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Abstract With the aid of Maple, the extended hyperbolic function rational expansion method
is used to construct explicit and exact travelling solutions for the discrete mKdV lattice. As a
result, many solutions are obained which include kink-shaped solitary wave solutions, bell-shaped
solitary wave solutions and singular solitary wave solutions.
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1. Introduction

Differential-difference equations have played a crucial role in the modelling of many phenom-
ena in different fields, which include condensed matter physics, mechanical engineering, vibrations
in lattices, pulses in biological chains. DDEs also encounter such systems in numerical simula-
tion of soliton dynamics in high energy physics where they arise as approximations of continuum
models.

Many work have been done on DDEs, including investigations of integrability criteria, the
computation of densities, generalized and master symmetries, and recursion operators(!l. Notable
is the work by Levi and colleagues(?, Yamilov and co-workers!®~7, where the classification of
DDEs (into canonical forms), integrability tests, and connections between integrable PDEs and
DDEs are analyzed in detail.

Since the work of Fermi, Pasta and Ulam!®!, the investigation of exact solutions of the DDEs
have been the focus of many nonlinear studies!”). Unlike difference equations which are fully
discrete, DDEs are semi-discrete with some (or all) of their spacial variables discrete while time
is usually kept continuous. So there are more difficulties in finding the exact solutions for DDEs.

We know that there has been considerable work done on finding exact solutions of PDEs, various
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direct methods have become increasingly attractive partly due to the availability of computer
symbolic like Maple or Mathematica, such as algebraic method'%) rational expansion method*!,
tanh method!"?| the generalized Riccati equation method™?! and so on.

In this paper, hyperbolic function rational expansion method is presented to uniformly con-
struct more new exact solutions for DDEs. And the discrete mKdV lattice is chosen to illustrate
the method.

2. Summary of the hyperbolic function rational expansion method

For a given differential-difference DDE

k k
A (un+p1 ()5 ey Uy (@), Uy ()5 Uy s - ,ugﬂzm(x), . ,ungpl (x)) =0, (2.1)
where z = (21,...,2m), ¥ = (U1,...,uq), n = (n1,...,ns) and m,q,s,p1,...,p; are integers,

and u(®) () denotes the collection of mixed derivative terms of order k. Firstly, we introduce the

following travelling wave transform

Win =Uin(Gn), &n=Y dini+ Y Nz +3, (2.2)
i=1 j=1
where d; (i =1,...,8),X\;(j = 1,...,m),d, are constants to be determined later. Substituting

(2.2) into Eq.(2.1) yields an ordinary differential equation (ODE)

H (Un+p17 RS UnerLv U/

ntpir

(k) ® ) _
U,g+pl,...,Un+p1,...,Un+m) —0. (2.3)

Step 1 We seck the solutions of Eq.(2.3) in the form

i aijsech? (&,) > bij tanh’ (&)
Ui n\Sn) = + . -+ X j 24
n(&n) = a0 ]; (w1 tanh(&,) + p2)’ ; (p1 tanh(&,) + p2)’ 24

From the properties of hyperbolic function, we have

_ _ i ai; sech? (&n)
Usiner(ntr) = a0t 12:21 N [1 tanh (&,) cosh (rd) + p1 sinh (rd) 4 po cosh (rd) + p2 tanh (€,) sinh (rd))? *
i bi; [tanh (£,) cosh (rd) + sinh (rd))? (2.5)

[1 tanh (€,) cosh (rd) 4 p1 sinh (rd) + o cosh (rd) + ps2 tanh (&,) sinh (rd)])’’

j=1
where 7 is an arbitrary integer, a;j, b;;, di, Aj, ft1, 2 are constants to be determined later, and n;

can be determined by homogeneous balance principle.

Step 2 Substituting (2.4) and (2.5) into Eq.(2.3) and then setting all the coefficients of
sech’(£,) tanh? (€,) (i = 0,1,7 = 0,1,...) to be zero yields a set of algebraic equations with

respect to ag, aij, bij, cij, di, Aj, i1, 2. The algebraic equations are too tedious, so we omit it.

Step 3 With the help of Maple, we solve the over-determined nonlinear algebraic equations for

ag, aijubijadia)‘jalthM?'

Step 4 Substituting the obtained conclusions in Step 3 into Eq.(2.4) gives the explicit and exact
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travelling solutions of Eq.(2.1).
3. Exact solutions of the discrete mKdV lattice

We consider the discrete mKdV latticell4:19]

i (t) = (00 =3 (1)) (i (1) — 1 (1)), (3.1)

where « is a constant. According to the above method, we seek more travelling wave solutions
of Eq.(3.1).

We make the following travelling transformation
Up =Upn(&n), &n=dn+ At +0, (3.2)
where d, \, § are constants to be determined later, and thus Eq.(3.1) becomes
AU, (6n) — (= U2(€n)) (Uns1(nt1) — Un—1(6n-1)) = 0. (3.3)

By the homogeneous balance principle, we may assume the solutions of Eq.(3.3) in the form

bisech(&y,) + b2 tanh (&,)

U, = ag o tanh (€,) + /12 (3.4a)

B bisech(&,) + b [tanh (&,) cosh (d) + sinh (d)]
Un+1 = ao + 111 tanh (&) cosh (d) + 1 sinh (d) + pz cosh (d) + o tanh (&, ) sinh (d)’ (3.4D)
Uy = ag + bisech(&,) + b [tanh (&) cosh (d) + sinh (d)] (3.4¢)

w1 tanh (&,) cosh (d) — py sinh (d) + po cosh (d) — ps tanh (£,) sinh (d)
Substituting (3.4) into Eq.(3.3), collecting coefficients of sech’ (&, ) tanh? (€,) (i = 0,1,5 = 0,1,2...),
and setting them to be zero, we get a set of over-determined algebraic equations with respect to
ao, b17 b27 Aa d7 M1, 2.

By use of the Maple, solving the over-determined algebraic equations, we get the following

results:

Case 1

_ Vatanh (d) (i — p?)

3

h(d
b= 0, ap = — Yo tanh(d) (), b
M2 M2

where po, 1, d are arbitrary constants;

Case 2
by =ap =1 =0, A =2asinh (d), by = v/ —aussinh (d),

where ps,d are arbitrary constants;

Case 3
a1 =as = pz =0, by = —app1, by = Vaps sinh (d), A = 2« sinh (d),

where ag, (1, d are arbitrary constants;
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Case 4
by coth (d
bIZQOZ,UJl:Oa ILLQ——%Q(),)\—2OétaHh(d),

where bo, d are arbitrary constants;

Case 5
bo=ap=0, uy = i\/glug, A =2asinh(d), by = 2us vV—asinh (d),

where d, po are arbitrary constants;

Case 6
by =ap =0, A=2asinh(d), by = v/a (u12 — p2?) sinh (d) ,

where po, p1, d are arbitrary constants;

Case 7
B by coth (%)

d
ao—,ul—(),bl—ibg,)\—4o¢tanh<§>,u2— \/a )

where bo, d are arbitrary constants;

Case 8
. ) d d
Wi = Z\/§u2, by = —4ipgy/ —atanh 3] ag = v —3atanh 3]

d d
b1 = 2 pgv/—atanh (§> , A =4« tanh <§> ,
where po, d are arbitrary constants;
Case 9

d= g7 pi1 = iV3p2, A = dia, ag = V3a, by = —divapus, by = 2 Vapus,

where po is arbitrary constant;

Case 10 d
tanh (&
A =4« tanh (C—l> ,ag = _M7
2 M2

tanh (£) (u1? — p?
b1 = /a (12 — p2?) tanh (g)’bQZ Vatan (2) (Nl K2 )7

2

where ps, p1,d, are arbitrary constants;

Case 11

A=4diaV3, b = \/3a (122 — n?2),

b ~ V=3a (i - pe?) u _ V3o d*2ﬂ
2 112 s 40 Lo ) 3 )

where po and p; are arbitrary constants;
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Substituting Case 1 ~ Case 11 into (3.4a), we can obtain the following exact solutions of
Eq.(3.1)

(n.1) Vauy tanh (d ) Vatanh (d) (p1? — p2?) tanh (dn + 2 a tanh (d) t 4 6)
u(n,t); = —
P U2 w2 (pr tanh (dn + 2 tanh (d) ¢ + 6) + p2)

where o, p1,d, § are arbitrary constants;

)

u(n,t)a = v/—asinh (d) sech (dn + 2 a sinh (d) t + 6) ,
where ps,d, § are arbitrary constants;
u(n,t)s = ag + vasinh (d) csch (dn + 2 asinh (d) t + §) ,
where ag, i1, d, 0 are arbitrary constants;
u(n,t)y = —y/atanh (d) tanh (dn + 2 a tanh (d) t + 6),

where d, ¢ are arbitrary constants;

(n.1) 2\/—asinh (d) sech (dn + 2 « sinh (d) t + 0)
u(n,t)s =
° iv/3tanh (dn + 2 a sinh (d) ¢ + ) + 1

where d, d are arbitrary constants;

(n,1) a (12 — pe?)sinh (d) sech (dn + 2 acsinh (d) t + §)
u(n,t)e =
16 pitanh (dn + 2 asinh (d) t 4 6) + pe

where ps, 1, d,d are arbitrary constants;

u(n,t)7 = atanh <g) (isech (dn + 4 atanh (g) t+ 5) + tanh (dn + 4 atanh (g) t+ 5>> ,

where d, d are arbitrary constants;
24/—a tanh ( ) sech (dn + 4 « tanh (%) t+ 5)
t)s =V —3atanh —
u(n, t)s o < ) Z\/_tanh(dn—l—élatanh(%)t—l-é)—|—1
4iv/—atanh (5) tanh (dn + 4 o tanh (%) t+ 5)
iv/3 tanh (dn + 4 o tanh (%) t+ 6) +1

)

)

where d, d are arbitrary constants;
w(n, t)o = V30 + - 2\/asech‘( 4 .4iat +0) B '4i\/5tanh (2 —l—'4iozt+ 5) 7

iv/3tanh (% +4iat + 6) +1 iv/3tanh (% +4iat + 5) +1

where § is arbitrary constant;

Vap tanh (%) Vv 2 — g2 tanh( )sech (dn—|—4a tanh( )t+5)+
23 1tanh(dn+4atanh( )t+5)+u2

Vatanh (4) (u1? — p2?) tanh (dn + 4 tanh () t + 6)
2 (ul tanh (dn + 4« tanh (%) t+ 6) + Mz)

u(n, t)lO = —

)

where g, p1,d, ,d are arbitrary constants;

V=3 N V3a (22 — pp? )sech(2”n+4za\/_t—|—5)+

u(n,t)11 =
SR 2 p1 tanh (220 + 4ia /3t + 6) + po
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V=3« (u12 — ,LLQQ) tanh (Q%n +4iaV/3t + 5)
pr2 (p1 tanh (2%71 +4ia/3t + 8) + p2)

where po, 11,6 are arbitrary constants;

Remark 1 The solutions u(n,t); and u(n,t)s are kink-shaped solitary wave solution, solutions
u(n,t)2,u(n,t)s and u(n,t)s are bell-shaped solitary wave solutions, and wu(n,t)s is singular

solitary wave solution.

5. Conclusions

In this paper, we have derived many exact travelling wave solutions for the discrete mKdV
lattice based upon the new hyperbolic function rational expansion method. These new travelling
exact solution may be of great significance to explain some physical phenomenon. The paper
shows that the method is sufficient to seek more new exact solitary wave solutions of DDEs. We
need to find more general ansatzes for the further work about various extension and improved

hyperbolic function method.

References

(1] HEREMAN W, SANDERS J A, SAYERS J. et al. Symbolic computation of polynomial conserved densities,
generalized symmetries, and recursion operators for nonlinear differential-difference equations [J]. CRM Proc.
Lecture Notes, 39, Amer. Math. Soc., Providence, RI, 2005.

[2] LEVI D, YAMILOV R. Conditions for the existence of higher symmetries of evolutionary equations on the
lattice [J]. J. Math. Phys., 1997, 38(12): 6648-6674.

[3] SVINOLUPOV S I, YAMILOV R I. The multi-field Schrédinger lattices [J]. Phys. Lett. A, 1991, 160(6):
548-552.

[4] YAMILOV R 1. Construction scheme for discrete Miura transformations [J]. J. Phys. A, 1994, 27(20): 6839—
6851.

[5] ADLER V E, SVINOLUPOV S I, YAMILOV R I. Multi-component Volterra and Toda type integrable
equations [J]. Phys. Lett. A, 1999, 254(1-2): 24-36.

[6] CHERDANTSEV I YU, YAMILOV R 1. Master symmetries for differential-difference equations of the Volterra
type [J]. Phys. D, 1985, 87(1-4): 140-144.

[7] SHABAT A B, YAMILOV R 1. To a transformation theory of two-dimensional integrable systems [J]. Phys.
Lett. A, 1997, 227(1-2): 15-23.

(8] FERMI E, PASTA J, ULAM S. Collected Papers of Enrico Fermi II [M]. Univ. of Chicago Press, Chicago,

IL, 1965, 978.

HICKMAN M S, HEREMAN W A. Computation of densities and fluxes of nonlinear differential-difference

equations [J]. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 2003, 459(2039): 2705-2729.

[10] FAN Engui. An algebraic method for finding a series of exact solutions to integrable and nonintegrable
nonlinear evolution equations [J]. J. Phys. A, 2003, 36(25): 7009-7026.

[11] CHEN Yong, WANG Qi, LI Biao. Elliptic equation rational expansion method and new exact travelling
solutions for Whitham-Broer-Kaup equations [J]. Chaos Solitons Fractals, 2005, 26(1): 231-246.

[12] ELWAKIL S A, EL-LABANY S K, ZAHRAN M A. et al. Modified extended tanh-function method for
solving nonlinear partial differential equations [J]. Phys. Lett. A, 2002, 299(2-3): 179-188.

[13] LI Biao, CHEN Yong, XUAN Hengnong. et al. Generalized Riccati equation expansion method and its
application to the (3 + 1)-dimensional Jumbo-Miwa equation [J]. Appl. Math. Comput., 2004, 152(2):
581-595.

[14] ABLOWITZ M J, LADIK J F. On the solution of a class of nonlinear partial difference equations [J]. Studies
in Appl. Math., 1976/77, 57(1): 1-12.

[15] BALDWIN D, GOKTAS U, HEREMAN W. Symbolic computation of hyperbolic tangent solutions for non-
linear differential-difference equations [J]. Comput. Phys. Comm., 2004, 162(3): 203-217.

)



