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1. Introduction

Ifp>1,2+21=1 {a,}, {bn} >0, such that 0 < 3°7 @k < oo and 0 < > >7, b < oo,

p q n=1"n

then we have
53 ey <ol Za‘“} {qu}q (11)

where the constant factor pq is the best possible. Inequality (1.1) is Hilbert’s type inequality
and is important in analysis and its applications(?. Recently, Kuang[® gave a strengthened ver-
sion of (1.1); Yang[*®! considered a refinement of another Hilbert’s type inequality.

In 2004, by introducing a parameter A (2 — min{p, ¢} < A < 2), Yang!®7 gave two general-

izations of (1.1) and the extended equivalent forms as follows:

1/ _ —A)— 1/q.
ZZ max{m)\ n)\} <k)\ Zn(p 1)(2—X)—1 p} p[z (g—1)(2—X) 1b%:| q’ (12)

n=1m=1 n=1
[e%S)

Z nP+)\*3[ Z max{(,:::)\ n)\}] Z (p— 1)(27>‘)71a£; (13)
n=1 m=1 ’

Z Z max{mA n>\} < kA(p)[Z A p 1/p an )\bq 1/q (1.4)
n=1

n=1m=1 n=1
)

Z r=DO-1) | Z_lmax{izl’\,n_’\}} Z (1.5)

Received date: 2006-06-22; Accepted date: 2006-10-12
Foundation item: the Emphases Natural Science Foundation of Guangdong Institutions of Higher Learning,
College and University (No. 05Z026).

[1,Th.342]
b)



A reverse Hilbert’s type inequality with multi-parameters 969

where the constant factors ky(p) = % and [kx (p)}P are all the best possible. In-
equality (1.2) is equivalent to (1.3); (1.4) is equivalent to (1.5).
In 2005, Yang!® built a reverse Hilbert’s type inequality and its equivalent form as:
FOo<p<ly+i=LA={N\a):\a>0,0<¢ <1(r=pq),¢+d, = A} # &,
and ay, b, > 0 satisfy 0 < 300 nPU=%) 1P < 00 and 0 < 300 n?(1=9»)=1p7 < oo, then for

(A, @), we have

1 by dg. [ ) 7L a(l—d)—1pg 17
ZZ =+ o) aB%’i){n_lH—@p(n)W“ a3t (1)
Z"”d”’_l[i ] > [ o) il—f’ Ottt (L)

n=1 n=1

P
where 0 < 0,(n) = O(n ) < 1, and the constant factors éB(%, %) and [ (%T’, %)} are the
best possible. Inequality (1.6) is equivalent to (1.7).

This paper gives another reverse Hilbert’s type inequality as (1.6). As applications, we also

consider the equivalent form and some particular results.

2. Some Lemmas

Lemma 2.1 Suppose 0 < p < 1,%4—% =1L,A>0,0<¢, <1,0< vy <1 and ¢p + g = A
Define the weight functions wy(p,n) as

= 1 1
wA(p,n) = n¢P Z W(E)l wq, n € N. (21)
=1 !
Then we have
A A
oot {1 - 910(”)} <wa(p,n) < FR (2:2)
p¥q p¥q
where 0 < 6,(n) = A:—ﬁq <1
Proof Since 0 < ¢, <1, we have
1
wA(p,n) < n 7( ) Yady

max{y*,n*} 'y

"1 <11
— ¢p / wqd +/ - 1—1/}Qd
n —~ Y
[ 0 nk(y) n yA(y) }

R
v G Op¥g
Define 6,(n) as
Opth nor 1—1)q
ep(n) p q / max{y n}\}(y) dy, n € N. (23)

Since for n > 1,
1 1
1 1 1=, / 114y 1
(- d = qd =
/0 maX{y%nA}(y) S (y) TS

by (2.3), we have 6,(n) = /\iqu.
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Hence for 0 < ¢4 < 1, we have

[ 1-9
, > nPr - (= ad
w)\(p n) n /1 Inax{yA,nA}(y) Y

> 1
¢p 1 "/J d 1_"/Jqd
[/0 max{y*, n*} (y y- / max{y ,n} (y) 4

_ %Awq [1-6,0m)].

Inequality (2.2) is valid. The lemma is proved. O

Lemma 2.2 If0<p <1542 =1,1>0,0<¢, <1,0 <ty <1,¢p+1, = Aand 0 < e < pily,
then we have

n” oy 1 I 1= 1
I = 71+w‘1 p } . 2.4
I e PP

Proof For 0 < p < 1, we obtain
_1+¢p a Ay

I
<Z/ max{y* n’\}
) SR oo , —lttpg—=
=3 et ([ [T )
0 n n

%dy

1 1 =1
= + j| .
wg e R

Hence, (2.4) is valid. The lemma is proved. O

3. Main results and applications

Theorem 3.1 If0 < p < 1,%+§ =1L,A>0,0< ¢, <1,0< 1, <1,¢,+%, = and an,b, >0
satisfy 0 < Y 0, np(l_lz’q)_lafL < oo and 0 < 320 ni1=?)=1pe < oo, then we have

Z Z max{mA e} ¢)1\/J {Z[l - Hp(n)]np(l—wq)ﬂaﬁ}E{ an(1—¢p)—1bz}a7 (3.1)
f B— —~

A_ s the best possible. In particular,
Pptq

where 0 < 6,(n) =
(a) for ¢, = wq 2, we have

Z Z max{m)‘ n>‘} {g - % %)ﬂafl}

(b) for A =1, we have

Z Z max{m -} ¢p1¢q{§:1[1 ffq]nmbp—lap} ’ { ianﬂbz}%. (3.3)

n=1m=1 n=1

o0

{anﬂ )= 1bq} (3.2)

n=1

=
Q\)—‘

Proof By the reverse Holder’s inequality[g] since 0 < p < 1 and ¢ < 0, we have

H(am, bn) Z Z max{m’\ nt}

n=1m=1
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o X 1 m(I—%a)/a n(1=¢p)/p
Z Zl max{m*, n*} [n(l én/p & ] {m(l—wq)/q b"}

n=1

8=

= mYa 1
(1—=¢¢)—1
Z { Z [Z max{m*, n*} ni- %}mp @ﬁ} X
m=1 n=1
{Z {Z T wq}nll(l 6p) 1(;%} , (3.4)
n=1 m=1

Since A > 0, and 1 — ¢, > 0, 1 —p, > 0, in view of (2.1) , we rewrite (3.4) as:

[e%s} 1 o0 1
H (i, by) > { > walp, n)np(l_”’”_laﬁ}p { > wala, n)nq“_%)_lbi} !
n=1 n=1

and then by (2.2), we have (3.1).
For 0 < € < pibg, set a/, and b, as: a!, =n T 5 b =n % ~2 n e N. Since ¢, > 0,
we have

1
q

{i[l—%( A }%{anu op) 1bq}

1 . 22021#%
_anJrs - ZOO 1

n=1 n=1 plte
[e’e) 1 N N

=3 (1= o(1))¥ (e — 0%). (3.5)
n=1

If the constant factor ﬁ in (3.1) is not the best possible, then there exists a positive number
K (with K > ﬁ), such that (3.1) is still valid if we replace ﬁ by K. In particular, by (3.5)

and (2.4), we have

K f:l #{1 —o(1)}F = K{ 001[1 - 9p(n)]np(1_w")_1a;f}%{ f:l nqﬂ—%%lb’,g}%
1 1w 1
<1< [1/)q—% +¢p+%]n¥1nl+s
Hence .
K{1-o1)}" < L/) L tg ié}
 p pTp
and then K < Fova w (e — 0™). By this contradiction we can conclude that the constant ﬁ in
(3.1) is the best possible. Thus the theorem is proved. O

Theorem 3.2 If0 <p <1, l+§:1,A>0,0<¢p§1,0<¢q§1,¢p+¢q:Aandanzo
satisfies 0 < >.00  nP(1=¥a)=1gP < oo, then we have

Z ntee ! [ Zl maX{CTLTT)‘ nk}} (QSpwq)p i {1 B 0 }np(liwq)ilai’ (36)

=1

3

A
g

where 0 < 0,(n) = )\:iq < 1, and the constant factor

(3.6) is equivalent to (3.1). In particular,

P
) is the best possible. Inequality

/
S
)
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(a) for ¢p =g = %, we have

RCRID S ) O3] (RS S

(b) for A =1, we have

Proof Setting

amb p
- {n_lmz_ max{m?* n’\}}
> (d):;)q) {i[l_e (n)jnP1 =¥ =1, }{an(l bp)— 1bq} : (3.9)
n=1
and
;”q(l_%)_lb% = ;np%_l [mz_l max{j:;, nk}}p
A\ o
-0 p(1=vq)=1,p ~ (). 3.10
> (¢p¢q) ;[1 »(n)]n ab > (3.10)
If 500 na=#»)=1pt = oo, since
S 11— fu (P01 <an W1t < oo,
n=1

(3.10) takes the form of strict inequality, so does (3.9). If 0 < S°°7 | n?(1=?»)=1p2 < oo, by using
(3.1), (3.9) takes the form of strict inequality, so does (3.10). Hence we have (3.6).
On the other hand, if (3.6) is valid, by the reverse Holder’s inequality, we have

~14dpg

Z Z max{m)‘ nt} i [i W} {nl_%_%bn}

n=1m=1 n=1

Z{Ej:lnmpl[im} } {Z”‘” o) 16‘1}5- (3.11)

By (3.6), we have (3.1). Hence, inequalities (3.1) and (3.6) are equivalent. If the constant factor
in (3.6) is not the best possible, we can conclude that the constant factor in (3.1) is not the best
possible by (3.11). The theorem is proved. O

Theorem 3.3 If0<p<1,%+%=1,/\>0,0<¢p§1,0<¢q§1,¢p+2/1q=)\andbn20
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satisfies 0 < S°00  nd1=#»)=1p0 < oo, then we have
o0 o0 b
1-0.(m 1*qmq¢q*1[ n ] ( ) nd(1—¢p)— 1bq 3.12
211 6p(m)] Z:j ma ) < Goa Z (3.12)
q
where 0 < 6,(m) = )\% < 1 and the constant factor (ﬁ) is the best possible. Inequality
(3.12) is equivalent to (3 1). In particular,
(a) for ¢p =g = , we have
- 1 D [ b
1- | 7”} ( ) a(1-3)-1pa. 3.13
mz::l[ Qm%] m= ; max{m*, n} Z" (3.13)
(b) forA=1
- b 1o R bn -
1 —" [ } ( ) wa1pg 3.14
mZ:l[ qu] m ; max{m,n} Dpq ; " (3:.14)

Proof Setting

o0

= (1= Gy [ 30—

n=1

then by (3.1), we have

[:1[1 — 0, (m)mPU—va)—1 } - {mij:l[l — 0, (m)]* qm‘ﬁ/)q—l{ni max{z:)‘,nA}}q}q

m=1 n=1
and
— (1—=1pq)—1 — _ 1- Pg—1 n
0< 7;[1 0, (m)m? P, = ;[1 6,(m)]'~9m? [Zl T
A\
< nd1=®)=1pd < oo, 3.16
<(Gw) = (8.16)

By using (3.1), (3.15) and (3.16) take the form of strict inequality, and we have (3.12).
On the other hand, if (3.12) is valid, by the reverse Holder’s inequality, we have

m=1n=1

00 o] — 1
R
Z{il_g m)]mp—va)—1 }%x

{30 o) om0 Vel (317)
n=1 ’
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By (3.12), we have (3.1). Hence, inequalities (3.1) and (3.12) are equivalent. If the constant
factor in (3.12) is not the best possible, we can conclude that the constant factor in (3.1) is not
the best possible by (3.17). The theorem is proved. O

Remark Inequalities (3.1), (3.6) and (3.12) are equivalent.
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