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Abstract In this paper, we are concerned with the minimum real root of the adjoint polynomial

of the connected graph G with cut-vertex u, in which G − u contains paths, circles or Dn

components. Here Dn is the graph obtained from K3 and path Pn−2 by identifying a vertex of

K3 with an end-vertex of Pn−2. Some relevant ordering relations are obtained. This extends

several previous results on the minimum roots of the adjoint polynomials of graphs.
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1. Introduction

All the graphs considered here are finite, undirected and simple. Undefined notation and

terminology will refer to those in [1]. For a graph G, let G, V (G) and E(G), respectively, be the

complement, vertex set and edge set of G. For a vertex v of G, we denote by NG(v) the set of

vertices of G which are adjacent to v. Let Pn and Cn(n ≥ 4) denote the path and cycle with

order n, resp. Dn(n ≥ 4) denotes the graph obtained from K3 and Pn−2 by identifying a vertex

of K3 with an end-vertex of Pn−2, and Fn(n ≥ 6) denotes the graph obtained from K3 and Dn−2

by identifying a vertex of K3 with the vertex of degree 1 of Dn−2.

The adjoint polynomial was introduced for solving the chromaticity problem of the comple-

ments of graphs. For details, one can refer to [2, 6]. Roots and properties of the polynomials

related to the chromatic polynomials of graphs have been studied for several years. For ex-

ample, Brenti, Royle and Wagner studied the roots and log-concavity of the coefficients of the

σ-polynomials of graphs [3, 4] (In fact, the adjoint polynomial of the graph G can be considered

as the σ-polynomials of the graph G in [3]). The ordering relations of the minimum real roots

of the adjoint polynomials of graphs can be applied to sort out graphs that are not adjointly

equivalent. Recently, by comparing the minimum roots of adjoint polynomials of graphs, many

new classes of chromatically unique (chromatically equivalent) graphs have been obtained[10−12].
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But comparing the minimum roots of adjoint polynomials of graphs is not easy. In this paper,

we are concerned with the minimum real root of the adjoint polynomial of the connected graph

G with cut-vertex u, in which G − u contains paths, circles or Dn components. Some relevant

new ordering relations are obtained. This extends several previous results on the minimum roots

of the adjoint polynomials of graphs in [10–13].

2. Prelimininaries

In this section, we first introduce some basic definitions and results.

A partition {A1, A2, . . . , Ak} of V (G), where k is a positive integer, is called a k-independent

partition of a graph G if each Ai is a nonempty independent set of G. Let α(G, i) denote the

number of i-independent partitions of G. Then

P (G, λ) = Σ
|V (G)|
i=1 α(G, i)(λ)i,

is called the chromatic polynomial of G, where (λ)i = λ(λ − 1)(λ − 2) · · · (λ − i + 1) for each

i ≥ 1[5].

In [2, 6], N(G, i) denotes the number of i-ideal subgraphs of G, that is, the number of ways

of partitioning G into i cliques, then N(G, i) = α(G, i).

Definition 2.1[2,6] Let G be a graph with p vertices and

P (G, λ) = Σp
i=1α(G, i)(λ)i.

Then the polynomial

h(G, x) = Σp
i=1N(G, i)xi

is called the adjoint polynomial of G.

Let β(h(G, x)) denote the minimum real root of h(G, x). For brevity we shall write h(G)

instead of h(G, x), and β(G) instead of β(h(G, x)). There is at least one real root in h(G, x).

Since h(G, 0) = 0 this is in fact obvious, and β(G) ≤ 0 follows.

Let H be a subgraph of G. The graph G − H is obtained from G by deleting the vertices of

H and all edges incident to these vertices.

Lemma 2.1[7] Let e ∈ E(G) with u and v as end points, writing H = G ∗ e for the graph

obtained from G by omitting u, v and adding a new vertex x to G, such that E(H) = {xy | y ∈

NG(u) ∩ NG(v)} ∪ E(G − {u, v}). Then

h(G, x) = h(G − e, x) + h(G ∗ e, x).

Corollary 2.1[7] If vertices u and v are adjacent and edge uv does not belong to any triangle

in G. Then

h(G, x) = h(G − uv, x) + xh(G − {u, v}, x).

For convention, let h(P0) = 1, h(P1) = x, h(D0) = −x, h(D1) = 2x + 1, h(D2) = h(P2) =

x2 + x, h(D3) = h(C3) = h(K3) = x3 + 3x2 + x.
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Lemma 2.2[8] Let 1 ≤ r1 ≤ r2, r1 < s1 ≤ s2 and r1 + r2 = s1 + s2, where r1, r2, s1, s2 are the

positive integers. Then

h(Pr1
)h(Pr2

) − h(Ps1
)h(Ps2

) = (−1)r1xr1+1h(Ps1−r1−1)h(Ps2−r1−1).

Lemma 2.3[13] Let 4 ≤ r1 ≤ r2, r1 < s1 ≤ s2 and r1 + r2 = s1 + s2, where r1, r2, s1, s2 are the

positive integers. Then

h(Dr1
)h(Dr2

) − h(Ds1
)h(Ds2

) = (−1)r1−1xr1−3[x5 + h(P4)h(P2)]h(Ps1−r1−1)h(Ps2−r1−1).

Lemma 2.4 Let r1 + r2 = s1 + s2, r1 6= s1 and r2, s2 ≥ 4, where r1, r2, s1, s2 are positive

integers. Suppose that min{r1, r2} ≤ min{s1, s2}.

(i) If min{r1, r2} = r1, then

h(Pr1
)h(Dr2

) − h(Ps1
)h(Ds2

) = (−1)r1xr1+1h(Ps1−r1−1)h(Ds2−r1−1),

where h(D−1) = x−1(x + 1)2.

(ii) If min{r1, r2} = r2, then

h(Pr1
)h(Dr2

) − h(Ps1
)h(Ds2

) = (−1)r2−1xr2−1h(Ps2−r2−1)[h(Ds1−r2+3) − xh(Ps1−r2+1)].

Proof By Lemma 2.1 we have

h(Pn) = x[h(Pn−1) + h(Pn−2)] (1)

and

h(Dn) = h(Pn) + h(P2)h(Pn−3). (2)

Thus,

h(Pr1
)h(Dr2

)−h(Ps1
)h(Ds2

) = h(Pr1
)h(Pr2

)−h(Ps1
)h(Ps2

)+h(P2)[h(Pr1
)h(Pr2−3)−h(Ps1

)h(Ps2−3)].

(i) If min{r1, r2} = r1, note that s2 − r1 = r2 − s1, then by (1), Lemmas 2.1 and 2.2 it is

seen that the first assertion holds for s2 − r1 = 0, 1, 2, 3 or s2 − r1 ≥ 4.

(ii) If min{r1, r2} = r2. It is easy to check the second assertion by (1), Lemmas 2.1 and 2.2.

The proof is completed. 2

Lemma 2.5[12] Let G be a connected graph and H a proper subgraph of G. Then β(G) < β(H).

Let f(x) be a polynomial in x, denote by ∂(f(x)) the degree of f(x).

Lemma 2.6[13] Let fi(x) be the real coefficient polynomials in the form fi(x) =
ni
∑

j=1

aijx
j for i =

1, 2 such that aini
> 0, where ni = ∂(f(xi)). Suppose that β1 6= β2. If (1) f3(x) = f2(x) + f1(x)

and n2 − n1 ≡ 0 (mod2) or (2) f3(x) = f2(x) − f1(x) and n2 − n1 ≡ 1 (mod2), then there exists

at least one real root β3 such that β3 > min{β1, β2}, where βi denotes the minimum root of

fi(x) for i = 1, 2, 3.

Lemma 2.7[9] Let G be a graph and u ∈ V (G). Then h(G) = x
∑

u∈V (Kj),j≥1 h(G−Kj), where

the summation is over all the complete subgraphs of G which contain u.
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Let Ki+1 be the complete subgraph of G. Suppose that V (Ki+1) = V (Ki) ∪ {wi+1}. Let

G − Ki + ei+1 denote the graph obtained from G − Ki by adding a pendant edge ei+1 to the

vertex wi+1. Since h(G − Ki + ei) = xh(G − Ki) + xh(G − Ki+1) by Corollary 2.1. Denote by

Ku
n the complete graph of order n which contains the vertex u. Then Lemma 2.7 implies the

following corollary 2.2.

Corollary 2.2 Let K = {Ku
i |i ≥ 2, Ku

i ⊂ G}. For each Ku
i ∈ K, if i ≡ 1 (mod2), then set

V (Ku
i ) = V (Ku

i−1) ∪ {wi} such that u 6= wi, where G − Ku
i−1 + ei denotes the graph obtained

from G − Ku
i−1 by adding a pendant edge ei to the vertex wi. So we have

h(G) − xh(G − u)

= x
∑

Ku
i
∈K,i≡0(mod2)

h(G − Ku
i ) +

∑

Ku
i
∈K,i≡1(mod2)

[h(G − Ku
i−1 + ei−1) − xh(G − Ku

i−1)].

Lemma 2.8[14] Let u be a cut vertex of graph G. If G1 − u and G2 − u are two components of

G − u such that G1 ∩ G2 = {u}. Then

h(G, x) = h(G1 − u, x)h(G2, x) + h(G1, x)h(G2 − u, x) − xh(G1 − u, x)h(G2 − u, x).

3. Main results and proofs

For a connected graph G of order n, pick a vertex u ∈ V (G). Let s and t be the positive

integers.

Theorem 3.1 Let Hm(G, Ps+1, Pt+1) be the graph with order m obtained from G by identifying

u with an end-vertex of Ps+1 (resp. Pt+1), where m = n + s + t, n ≥ 2 and 1 ≤ s ≤ t. Then

β(Hm(G, Ps+1, Pt+1)) < β(Hm(G, Ps, Pt+2)).

Proof By Lemma 2.8 we have

Hm(G, Ps+1, Pt+1) = h(G − u)h(Ps+t+2) + [h(G) − xh(G − u)]h(Ps)h(Pt).

Since n ≥ 2 and 1 ≤ s ≤ t. Then, by Lemma 2.2, we have

Hm(G, Ps+1, Pt+1) − Hm(G, Ps, Pt+2) = (−1)sxsh(Pt−s)[h(G) − xh(G − u)].

Considering the parity of s and by Lemmas 2.5, 2.6 and Corollary 2.2, we know that the assertion

holds. The proof is completed. 2

Theorem 3.2 Let Hm(G, Cs+3, Ct+3) be the graph with order m obtained from G by identifying

u with a vertex of Cs+3 (resp. Ct+3), where m = n + s + t + 4, n ≥ 1 and 2 ≤ s ≤ t. Then

β(Hm(G, Cs+3, Ct+3)) < β(Hm(G, Cs+2, Ct+4)).

Proof By Lemma 2.1 we have

h(Cn) = h(Pn) + xh(Pn−2). (3)
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Also, by Lemma 2.8

Hm(G, Cs+3, Ct+3) = h(G)h(Ps+2)h(Pt+2) + 2xh(G − u)[h(Ps+1)h(Pt+2) + h(Pt+1)h(Ps+2)].

Since 2 ≤ s ≤ t. Then, by Lemma 2.2, it is easy to see that

Hm(G, Cs+3, Ct+3) − Hm(G, Cs+2, Ct+4)

= (−1)s+1xs+2h(Pt−s){xh(G − u) − [h(G) − xh(G − u)]},

and the rest is as in Theorem 3.1, so the proof is completed. 2

Theorem 3.3 Let Hm(G, Ds+3, Dt+3) be the graph with order m obtained from G by identifying

u with the vertex of degree 1 of Ds+3 (resp. Dt+3), where m = n+s+ t+4, n ≥ 2 and 2 ≤ s ≤ t.

Then

β(Hm(G, Ds+3, Dt+3)) > β(Hm(G, Ds+2, Dt+4)).

Proof By Lemma 2.8 we have

Hm(G, Ds+3, Dt+3) = h(G − u)h(Fs+t+5) + [h(G) − xh(G − u)]h(Dt+2)h(Ds+2).

Note that 2 ≤ s ≤ t. Then, by Lemma 2.3, we easily know that

Hm(G, Ds+3, Dt+3) − Hm(G, Ds+2, Dt+4)

= (−1)s+1xs−2h(Pt−s)[x
5 + h(P4)h(P2)][h(G) − xh(G − u)].

Since β(F6) < β(x5 + h(P4)h(P2))([13]). As in Theorem 3.1, also by Lemmas 2.5, 2.6 and

Corollary 2.2, we know that the assertion holds.

Theorem 3.4 Let Hm(G, Ps+1, Dt+3) be the graph with order m obtained from G by identifying

u with an end vertex of Ps+1 and the vertex of degree 1 of Dt+3, respectively, where m =

n + s + t + 2, n ≥ 2, s ≥ 1 and t ≥ 1. Then

β(Hm(G, Ps+1, Dt+3)) < β(Hm(G, Ps, Dt+4)).

Proof By Lemma 2.8 we have

Hm(G, Ps+1, Dt+3) = h(G − u)h(Ds+t+3) + [h(G) − xh(G − u)]h(Dt+2)h(Ps).

Note that s ≥ 1 and t ≥ 1. Then, by Lemma 2.4

Hm(G, Ps+1, Dt+3) − Hm(G, Ps, Dt+4)

=

{

(−1)t+1xt+1[h(Ds−t) − xh(Ps−t−2)] · [h(G) − xh(G − u)], if s ≥ t + 3;

(−1)sxsh(Dt−s+2)[h(G) − xh(G − u)], Otherwise.

Considering the parity of s(or t), as in Theorem 3.1 we easily know that the assertion holds.

Theorem 3.5 Let Hm(G, Ps+1, Ct+3) be the graph with order m obtained from G by identifying

u with an end vertex of Ps+1 and a vertex of Ct+3, respectively, where m = n + s + t + 2, n ≥ 2,

s ≥ 1 and t ≥ 1. If s ≤ t + 1, then β(Hm(G, Ps+1, Ct+3)) < β(Hm(G, Ps, Ct+4)); Otherwise,

β(Hm(G, Ps+1, Ct+3)) > β(Hm(G, Ps, Ct+4)).
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Proof As in Theorem 3.1, also by Lemmas 2.1 and 2.8 we have

Hm(G, Ps+1, Ct+3) = h(G)h(Ps)h(Pt+2) + xh(G − u)[h(Ps−1)h(Pt+2) + 2h(Pt+1)h(Ps)].

Note that s ≥ 1 and t ≥ 1. Then, by Lemma 2.2, we distinguish with the following cases:

Case 1 If s ≤ t + 1, then

Hm(G, Ps+1, Ct+3) − Hm(G, Ps, Ct+4)

= (−1)sxs{h(Pt−s+2)[h(G) − xh(G − u)] + xh(G − u)h(Pt−s+1)}.

Case 2 If s = t + 2, then

Hm(G, Ps+1, Ct+3) − Hm(G, Ps, Ct+4) = (−1)sxs[h(G) − xh(G − u)].

Case 3 If s = t + 3, then

Hm(G, Ps+1, Ct+3) − Hm(G, Ps, Ct+4) = (−1)txth(G − u).

Case 4 If s ≥ t + 4, then

Hm(G, Ps+1, Ct+3) − Hm(G, Ps, Ct+4)

= (−1)txt+3{h(Ps−t−4)[h(G) − xh(G − u)] − h(G − u)h(Ps−t−3)}.

By considering the parity of s(or t) in the cases 1-4, as in Theorem 3.1 we easily know that the

assertion holds.

In the proof of Theorem 3.5, let n = 1. Then we have the following immediate corollary 3.1.

Corollary 3.1 Let Hm(Ps+1, Ct+3) be the graph obtained from Ps+1 and Ct+3 by identifying

an end-vertex of Ps+1 with a vertex of Ct+3, where m = s + t + 3, s ≥ 1 and t ≥ 1.

(i) If s ≤ t + 1, then β(Hm(Ps+1, Ct+3)) < β(Hm(Ps, Ct+4));

(ii) If s = t + 2, then β(Hm(Ps+1, Ct+3)) = β(Hm(Ps, Ct+4));

(iii) If s ≥ t + 3, then β(Hm(Ps+1, Ct+3)) > β(Hm(Ps, Ct+4)).

Theorem 3.6 Let Hm(G, Cs+3, Dt+3) be the graph with order m obtained from G by identifying

u with a vertex of Cs+3 and the vertex of degree 1 of Dt+3, respectively, where m = n+s+ t+4,

n ≥ 1, s ≥ 2 and t ≥ 1. Then

β(Hm(G, Cs+3, Dt+3)) < β(Hm(G, Cs+2, Dt+4)).

Proof By Lemma 2.1 we have

h(Dn) = x[h(Dn−1) + h(Dn−2)].

As in Theorem 3.1, also by Lemma 2.8 we have

Hm(G, Cs+3, Dt+3) = h(G)h(Ps+2)h(Dt+2) + xh(G − u)[2h(Ps+1)h(Dt+2) + h(Dt+1)h(Ps+2)].

By Lemma 2.4, we distinguish with the following five cases:

Case 1 If t ≥ s + 2, then

Hm(G, Cs+3, Dt+3) − Hm(G, Cs+2, Dt+4)
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= (−1)s+1xs+2{h(G − u)h(Dt−s+1) − h(Dt−s)[h(G) − xh(G − u)]}.

Case 2 If t = s + 1, then

Hm(G, Cs+3, Dt+3) − Hm(G, Cs+2, Dt+4)

= (−1)s+1xs+1{[h(P2) + x2] · [h(G) − xh(G − u)] − xh(G − u)h(P2)}.

Case 3 If t = s, then

Hm(G, Cs+3, Dt+3) − Hm(G, Cs+2, Dt+4)

= (−1)s+1xs+1{x2[h(G) − xh(G − u)] + h(G − u)[h(P2) + x2]}.

Case 4 If t = s − 1, then

Hm(G, Cs+3, Dt+3) − Hm(G, Cs+2, Dt+4)

= (−1)t+1xt{[h(G) − xh(G − u)]h2(P2) + x4h(G − u)]}.

Case 5 If t ≤ s − 2, then

Hm(G, Cs+3, Dt+3) − Hm(G, Cs+2, Dt+4)

= (−1)t+1xt+1{[h(G) − xh(G − u)] · [h(Ds−t+2) − xh(Ps−t)]+

xh(G − u)[h(Ds−t+1) − xh(Ps−t−1)]}.

And the rest is as in Theorem 3.5. So the proof is completed. 2
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