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Abstract A new projection scheme with errors for zero points of maximal monotone operators is
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in Banach space by using the techniques of Lyapunov functional and generalized projection

operator, etc.
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1. Introduction and preliminaries

Constructing iterative schemes to approximate zero points of maximal monotone operators

is a very active topic in applied mathematics. However, most of the existing iterative schemes

are restricted in the frame of Hilbert spaces.

Actually, many important problems related to practical problems are generally defined in

Banach spaces. For example, the maximal monotone operator related to elliptic boundary value

problem has Sobolev space W 1,p(Ω) as its natural domain of definition[1]. Based on these reasons,

we began our study and obtained some results that the proximal point schemes strongly or weakly

converged to zero points of maximal monotone operators in Banach space[2−5]. Motivated by

the ideas of Yanes and Xu[6] in Hilbert space, we will construct a new projection iterative

scheme with errors in Banach space and use some techniques such as Lyapunov functional and

generalized projection operator to prove that the iterative sequence converges strongly to zero

point of maximal monotone operator.

Let E be a real Banach space and E∗ its dual space. The normalized duality mapping

J ⊂ E × E∗ is defined by:

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, x ∈ E

where 〈·, ·〉 denotes the generalized duality pairing between E and E∗. We use “ →” and “ ⇀”

to represent strong or weak convergence in E or E∗, respectively. A multi-valued operator A ⊂
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E×E∗ is said to be monotone: if for ∀xi ∈ D(A), yi ∈ Axi, i = 1, 2, we have 〈x1−x2, y1−y2〉 ≥ 0.

Monotone operator A is said to be maximal monotone: if R(J + rA) = E∗, for ∀r > 0. For a

monotone operator A, we denote by A−10 = {x ∈ E : 0 ∈ Ax} the kernel of A.

Lemma 1.1
[7,8] If E is a real reflexive and smooth Banach space, then J : E → E∗ is a single-

valued mapping and JE = E∗; if E is a real smooth and uniformly convex Banach space, then

J−1 : E∗ → E is also a duality mapping and is uniformly continuous on each bounded subset of

E∗.

Lemma 1.2
[8] Let E be a real smooth and uniformly convex Banach space, A ⊂ E × E∗ be a

maximal monotone operator, then A−10 is a closed and convex subset of E. Moreover, the graph

of A, G(A), is demi-closed in the sense that: ∀{xn} ⊂ D(A), xn ⇀ x, (n → ∞), ∀yn ∈ Axn,

yn → y, (n → ∞) ⇒ x ∈ D(A) and y ∈ Ax.

Definition 1.1 Let E be a real smooth and uniformly convex Banach space, A ⊂ E × E∗

be a maximal monotone operator. Then ∀r > 0, define the operator QA
r : E → E by QA

r x =

(J + rA)−1Jx.

Definition 1.2 Let E be a real smooth Banach space. Then Lyapunov functional ϕ : E ×E →

R+ is defined as follows:

ϕ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2, ∀x, y ∈ E.

Lemma 1.3
[3] Let E be a real reflexive, strictly convex and smooth Banach space, C be a

nonempty closed and convex subset of E. Then for ∀x ∈ E, there exists a unique x0 ∈ C, such

that ϕ(x0, x) = inf{ϕ(z, x) : z ∈ C}. In this case, for ∀x ∈ E, define QC : E → C by QCx = x0,

which is called the generalized projection operator from E onto C.

Lemma 1.4
[2] Let E be a real reflexive, strictly convex and smooth Banach space, C be a

nonempty closed and convex subset of E. Then ∀x ∈ E, ∀y ∈ C, it follows that

ϕ(y, QCx) + ϕ(QCx, x) ≤ ϕ(y, x).

Lemma 1.5
[3] Let E be a real smooth and uniformly convex Banach space, and let {xn} and

{yn} be two sequences of E. If either {xn} or {yn} is bounded and ϕ(xn, yn) → 0, as n → ∞,

then xn − yn → 0, as n → ∞.

Lemma 1.6
[3] Let E be a real reflexive, strictly convex and smooth Banach space, A ⊂ E ×E∗

be a maximal monotone operator with A−10 6= ∅. Then ∀x ∈ E, y ∈ A−10 and r > 0, we have

ϕ(y, QA
r x) + ϕ(QA

r x, x) ≤ ϕ(y, x).

Lemma 1.7
[3] Let E be a real smooth Banach space, C be a nonempty closed and convex subset

of E, x ∈ E, x0 ∈ C. Then ϕ(x0, x) = inf{ϕ(z, x) : z ∈ C} if and only if 〈z − x0, Jx0 − Jx〉 ≥

0, ∀z ∈ C.
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2. Main results

In this section, unless otherwise stated, we always assume that E is a real smooth and

uniformly convex Banach and A ⊂ E×E∗ is a maximal monotone operator such that A−10 6= ∅,

and suppose both J and J−1 are weakly sequentially continuous. The projection scheme is

introduced by the following:


















































x0 ∈ E, r0 > 0,

yn = QA
rn

xn, n ≥ 0,

Jun = βnJyn + (1 − βn)Jen, n ≥ 0

Jzn = αnJxn + (1 − αn)Jun, n ≥ 0

Hn = {v ∈ E : ϕ(v, zn) ≤ (αn + βn − αnβn)ϕ(v, xn) + (1 − αn)(1 − βn)ϕ(v, en)}, n ≥ 0

Wn = {z ∈ E : 〈z − xn, Jx0 − Jxn〉 ≤ 0}, n ≥ 0

xn+1 = QHn

⋂

Wn
(x0), n ≥ 0

(2.1)

where {rn} ⊂ (0, +∞), {αn}, {βn} ⊂ [0, 1], and {en} is the error sequence.

Lemma 2.1 The sequence {xn} generated by scheme (2.1) is meaningful.

Proof It is very easy to check that Wn is a closed and convex subset of E. Since

ϕ(v, zn) ≤ (αn + βn − αnβn)ϕ(v, xn) + (1 − αn)(1 − βn)ϕ(v, en)

⇔ ‖zn‖
2 − (αn + βn − αnβn)‖xn‖

2 − (1 − αn)(1 − βn)‖en‖
2

≤ 2〈v, Jzn − (αn + βn − αnβn)Jxn − (1 − αn)(1 − βn)Jen〉,

Hn is also a closed and convex subset of E.

Let p ∈ A−10. From Definition 1.1, we know that there exists y0 ∈ E such that y0 = QA
r0

(x0).

Lemma 1.6 implies that ϕ(p, y0) ≤ ϕ(p, x0). Therefore

ϕ(p, z0) ≤ α0ϕ(p, x0) + (1 − α0)ϕ(p, u0)

≤ (α0 + β0 − α0β0)ϕ(p, x0) + (1 − α0)(1 − β0)ϕ(p, e0).

Thus p ∈ H0. Since W0 = E, p ∈ H0

⋂

W0. Therefore, x1 = QH0

⋂

W0
(x0) is well-defined.

Suppose p ∈ Hn−1

⋂

Wn−1 and xn is well-defined, for n ≥ 1. From Definition 1.1, we know

that there exists yn ∈ E such that yn = QA
rn

(xn). Then Lemma 1.6 implies that ϕ(p, yn) ≤

ϕ(p, xn). Therefore

ϕ(p, zn) ≤ αnϕ(p, xn) + (1 − αn)[βnϕ(p, yn) + (1 − βn)ϕ(p, en)]

≤ (αn + βn − αnβn)ϕ(p, xn) + (1 − αn)(1 − βn)ϕ(p, en).

Thus p ∈ Hn. Moreover, Lemma 1.7 implies that

〈p − xn, Jx0 − Jxn〉 = 〈p − QHn−1

⋂

Wn−1
(x0), Jx0 − JQHn−1

⋂

Wn−1
(x0)〉 ≤ 0.

Thus p ∈ Wn, and then p ∈ Hn

⋂

Wn. Therefore, xn+1 = QHn

⋂

Wn
(x0) is well-defined.

By using the method of mathematical induction, the sequence {xn} defined by (2.1) is mean-
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ingful. This completes the proof. 2

Remark 2.1 From the proof of Lemma 2.1, we can see that A−10 ⊂ Hn

⋂

Wn, for ∀n ≥ 0.

Theorem 2.1 Suppose {xn} is generated by iterative scheme (2.1), lim infn→∞ rn > 0, lim infn→∞ αn >

0, limn→∞ βn = 1 and there exists a positive constant M such that ‖en‖ ≤ M , then xn →

QA−10(xn), as n → ∞.

Proof Our proof is split into three steps.

Step 1. {xn} is bounded.

In fact: ∀p ∈ A−10 ⊂ Hn

⋂

Wn, it follows from Lemma 1.4 that

ϕ(p, QWn
x0) + ϕ(QWn

x0, x0) ≤ ϕ(p, x0).

In view of the definition of Wn, Lemmas 1.3 and 1.3, we know that xn = QWn
x0. Then

ϕ(p, xn) + ϕ(xn, x0) ≤ ϕ(p, x0). Therefore, {xn} is bounded.

Step 2. ω(xn) ⊂ A−10, where ω(xn) is the set consisting of all the weak limit points of {xn}.

In fact, from Step 1, we know that ω(xn) 6= ∅. Then for ∀w ∈ ω(xn), there exists {xni
} ⊂ {xn}

such that xni
⇀ w, as i → ∞.

Since ϕ(xn+1, xn) + ϕ(xn, x0) ≤ ϕ(xn+1, x0), limn→∞ ϕ(xn, x0) exists. Therefore

ϕ(xn+1, xn) → 0, n → ∞.

Since xn+1 ∈ Hn, we have

ϕ(xn+1, zn) ≤ (αn + βn − αnβn)ϕ(xn+1, xn) + (1 − αn)(1 − βn)ϕ(xn+1, en).

From the assumptions, we know that ϕ(xn+1, zn) → 0, as n → ∞. Then zni
⇀ w, as i → ∞.

Since both J and J−1 are weakly sequentially continuous, we have yni
⇀ w, i → ∞. In view of

the definition of yni
, there exists vni

∈ Ayni
such that Jyni

+ rni
vni

= Jxni
. Therefore vni

→ 0,

as i → ∞. Then Lemma 1.2 implies that w ∈ A−10.

Step 3. xn → QA−10x0, as n → ∞.

Let w∗ = QA−10x0. Since xn+1 = QHn

⋂

Wn
(x0) and w∗ ∈ A−10 ⊂ Hn

⋂

Wn, we have

ϕ(xn+1, x0) ≤ ϕ(w∗, x0). Therefore:

ϕ(xn, w∗) = ϕ(xn, x0) + ϕ(x0, w
∗) − 2〈xn − x0, Jw∗ − Jx0〉

≤ ϕ(w∗, x0) + ϕ(x0, w
∗) − 2〈xn − x0, Jw∗ − Jx0〉.

For ∀{xni
} ⊂ {xn} such that xni

⇀ p, as i → ∞, we have

lim sup
i→∞

ϕ(xni
, w∗) ≤ ϕ(w∗, x0) + ϕ(x0, w

∗) − 2〈p − x0, Jw∗ − Jx0〉

= 2〈w∗ − p, Jw∗ − Jx0〉 ≤ 0.

Therefore, ϕ(xni
, w∗) → 0, as i → ∞. Then xni

→ w∗, as i → ∞.

By now, we have proved that {xn} is weakly convergent to w∗. Since each weakly convergent

subsequence of {xn} converges strongly to w∗, it follows xn → w∗ = QA−10x0, as n → ∞. This

completes the proof. 2
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Remark 2.2 Compared with the proof of convergence of proximal point schemes in [2–5], the

proof here is simpler.

Remark 2.3 If E = H is reduced to Hilbert space, then iterative scheme (2.1) is reduced to

the following:


















































x0 ∈ H, r0 > 0,

yn = JA
rn

xn, n ≥ 0,

zn = αnxn + (1 − αn)βnyn + (1 − αn)(1 − βn)en, n ≥ 0

Hn = {v ∈ H : ‖zn‖2 ≤ 2〈v, zn〉 + (αn + βn − αnβn)(‖xn‖2 − 2〈v, xn〉)+

(1 − αn)(1 − βn)(‖en‖2 − 2〈v, en〉)}, n ≥ 0

Wn = {z ∈ H : 〈z − xn, x0 − xn〉 ≤ 0}, n ≥ 0

xn+1 = PHn

⋂

Wn
(x0), n ≥ 0

where JA
r x = (I + rA)−1x.

Remark 2.4 Modify iterative scheme (2.1) slightly, we can get the following iterative scheme:






























































x0 ∈ E, r0 > 0,

yn = QA
rn

xn, n ≥ 0,

Jun = βnJyn + (1 − βn)Jen, n ≥ 0

Jzn = αnJx0 + (1 − αn)Jun, n ≥ 0

Hn = {v ∈ E : ϕ(v, zn) ≤ αnϕ(v, x0) + (1 − αn)βnϕ(v, xn)+

(1 − αn)(1 − βn)ϕ(v, en)}, n ≥ 0

Wn = {z ∈ E : 〈z − xn, Jx0 − Jxn〉 ≤ 0}, n ≥ 0

xn+1 = QHn

⋂

Wn
(x0), n ≥ 0.

(2.2)

Similarly to the proof of Theorem 2.1, we obtain the following result:

Theorem 2.2 Suppose {xn} is generated by iterative scheme (2.2), lim infn→∞ rn > 0, limn→∞ αn =

0, limn→∞ βn = 1 and there exists a positive constant M such that ‖en‖ ≤ M . Then xn →

QA−10(xn), as n → ∞.
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