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Abstract In this paper, we consider the following fourth order ordinary differential equation

2O (1) = f(t,2(),2(8), 2" (1), 2" (1), t€(0,1) (E)
with the four-point boundary value conditions:
2(0) = z(1) = 0, az” (&) — Bz" (&1) = 0, y2" (&) + 62" (&2) = 0, (B)

where 0 < & < & < 1. At the resonance condition ad + By + ay(§2 — &1) = 0, an existence
result is given by using the coincidence degree theory. We also give an example to demonstrate
the result.
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1. Introduction

Boundary value problems for ordinary differential equations play a very important role in
both theory and applications. They are used to describe a large number of physical, biological
and chemical phenomena. In [1], Chen studied the equation () (t) = f(t,z(t)), 0 < t < 1 with

the four-point boundary value conditions:

z(0) = 2(1) =0, aa” (&) — Ba"" (&) = 0, ya" (&) + 02" (&) = 0,

at non-resonance case: ad + v+ ay(§2 —&1) # 0 by means of upper and lower solutions method
and fixed point theorems. In this work, by using coincidence degree theory, an existence result
for Equations (B) and (E) is established under non-linear growth restriction on f at resonance
case: ad + By +ay(2 — &) =0.

In recent years, much research work has been done on boundary value problems at resonance

case. We refer readers to [2-5] for some recent results.

Received date: 2006-09-23; Accepted date: 2007-01-19
Foundation item: the Master’s Research Fund of Suzhou University (No.2008yss19).



936 ZHANG Z F and WEI Z Z

Now we recall some notations and an abstract existence result.

Let Y, Z be real Banach spaces, L : domL C Y — Z be a Fredholm map of index 0 and
P:Y =Y Q:Z — Z be continuous projectors such that ImP = KerL, Ker@Q = ImL and
Y = KerL @ KerP, Z = ImL @ ImQ. Tt follows that L|qo1; ~Kerp : domL NKerP — ImL is
invertible. We denote the inverse of that map by Kp. If €2 is an open bounded subset of Y such
that domL NQ # (), the map N : Y — Z will be called L-compact on Q if QN () is bounded
and Kp(I — Q)N : Q — Y is compact.

The theorem A we use is Theorem IV.13 of [6].

Theorem A Let L be a Fredholm operator of index 0 and let N be L-compact on Q. Assume
that the following conditions are satisfied:

(i) Lz # ANz for every (x,A) € [(domL\KerL) N 99 x (0,1);

(ii)) Nz ¢ ImL for every x € KerL N 0;

(iii) deg(AQN |kerr, 2N KerL,0) #0,
where Q : Z — Z is a projection as above with ImL = Ker@, A : ImQ — KerL is a linear
isomorphism. Then the equation Lx = Nx has at least one solution in domL N €.

We use the classical spaces C3[0,1] and L'[0,1]. For the z € C3[0,1], we use the norm
2]l = maxepoqy|z(t)], (2] = max{||z|lcc, [|2"[|ccs [|2” |l cos [[2"||oo }, and denote the norm in
LY[0,1] by || - ||1. We also use the Sobolev space W*1(0,1) defined by W*1(0,1) = {z : [0,1] —

Rz, 2" """ are absolutely continuous on [0, 1] with z(*)(¢) € L'[0, 1]} with its usual norm.

2. Existence result for BVP (E) and (B)

In view of BVP (E), (B) and the resonance condition: ad + 8y + ay(&2 — &) = 0, we discuss
existence of solutions to the BVP (E), (B) subject to the following case:

a#0,7#0, ad+ 7 +ay( — &) =0.
Let Y = C3|0,1], Z = L'[0,1]. Define L to be the linear operator from domL C Y — Z with
domZ = {x € W*1(0,1) : 2(0) = z(1) = 0, ax” (&) — Bx"'(&1) = 0, y2” (&) + 62" (&) = 0}
and Lz = 2, 2 € domL. We define N : Y — Z by setting
Nz = f(t,x(t),2'(t),2" (t), 2" (t)), t € (0,1).
Then the BVP (E), (B) can be written as Lz = Nz.

Lemma 1 Ifa #0, v # 0, 0 < & < & < 1, then there exists | € {0,1,2} such that
ary fgf Jo Tidrds 4+ ad [;* i + By [t TldT #£ 0.

Proof Suppose the assertion fails to be true, then

22— &) + bty + Brer =0,

2
F(E — &) + a8 + prel =0,
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(6 — )+ adgd + el = 0.

Thus we have

3G -8 &L & ary 0
1g-¢ & &g as | =10
la-¢) 8 g By 0

Next we shall show

(E-&) & &
(& —-¢) & & |#0,
&G-¢) 8 &

= Wl N

if not, then
18- & & 0 0 &
HE-8) & g |=|28-8) g-a& g |=0
G- 8 g e -&) 8-84 &

From (3) and 0 < & < & < 1, we have (& — &;)? = 0, which contradicts & < &.

937

(3)

Hence (2)

holds, then from (1), we have ay = 0, which is a contradiction from «a # 0, v # 0. Therefore

Lemma 1 holds.

a

Lemma 2 Ifa#0,v#0, ad+ fy+ay(§a—&) =0, then L : domL CY — Z is a Fredholm

operator of index 0. Furthermore, the linear continuous projector operator Q : Z — Z can be

defined by

1 &2
Qy = - - - / / 7)drds+
ary fg Jo Tldrds + ad [;* TidT + By [ TidT 1

ad /052 y(r)dr + By /0El y(T)dT) ¢

and the linear operator Kp : ImL — domL N KerP can be written as

Kpy = t_l /g/ des__/O&y(T)dT)Jr
// L
S

|Kpyll < Aillylly for ally € TmL,

7)drds;dsadss—

de81 d82d83

Also

here Ay = max{3 + |55, 2+ |51}

Proof It is clear that
s, 30-3081, a+30-3a&

KerL = domL : z(t) =d(t
er {z € domL : x(t) ( - -

We now show that

&2 s & &
ImL={ye Z: ory/ / y(r)drds + a5/ y(7)dr + 57/ y(r)dr = 0}.
1 0 0 0

t), d € R}.
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Since the problem
() =y ()

has solution z(t) which satisfies

2(0) = x(1) =0, axz"(&) - Bz"'(61) =0, ya" (&) + 02" (§&2) =0,

av/ﬁi/ (hds+a6/’ d¢+57/£14ﬂd7_0. (6)

In fact, if (5) has solution z(t) such that z(0) = z(1) = 0, az” (&) — B2 (&) =0, va'' (&) +
0z (&2) = 0, then from (5), we have

x(t) = z(0) + 2/ (0)t + %x”(())t2 2"( t3 / / / / 7)drdsdsadss.
Thus

2 (60) B2 (&) = o(a” (0)+2"(0)E + /& | wtriaras) (e 0)+ /O&yde)

if and only if

I
<o
—~

-~
~—

&2

12(6) + 62 (€2) = 5 ("(0) +2”(0) @+/&/' <h@)+q/%>+A y(r)dr) =0. (8)

Then from (7), (8) and ad + By + ay(§&2 — &€1) = 0, we can obtain

&2 &2 &1
047/ / 7)drds + a6/ T)dr + 67/ y(r)dr = 0.

On the other hand, if (6) holds, set

z(t) d(t3

=1 /gf des——/& y(r)dr)+
/ / /52 /Sl 7)drdsidsadss—
/,/ / / r)drdsy dsadss,

where d is an arbitrary constant, then z(t¢) is a solution of (5), z(0) = z(1) = 0, az” (&) —
Bx (&) =0, va"(&2) + 92" (£&2) = 0. Hence (4) holds.
For y € Z, take the projector

35—3(151 a+3ﬁ—3a§1 t)—

1 &2
Qy = T -~ 5 ay/ / y(7)drds+
omfgl Jo Tldrds 4+ ad [ ldr + By [ Tldr &, Jo

ad /52 y(T)dr + By /51 y(T)dT) th

Let y1 = y — Qy. Since cwng Jo 1 (T)drds + ad [;% g1 (7)dT + ﬁyfo y1(7)dT = 0, we have
y1 € ImL. Hence Z = ImL 4 Im@. Since ImL NIm@ = {0}, we have Z = ImL @& ImQ. Thus

dim KerL = dim Im@ = codim ImL = 1.
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Hence L is a Fredholm operator of index 0.
Taking P: Y — Y as

" _ _
b 2(0) (04 30 3061, a+30 30‘51t),
(6%

6 o

one can write the generalized inverse Kp : ImLL — domL N KerP of L as

Kpy = ft—1) /51 / T)drds — = /051 y(T)dT)+
/ / / / T)drds;dsadss—
/ / / / )drdsdssdss. )

In fact, for y(t) € ImL, we have

(LEp)y(t) = [Kpy(t)]™ = y(b),

and for x € domL N KerP, we know

tHt—1 &1 ps &1
(KpL)x(t) = — ( ) (/ / 2@ (r)drds — b / ) (T)dT)+
2 o Jo @ Jo
t S3 S2 S1
/ / / / x® (1)drdsidsadsz—
o Jo Jo Jo
1 S3 S2 S1
t/ / / / x® (1)drds1dsadss.
o Jo Jo Jo

In view of € domL N KerP, 2(0) = z(1) = 0, aa”(&) — f2"(&) = 0 and Pa = <O (83 4
3B—3a&: 12— a+3B8—3a1

t) = 0, we have
(KpL)z(t) = x(t).

This shows that Kp = (L|gomnKerp) - From (9), we have

1 16} 17 1)
Kpylloo < 5 2 2yl = (= + | —
16 Pylloe < Sl + =Myl + 2yl = (5 + 1= Dllyl
and
I(EpPy)'lloc < ||y||1 + |—|||y||1
and
K 1 < 2 6
I(EPy) oo < 2lyll + | = [llylls
and
1K Py)" lloo < NIyl
Thus || Kpy| = max{||z]lec, [|2"]|cc, 12" l|ocs 2" [lcc} < Axllyll1-
This completes the proof of Lemma 2. O

Lemma 3 Let f : [0,1]x R* — R be a continuous function. Assume that the following conditions

are satisfied:
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(A1) There exist functions uy, us, uz, us, e in L'[0,1] and a constant 6 € [0, 1), such that
|f(t, 1, w2, w3, 24)| Sui(t)|z1] 4+ ua(t)|@e| + us(t)|z3] + wa(t)|xa]|+
e(t)(|z1]” + |2a” + || + [4|®) + 7 (t)
for all (z,y,z,u) € R*, t €[0,1];

(Az) There exists a positive constant A such that |[u1||1 + ||luz1 + |lus|l1 + Jually < %. Then

there exist nonnegative functions Uy, U, Uz, Uy, T in L]0, 1] such that
|f(t, Ty, X2, T3, ,’E4)| < (t)|.’L‘1| + ﬂg(f)|$2| + ﬂ3(t)|$3| + ﬂ4(t)|$4| +7(t). (10)

Proof This lemma is similar to the Lemma 3.2 of [2] and the proof is similar too, so we omit
it. O
For brevity, we use w1, ug, us, ug, r to denote wy, Uz, Us, U4, T, respectively. Then (10)

can be written as

|f(t, @1, 02, 23, 24)| < wa(t)|@e| + ua(t)|w2| + us(t)|zs| + ua(t)|za| +r(2).

From now on, we always assume that p(t) £ 3 + 36—5’0‘51 2 — O‘+35(;30‘51 t, t €10,1].

Theorem 1 Let f :[0,1] x R* — R be a continuous function. Assume that (A1) of Lemma 3
is satisfied and the following conditions hold:

(As) There exists constant M > 0 such that for x € domlL, if |x"'(t)| > M for all t € (0,1),
then

& s
cw/1 /0 f(rya(r), 2’ (7), 2" (), 2" (1))drds+
&2

ol ; flra(r), 2 (1), 2" (7), 2" (7))dr+
&1

B | f(r,x(r), ' (r),2" (7), 2" (r))dr # 0

(A4) There exists constant M* > 0 such that for all d € R, if |d| > M*, then either

d(ory /152 /05 f(r,dp(1),dp’ (7),dp” (1), dp" (7))drds+

&2
ad f(r,dp(7),dp' (1),dp" (1),dp"” (7))dT+
0
&1

by ) I dp(T),dp’(T%dp”(T),dp”’(T))dT) <0
or else

d(om /f2 /OS f(r,dp(r),dp' (1),dp" (7),dp" (7))dTds+

&
ad ; f(r,dp(r),dp (),dp" (7),dp" (1))d7+
&1

By ; [, dp(T),dp’(T),dp”(T),dp”’(T))dT) > 0.
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Then, the BVP (E), (B) witha £ 0, 7 # 0, #(0) = #(1) = 0, aa”(€x) — B (€1) = 0, 42" (€) +
52" (&) = 0, ad + By + ay(& — &) = 0 has at least one solution in C®[0, 1] provided that

1

U + [|u + ||u + ||u < -,
llurlls + lJualls + [Juslls + [luall2 AT,

where Ay is as in Lemma 2, Ay = £ p(t)]]c3(0,1)-

Proof Set
Q= {z €edomL\KerL: Lz = ANz, X € [0,1]}.

Then for x € 1, Lxr = ANx, thus A # 0, Nz € ImL = Ker@. Hence
&2

&2 s
cw/1 /0 f(r,z(r),2' (1), 2" (1), 2" (1))drds + ad f(rx(r), @ (7), 2" (7), 2" (7)) dr+

0
&1
By | f(ra(r),2! (7),2" (7),2" (7))dr = 0.
0
Thus from (As), there exists ¢y € [0,1] such that |x" ()] < M. In view of 2" (0) = z""(to) —
foto ™) (t)dt, then
2" (0)] < M + e (@)s = M + || L]y < M + [Nz, (11)

Again for z € Q,z € domL \ KerL, then (I — P)z € domL NKerP, LPx = 0. From Lemma 2,

we have
(I = P)z|| = |[KpL(I — P)z|| < A1[|[L(I — P)z|l1 = A1 Lz|li < Aqf|Nazfs. (12)
From (11) and (12), we have
[z|| < |1Pz| +[I(I — P)z|l
_ 2" (0)| I+ 38 — 3a&; 2ot 36 — 3ay
6 « «
< (M +[[Nzll1)Az + Ay |[Nz|y
= Ay M + (Al + AQ)HNCL'Hl .

=+ 111 = Pz

Then from Lemma 3, we obtain
2]l < Ao M + (A1 + Az)([[ua]l1]|z]loo + [Juzll1l|2"[loo + Nusll1llz”lloo + uallillz"™ [l + I7[l1). (13)

Thus from ||z]|e < ||z|| and (13), we obtain

A+ Ay
Ay + Ag)[Jurlx

(llwllll\w'l\oo + [lus|[1]l2"]|oc+
AQM )
A+ Ay’
Thus from ||2']|c < ||z]], (13) and (14), we obtain
A+ Ay "
U T |0t
AT Aa Tl Ty sl
AQM )
AL+ Ay

<
Il <3

i

[wallillz™ oo + NIl +

!/
o <
Io/loe <7

"

[wallllz™ oo + lI7llx +
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Thus from ||2”"]|e < [Jz||, (13), (14) and (15), we obtain
Ay + As
(A1 + Ag)([[urlly + lluzlls + [lusly)
And from [|2"]|s < ||z||, (13), (14), (15) and (16), it follows
Ay + Ay
Ar+ Ag)(llually + [zl + [Juslly + [[uall1) (
From (17), we know ||2"||oo is bounded. From (16), (15) and (14), we can obtain ||2”||cc, [|%']|co
and ||z|le are all bounded. In view of ||z| = max{||z| o, |2 ||cc|Z” |ccs |2 ||cc}, We know Qy is
bounded.
Set

Ao M
(aalhlla” o + Il + 222). (1)

x//oo<
Il < = A+ A,

"
<
" lle < 7

Qo ={z €KerL: Nz € ImL},

for x € Q2, € KerL = {x € domL : z = dp(t)} and QNz = 0. Then

1 / & / s )
5 ay f(r,dp(7),dp (7)),
ay féz fo rldrds + ab fofz Tldr + By f(fl rldr ( 1 Jo
&2
ap"(r), dp" (r))drds + ab / F(r,dp(r), dgf (7), dg" (), dp"" ())dr+
0

&1
57 [ S dp(r),dyf (7). do" (), dpf" (7)) dr) = 0. (18)

From (A3), there exists to € [0,1] such that |2”/(to)| < M. Hence |d| < . Then we can obtain
lz|] < MA,. Thus Qg is bounded.
Next, according to the condition (A4), for any d € R, if |d| > M™*, then either

1 52 S
d ay / / f(rdp(r),dp’ (1),
ary f&z fos 7ldrds + ad fo& 7tdr + By fogl rldr ( 1 Jo

&
dp”(7),dp" (1))drds +ad [ f(r,dp(r),dp'(1),dp" (7),dp"" (T))dT+
0
&1

57 [ dp(r),df (7). do" (r), d" (7)) dr) <0 (19)
or else
1 &2 ps
d d dp’
o [ s o [ T+ (oo [ [ srantrr. a0 o),
&2
dp”(7),dp" (1))drds +ad [ f(r,dp(T),dp'(1),dp" (1), dp" (1))dT+
0
&1
57 [ £ dp(r), 49/ (7). 4" (), dyf" (r))dr) > 0. (20)

If (19) holds, set
Qs ={reKerL: -Az+ (1 -AN)AQNx=0,X€]0,1]},

here A : Im@Q — KerL is the linear isomorphism given by A(d) = dp(t), Vd € R, t € [0,1]. Since
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x =dop(t) € Q3, we have

p(t)
Adop(t) =(1 = A) . o
O ay fﬁlz fO TldeS+Oé5f027'ldT+67folTldT(
& ps
/ / f(r,dop(7),dop’(1),dop” (1), dop™ (1)) drds+
1 0

&
ad [ f(r,dop(7),dop’(7),dop” (1), dop” (1))dT+
0

&1
7 0 f(T’dOp(T)’dOPI(T)adop”(T)adoP"'(T))dT)tl'

If A =1, then dy = 0. Otherwise, if |do| > M™*, in view of (19), we have

1
M =do(1 = N)———— — — (ory
ay f& Jo THdrds 4+ ad [* Ttdr + By [ TldT

&2 ps
/ Af@%mm%AMAw%m%w%wM@+

&2

ad [ f(r,dop(7),dop’ (1), dop” (1), dop™ (7))dT+
0
&1

By [ F(r.dop(r),dop!(7), dop" (7). dop (7))dr ) t! < 0,
0
which contradicts Add3 > 0. Thus Q3 C {z € KerL : ||z| < 6M*As} is bounded.
If (20) holds, then set

Qy={zeKerL: \x+(1-AN)AQNz=0,Xe|[0,1]},

here A is as above. Similarly to the above argument, we can show that 23 is bounded too.

In the following, we shall prove that all the conditions of Theorem A are satisfied. Let Q2 be
a bounded open subset of Y such that Ule Q; C Q. By using the Ascoli-Arzela theorem, we can
prove that Kp(I — Q)N : Q — Y is compact. Thus N is L-compact on . Then by the above
argument we have:

(i) Lz # ANz for every (z, ) € [(domL \ KerL) N 9Q] x (0,1);

(ii) Lx ¢ ImL for x € KerL N oS
At last we will prove that (iii) of Theorem A is satisfied. Let

H(z,)\) =+ z + (1 - \) A QNz.

According to the above argument, we know H(z,\) # 0 for x € 9Q N KerL. Thus, by the
homotopy property of degree

deg(AQN |Kerr, 2N KerL, 0) = deg(H (-,0), 2N KerL,0)
=deg(H(-,1),Q2NKerL,0) = deg(+I,Q2NKerL,0) # 0.

Then by Theorem A, Lz = Nz has at least one solution in domZL N, so that the BVP (E), (B)
has solution in C3[0,1]. The proof is completed. O
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3. An example

Consider the problem

1 1 1
W (t) =t + 1 + teosz(t) + §arctan:1c'(t) + gsin:v"(t) + 1—0(t2 + 1)z (t), (21)
1 1 1 1 1 1
z(0) = z(1) =0, x”(z) - me(z) =0, x”(g) - 535”/(5) =0. (22)

Since f(t,x1, 22, 43, ¥4) = t+1+tcosz(t)+ sarctana’ (t)+ gsina’” (t)+ 45 (2 +1)a" (), a =1, B =
%7 Y= 17 0= _%7 51 = %a 52 = %a we have a5+67+a7(€2_€1) = 07 %(55_5%)0574—@652_'_6761 =
—5#0, A =3 Ay=1, x1- =% > Let

1
up = us = uz = 0, U4=g, r(t) = 5.

Then
1 ) < Hlaal +5, Il + lluzlls + sl + luglly < ———
y L1, T2, T3, T4)| > 5 Ty y W11 U2ij1 uzlj1 U4||1 A+ Ay
Since
2 ps 1P
o [ [ #alm)a (7). (1) ()drds + a8 [ (ralr) o (0,0 () (7)) dr
1 0 0
&1
5’7 f(Ta J:(T), z’ (T)7 z" (T), z" (T))dT
0
:/12 ; (T,;C(T),x’(T),:E”(T),x”’(T))des—%/02 f(r,x(r), 2" (1), 2" (1), 2" (7))dr+
4
1 /%

as |2/ (t)| > 50, f and 2" (t) have the same sign. If we set M = 50 and M* = 32, the conditions of
Theorem 1 are satisfied. Hence from Theorem 1, there exists at least one solution z(t) € C3[0, 1]
to (21) with the condition (22).
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