space $S = (\mathcal{P}, \mathcal{L}, \mathbf{I})$ of order (s, t) for some s and t, such that for any anti-flag (p, L) of S we have $i(p, L) = \alpha$ or $i(p, L) = \beta$, and each of these two cases occurs. For an anti-flag (p, L), L is called an α -line with respect to p if $i(p, L) = \alpha$, similarly for a β -line.

An (α, β) -geometry is *strongly regular* if there exist integers p and r such that the following conditions are satisfied.

Received date: 2006-06-22; Accepted date: 2008-04-18

Foundation item: the Scientific Research Start-Up Foundation of Qingdao University of Science and Technology in China. (No. 0022327).

(1) If points x and y are collinear, then there exist p lines on x that are α -lines with respect to y;

(2) If points x and y are not collinear, then there exist r lines on x that are α -lines with respect to y.

It is known that if $\alpha \neq \beta$, the point graph of a strongly regular (α, β) -geometry is strongly regular^[7].

If $i(p, L) = \alpha$ for every anti-flag (p, L) of S of order (s, t), then S is called a *partial geometry* of order (s, t) and denoted by $pg(s, t, \alpha)^{[1]}$. It is clear that the point graph of a partial geometry is strongly regular. The point graph of a $(0, \alpha)$ -geometry is not necessarily strongly regular. The $(0, \alpha)$ -geometry of order (s, t) having a strongly regular point graph is called a semipartial geometry of order (s, t) and denoted by $spg(s, t, \alpha, \mu)^{[2]}$. Here μ is the number of vertices adjacent to two non-adjacent vertices.

Let $\mathcal{R} = \{\mathrm{PG}^{(0)}(m,q), \mathrm{PG}^{(1)}(m,q), \dots, \mathrm{PG}^{(t)}(m,q)\}, t \geq 1$, be t + 1 mutually disjoint $\mathrm{PG}(m,q)$ in a projective space $\mathrm{PG}(n,q)$, which generates $\mathrm{PG}(n,q)$. Now embed $\mathrm{PG}(n,q)$ in $\mathrm{PG}(n+1,q)$ as a hyperplane Π at infinity. We define the following incidence structure $\mathcal{S}(\mathcal{R}) = (\mathcal{P}, \mathcal{L}, \mathbf{I})$. The point set \mathcal{P} consists of all points of $\mathrm{PG}(n+1,q) \setminus \Pi$. The line set \mathcal{L} is the set of all (m+1)-dimensional subspaces of $\mathrm{PG}(n+1,q)$ intersecting Π in an element of \mathcal{R} and not contained in Π . The incidence relation \mathbf{I} is the incidence relation inherited from $\mathrm{PG}(n+1,q)$. The geometry $\mathbf{S}(\mathcal{R})$ is called the generalized linear representation of \mathcal{R} . In the case m = 0 the geometry is called the linear representation of \mathcal{R} . Suppose that \mathcal{H} is a point set in $\mathrm{PG}(n,q)$. Then the linear representation of \mathcal{H} is usually denoted by $\mathrm{T}_n^*(\mathcal{H})$. For more properties, we refer to [3].

A strongly regular (α, β) -regulus is a collection \mathcal{R} of *m*-dimensional subspaces of PG(n, q), $|\mathcal{R}| > 1$, satisfying

(1) $\Sigma_i \cap \Sigma_j = \emptyset$, for every $\Sigma_i, \Sigma_j \in \mathcal{R}, \Sigma_i \neq \Sigma_j$.

(2) If an (m+1)-dimensional subspace contains some $\Sigma_i \in \mathcal{R}$, then it has a point in common with α or β subspaces of $\mathcal{R} \setminus \Sigma_i$. Such an (m+1)-dimensional subspace that meets α elements of $\mathcal{R} \setminus \Sigma_i$ is said to be an α -secant to \mathcal{R} at Σ_i , similarly for a β -secant.

(3) If a point of PG(n,q) is contained in an element Σ of \mathcal{R} , then it is contained in a constant number p of α -secant (m + 1)-dimensional subspaces on elements of $\mathcal{R} \setminus \Sigma$.

(4) If a point of PG(n, q) is contained in no element of \mathcal{R} , then it is contained in a constant number r of α -secant (m + 1)-dimensional subspaces of \mathcal{R} .

In [7] it was proved that a generalized linear representation $S(\mathcal{R})$ constructed from a strongly regular (α, β) -regulus R is a strongly regular (α, β) -geometry.

In [4] and [5] De Clerck and De Winter et al. introduced a theory of elation and translation semipartial geometries and provided a group theoretical characterization of semipartial geometries constructed from SPG-reguli. In this paper, we will introduce the concept of strongly regular (α, β)-families, which generalizes the concept of SPG-families in [4] and [5]. We will construct elation and translation strongly regular (α, β)-geometries from strongly regular (α, β)families. Furthermore, we will show that when $t - r > \beta$, the theory of translation strongly regular (α, β) -geometries is equivalent to the theory of strongly regular (α, β) -reguli.

2. Strongly regular (α, β) -families

In this paper, let I denote the set $\{0, 1, 2, \dots, t\}, t \ge 1$.

Definition 2.1 Let G be a finite group. Except in a few mentioned cases we will use a multiplicative notation for G. Suppose that $J = \{S_0, S_1, \ldots, S_t\}$ is a set of t + 1 ($t \ge 1$) subgroups of order s + 1 of G ($s \ge 1$) with $S_i \cap S_j = \{id\}$ whenever $i \ne j$, for $i, j \in I$. Then the pair (G, J) is called a geometric family. We say the pair (G, J) is a strongly regular (α, β) -family with parameters $(s, t, \alpha, \beta, p, r)$ if the following conditions are satisfied.

(1) There exist two integers α and β ($0 \leq \alpha < \beta < s + 1$) such that for each S_i ($i \in I$) and each $g \notin S_i$, there either exists a unique set $\{j_1, j_2, \ldots, j_{\alpha}\} \subset I$ with the property that $S_{ig} \cap S_{j_k} \neq \emptyset, \forall k \in \{1, 2, \ldots, \alpha\}$, or exists a unique set $\{j_1, j_2, \ldots, j_{\beta}\} \subset I$ with the property that $S_{ig} \cap S_{j_k} \neq \emptyset, \forall k \in \{1, 2, \ldots, \beta\}$, and both of these two cases occur. The pair (S_i, g) is called an α -pair in the former case, while (S_i, g) is called a β -pair in the latter case.

(2) For each $g \in \bigcup_{i \in I} S_i \setminus \{id\}$, there exists an integer p such that there exists a unique set $\{j_1, j_2, \ldots, j_p\}$ with the property that (S_{j_k}, g) is an α -pair, $\forall k \in \{1, 2, \ldots, p\}$.

(3) For each $g \in G \setminus \bigcup_{i \in I} S_i$, there exists an integer r such that there exists a unique set $\{j_1, j_2, \ldots, j_r\}$ with the property that (S_{j_k}, g) is an α -pair, $\forall k \in \{1, 2, \ldots, r\}$.

This definition generalizes the concept of an SPG-family in [4] and [5]. We will introduce a new method of constructing strongly regular (α, β) -geometries from strongly regular (α, β) families. At first, we will introduce the concept of a (right) coset geometry^[5].

Definition 2.2 Let G be a group and let $J = \{S_i | i \in I\}$ be a set of subgroups of G. Then the right coset geometry S(G, J) is the incidence geometry with as points, the elements of G, as lines the right cosets S_ig , $i \in I$ and $g \in G$, and for which the incidence relation is containment.

The proof of the following lemma can be found in [5] and is included here for completeness.

Lemma 2.3 Let (G, J) be a strongly regular (α, β) -family. Then

- (1) $|S_i g \cap S_j h| \in \{0, 1\}, i \neq j, \forall g, h \in G;$
- (2) $G = \langle S_0, S_1, \dots, S_t \rangle$.

Proof (1) Suppose that $y, z \in S_i g \cap S_j h$. This implies the existence of elements $s_{i_y}, s_{i_z} \in S_i$ and $s_{j_y}, s_{j_z} \in S_j$, for which $y = s_{i_y}g = s_{j_y}h$ and $z = s_{i_z}g = s_{j_z}h$. Hence $yz^{-1} = s_{i_y}s_{i_z}^{-1} = s_{j_y}s_{j_z}^{-1}$, yielding $yz^{-1} \in S_i \cap S_j$, that is, y = z.

(2) At first we will prove r < t + 1. Suppose r = t + 1. Without loss of generality, assume that $s_0 \in S_0 \setminus \{id\}$ and (S_1, s_0) is a β -pair. If each element of $S_1 s_0$ would belong to a certain S_j , then we would find for each $s_1 \in S_1$ a $j \in I$ such that $s_1 s_0 = s_j$, with $s_j \in S_j$. From (1) it follows easily that distinct elements of S_1 determine distinct indices j, yielding $\beta \geq s + 1$, a contradiction. Hence there exists a $g \in S_1 s_0$ such that $g \in G \setminus \bigcup_{i \in I} S_i$. Clearly, (S_1, g) is a β -pair, a contradiction.

Thus for each $g \in G \setminus \bigcup_{i \in I} S_i$, there exists a $S_i \in J$ for which (S_i, g) is a β -pair. Then there exists a set S_j $(j \neq i)$ satisfying $S_i g \cap S_j \neq \emptyset$. Hence there exist $s_i \in S_i, s_j \in S_j$ with $s_i g = s_j$, and so $g = s_i^{-1} s_j \in \langle S_0, S_1, \ldots, S_t \rangle$.

Theorem 2.4 The right coset geometry S(G, J) is a strongly regular (α, β) -geometry with parameters $(s, t, \alpha, \beta, p, r)$.

Proof From Lemma 2.3 we see that S(G, J) is a partial linear space of order (s, t).

(1) Let S_ih $(i \in I)$ be any line of S(G, J) and let g be any point of S(G, J) not contained in S_ih . Since $g \notin S_ih$, $hg^{-1} \notin S_i$. From the definition of strongly regular (α, β) -families we have that there exists a unique set $\{j_1, j_2, \ldots, j_\delta\} \subset I$ with the property that $S_ihg^{-1} \cap S_{j_k} \neq \emptyset$, $\forall k \in \{1, 2, \ldots, \delta\}, \delta = \alpha$ or β . Consequently, there exist elements $s_{i_k} \in S_i$ and $s_{j_k} \in S_j$, for $k \in \{1, 2, \ldots, \delta\}$, such that $s_{i_k}h = s_{j_k}g, \delta = \alpha$ or β . Hence we have constructed δ points of S_ih collinear with g in S(G, J). On the other hand it is clear that each point of S_ih collinear with gmust be constructed as above. This implies that S(G, J) is a (α, β) -geometry.

(2) Suppose that g and h are two collinear points of S(G, J). This is equivalent to $gh^{-1} \in \bigcup_{i \in I} S_i$. Without loss of generality, assume that $gh^{-1} \in S_0$. From the definition of strongly regular (α, β) -families it follows that there exists a unique set $\{j_1, j_2, \ldots, j_p\} \subset I$, with the property that (S_{j_k}, gh^{-1}) is an α -pair, $\forall k \in \{1, 2, \ldots, p\}$. This yields p lines of S(G, J) on g that are α -lines with respect to h. On the other hand, each α -line of S(G, J) on g with respect to h must be constructed as above.

(3) Suppose that g and h are two non-collinear points of S(G, J). This is equivalent to $gh^{-1} \notin \bigcup_{i \in I} S_i$. From the definition of strongly regular (α, β) -families it follows that there exists a unique set $\{j_1, j_2, \ldots, j_r\} \subset I$, with the property that (S_{j_k}, gh^{-1}) is an α -pair, $\forall k \in \{1, 2, \ldots, r\}$. This yields r lines of S(G, J) on g that are α -lines with respect to h. On the other hand, each α -line of S(G, J) on g with respect to h must be constructed as above.

Thus we conclude that S(G, J) is a strongly regular (α, β) -geometry with parameters (s, t, p, r).

A strongly regular (α, β) -geometry constructed as above will be called an elation strongly regular (α, β) -geometry. Whenever G is abelian it will be called a translation strongly regular (α, β) -geometry.

3. Translation strongly regular (α, β) -geometries

In this section, we suppose that (G, J) is a strongly regular (α, β) -family with parameters $(s, t, \alpha, \beta, p, r)$ and G is abelian. Let K be the set of all endomorphisms σ of G satisfying $S_i^{\sigma} \subset S_i \ (\forall i \in I)$. From the fact that G is abelian it follows that $(K, +, \cdot)$, with the usual addition and multiplication of endomorphisms, is a ring. This ring will be called the kernel of the translation strongly regular (α, β) -geometry S(G, J).

Similarly to the proofs of Theorems 2.4 and 2.5, we may obtain the following results.

Lemma 3.1 If $t - r > \beta$, then $(K, +, \cdot)$ is a field.

Theorem 3.2 Each translation strongly regular (α, β) -geometry with $t - r > \beta$ is isomorphic to a strongly regular (α, β) -geometry constructed from a strongly regular (α, β) -regulus \mathcal{R} in PG(n, q), where GF(q) is a subfield of the kernel.

Let $\mathcal{P} = \mathrm{PG}(n,q)$ be a Desarguesian projective space of dimension at least 2. Let Π be a fixed hyperplane of \mathcal{P} and p be a fixed point of \mathcal{P} . Then, $\mathrm{Persp}(\Pi, p)$ is the set of all automorphisms of \mathcal{P} fixing Π point wise and fixing all hyperplanes containing p. It follows that $\mathrm{Persp}(\Pi, p)$ constitutes a group. The elements of $\mathrm{Persp}(\Pi, p)$ are called perspectivities with axis Π and center p. More specifically the elements of $\mathrm{Persp}(\Pi, p)$ are called elations if $p \in \Pi$, and homologies if $p \notin \Pi$. Furthermore, it is clear that the set of all perspectivities of \mathcal{P} with a given axis or with a given center forms a group. Finally notice that the set of all elations with a given axis Π constitutes a group acting regularly on the point set of $\mathcal{P} \setminus \Pi$.

The following observation is important in the theory of Desarguesian projective spaces.

Lemma 3.3^[8] Let PG(n,q) be a Desarguesian projective space of dimension at least 2. Then the group of all homologies with axis a fixed hyperplane Π and with center a fixed point $p \notin \Pi$ is isomorphic to the multiplicative group of GF(q).

Suppose that p_1 , p_2 and p_3 are two by two distinct points on a projective line PG(1,q), and that p_4 is a fourth point on that line. If one chooses homogeneous coordinates in such a way that the coordinates of p_1 , p_2 and p_3 , are (0,1), (1,0) and (1,1), respectively, then the cross ratio $(p_1, p_2; p_3, p_4)$ of the 4-tuple (p_1, p_2, p_3, p_4) is the affine coordinate of the point p_4 with respect to the chosen coordinates if $p_4 \neq p_1$, and equals ∞ if $p_4 = p_1$.

We have the following interesting property.

Lemma 3.4^[8] Every linear automorphism of PG(1, q) preserves the cross ratio. Now we may get the following result.

Theorem 3.5 Every strongly regular (α, β) -geometry constructed from a strongly regular (α, β) regulus \mathcal{R} in $\mathrm{PG}(n,q)$ is isomorphic to a translation strongly regular (α, β) -geometry S(G, J),
with G the group of all elations of $\mathrm{PG}(n+1,q)$ with axis $\mathrm{PG}(n,q)$, and with the elements of $\mathrm{GF}(q)$ in the kernel.

Proof Let S(R) be a strongly regular (α, β) -geometry with parameters (s, t, p, r) constructed from a strongly regular (α, β) -regulus R in $\Pi := \operatorname{PG}(n, q)$. Let G be the group of all elations of $\operatorname{PG}(n+1,q)$ with axis Π . Then G is a regular group of automorphisms of S(R). Choose a point xof S(R) and denote by L_0, L_1, \ldots, L_t the lines of S(R) through x. Define $S_i := \{g \in G | L_i^g = L_i\}$ $(i \in I)$, which are subgroups of G of order s+1. Clearly $S_i \cap S_j = \{id\}$ for all $i \neq j$, with $i, j \in I$.

(1) Consider S_i and $g \notin S_i$ $(g \in G)$. Then the point x^g is not on L_i , and so x^g is collinear with δ distinct points $x^{h_1}, x^{h_2}, \ldots, x^{h_{\delta}}$ on the line L_i , with $\{h_1, h_2, \ldots, h_{\delta}\} \subset S_i$, where $\delta = \alpha$ or β . This implies that x is collinear with $x^{h_k g^{-1}}$ in S(R), $k = 1, 2, \ldots, \delta$, with $\delta = \alpha$ or β . Hence there exists a $j_k \in I$ such that $h_k g^{-1} \in S_{j_k}$, that is, $S_{j_k}g \cap S_i \neq \emptyset$, $k = 1, 2, \ldots, \delta$, with $\delta = \alpha$ or β . Conversely, it is now obvious that every S_l for $S_lg \cap S_i \neq \emptyset$ gives rise to a point L_i collinear with x^g . (2) Suppose that $g \in \bigcup_{i \in I} S_i \setminus \{id\}$. Without loss of generality, assume that $g \in S_0$. Then x is collinear with x^g in S(R). So there are p distinct lines $L_{j_1}, L_{j_2}, \ldots, L_{j_p}$ such that $i(x^g, L_{j_k}) = \alpha$ $(j_k \neq 0), k = 1, 2, \ldots, p$. Similarly as in (1) we know that (S_{j_k}, g) is an α -pair, $k \in \{1, 2, \ldots, p\}$. And for any $j \in \{0, 1, \ldots, t\} \setminus \{j_1, j_2, \ldots, j_p, 0\}$, we have that (S_j, g) is a β -pair.

(3) Suppose that $g \in G \setminus \bigcup_{i \in I} S_i$. Then x is not collinear with x^g in S(R). So there are r distinct lines $L_{j_1}, L_{j_2}, \ldots, L_{j_r}$ such that $i(x^g, L_{j_k}) = \alpha, k = 1, 2, \ldots, r$. Similarly to (1), we know that (S_{j_k}, g) is an α -pair, $k \in \{1, 2, \ldots, r\}$. And for any line $j \in \{0, 1, \ldots, t\} \setminus \{j_1, j_2, \ldots, j_r\}$, we have that (S_j, g) is a β -pair.

Thus we conclude that (G, J) is a strongly regular (α, β) -family. It is now easily seen that $\phi: G \to S(R): g \to x^g$ determines an isomorphism between S(G, J) and S(R).

Let x be the point of $PG(n+1,q)\setminus \Pi$ corresponding to $id \in G$. From Lemma 3.3 it follows that the multiplicative group of GF(q) is isomorphic to the group of homologies of PG(n+1)with axis Π and center x. We will show that it can be seen as a group of automorphism of G. We will identity the elements of G with the corresponding points of $PG(n+1,q) \setminus \Pi$. Let $\sigma \neq 1$ be a homology of PG(n+1,q) with axis Π and center x and let $q \neq h$ be elements of $G \setminus \{x\}$. First suppose that x, g and h are not collinear in PG(n+1,q). Define $g_{\infty} := \langle x, g \rangle \cap \Pi$, $h_{\infty} := \langle x, h \rangle \cap \Pi$ and $l_{\infty} := \langle g, h \rangle \cap \Pi$. Then the triangle with vertices $g, g^{\sigma}, h_{\infty}$ and the triangle with vertices $h, h^{\sigma}, g_{\infty}$ are perspective triangles with center l_{∞} . From Desargues Theorem it follows that x, gh and $g^{\sigma}h^{\sigma}$ are collinear, which implies that $g^{\sigma}h^{\sigma}$ and $(gh)^{\sigma}$ must coincide, that is, $g^{\sigma}h^{\sigma} = (gh)^{\sigma}$. The cross ratio $(x, g_{\infty}; g, g^{-1}) = -1$. From Lemma 3.4 it follows that $(x^{\sigma}, g_{\infty}^{\sigma}; g^{\sigma}, (g^{-1})^{\sigma}) = (x, g_{\infty}; g, g^{-1}) = -1$, implying $(g^{-1})^{\sigma} = (g^{\sigma})^{-1}$. Finally suppose that x, g and h are collinear and that $h \neq g^{-1}$. Choose any l not on $\langle x, g \rangle$. Then x, gl and $l^{-1}h$ are not collinear in PG(n+1,q) since otherwise $gll^{-1}h = gh$ would be a point of $\langle x, gl \rangle$, implying that $h = g^{-1}$ as $\langle x, gh \rangle \cap \langle x, gl \rangle = \{x\}$. Hence $(gh)^{\sigma} = (gll^{-1}h)^{\sigma} = (gl)^{\sigma}(l^{-1}h)^{\sigma} = g^{\sigma}l^{\sigma}(l^{-1})^{\sigma}h^{\sigma} = g^{\sigma}l^{\sigma}(l^{-1})^{\sigma}h^{\sigma}$ $g^{\sigma}h^{\sigma}$. It is now clear that the group of homologies of PG(n+1) with axis II and center x can indeed be seen as a group of automorphisms of G.

For any fixed S_i , let g be an element in S_i and σ be an element in GF(q). Then we have $L_i^g = L_i$. Hence for any h on L_i , we know that g, hg are on the line L_i . On the other hand, x, g and g^{σ} are collinear in S(R). So g^{σ} must be on the line L_i . Now it is easily seen that $hg^{\sigma} \in L_i$. Thus $L_i^{g^{\sigma}} = L_i$, that is, $g^{\sigma} \in S_i$. Thus we conclude that the elements of GF(q) are in the kernel of the corresponding translation strongly regular (α, β) -geometry. When $t - r > \beta$, GF(q) is a subfield of the kernel.

Hence we have shown that whenever $t - r > \beta$, the theory of translation strongly regular (α, β) -geometries is equivalent to the theory of strongly regular (α, β) -reguli. Furthermore it follows that in this case K is the largest field such that there exists a strongly regular (α, β) -reguli R in PG(n, K) with the property that $S(G, J) \cong S(R)$.

References

BOSE R C. Strongly regular graphs, partial geometries and partially balanced designs [J]. Pacific J. Math., 1963, 13: 389–419.

- [2] DEBROEY I, THAS J A. On semipartial geometries [J]. J. Combin. Theory Ser. A, 1978, 25(3): 242–250.
- [3] DE CLERCK F, DELANOTE M. On (0, α)-geometries and dual semipartial geometries fully embedded in an affine space [J]. Des. Codes Cryptogr., 2004, 32(1-3): 103–110.
- [4] DE CLERCK F, GEVAERT H, THAS J A. Translation partial geometries [J]. Ann. Discrete Math., 1988, 37: 117–135.
- [5] DE WINTER S. Elation and translation semipartial geometries [J]. J. Combin. Theory Ser. A, 2004, 108(2): 313–330.
- [6] DE WINTER S, THAS J A. SPG-reguli satisfying the polar property and a new semipartial geometry [J]. Des. Codes Cryptogr., 2004, 32(1-3): 153–166.
- [7] HAMILTON N, MATHON R. Strongly regular (α, β)-geometries [J]. J. Combin. Theory Ser. A, 2001, 95(2): 234–250.
- [8] HIRSCHFELD J W P. Projective Geometries over Finite Fields [M]. Oxford University Press, New York, 1998.
- [9] LUYCKX D. m-systems of polar spaces and SPG reguli [J]. Bull. Belg. Math. Soc. Simon Stevin, 2002, 9(2): 177–183.
- [10] WILBRINK H A, BROUWER A E. A characterization of two classes of semipartial geometries by their parameters [J]. Simon Stevin, 1984, 58(4): 273–288.