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1. Introduction and preliminaries

Since Chang!! introduced fuzzy theory into topology, many topological notions were intro-
duced and discussed in fuzzy setting. As is well known, the concept of compactness is one
of the most important concepts in L-topology, on which a lot of work has been done [2-9].
Lowen introduced fuzzy compactness!®4 in I-topological spaces in 1976, Wang characterized it

in terms of netsl”, subsequently he generalized it to L-topology!'), Kubidk also generalized fuzzy

compactness to L-topological spaces by means of closed L-sets and the way-below relation!').

Recently, Shi introduced a new definition of fuzzy compactness in L-topological spaces by us-

ing an inequality!®, when L is a completely distributive de Morgan algebra, it is equivalent

10]

to Wang’s definition'%, he also presented its 25 characterizations by means of neighborhoods,

remote neighborhoods and greatest minimal family. On the other hand, Zhou generalized the

(8]

N-compactness!®! to I-fuzzy topological spaces(!3], Yue introduced the notion of N-compactness

in the general framework of Fuzzifying topological spaces and discussed the relations with Zhou’s

(141 The aim of this paper is to generalize fuzzy compactness to I-fuzzy topo-

(12]

N-compactness
logical spaces by the Shi’s inequality'*!, introduce the concept of degrees of compactness and
discuss its properties.

In this paper, X is a nonempty set, I = [0,1] and Iy = (0,1]. The family of all fuzzy sets on
X is denoted by IX. Let 0 and 1 denote the constant fuzzy set on X taking the value 0 and 1,
respectively. xu denotes the characteristic function of U. For a subfamily ® C IX, 2(®) denotes

the set of all finite subfamily of ®.
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Definition 1.1~ An I-fuzzy topology on a set X is a map 7 : IX — I such that

(1) 7)) =70)=1;

(2) YU,V e I, 7(UAV) > 7(U) AT(V);

(3) vU; € IX,j € JaT(\/jeJ Uj) > /\jeJ T(Uj)~

The real number 7(U) will be called the degree of openness of the fuzzy set U; 7*(U) = 7(U’)
will be called the degree of closedness of U. The pair (X, T) is called an I-fuzzy topological space.

A map f: (X,7) — (Y,0) is called continuous with respect to I-fuzzy topologies T and § if
T(f~(U)) = 6(U) for all U € IV, where f— is defined by f—(U)(x) = U(f(x)).

Definition 1.2[18-291 (1) Let 7 be an I-fuzzy topology on X and B : IX — I be a function
with B < 7. Then B is called a base of T if B satisfies the following condition:

VA€ IX Vo) ept(I¥),Q,,(A) < \/  B(B),
zAgB’,B<A
where Q, (4) = \/z,\;(B’,BgA 7(B). A function B : I’X — I is a base of T if and only if

rA)= \/ ABB) forall AcT*,
Vaea Ba=AXeA

(2) Let ¢ : I — I be a function. Then ¢ is called a subbase of T iff (™) : I — T is a base,
where
oMA)=\/ N\ aB)
MxeaBa=A XEA
with (M) standing for “finite intersection”.
(3) Let {(X;,7j)}jes be a collection of I-fuzzy topological spaces and Pj : [[;c; X; — X;
be the projection. Then the I-fuzzy topology whose subbase is defined by
vAe e X gy =\/ \/ =)
j€J P (U)=A
is called the product I-fuzzy topology of {r;};cs, denoted by HjeJ 75, and (HjeJ X, HjeJ 75)
is called the product space of {(X;,7j)}jes-

Lemma 1.3PY Let (X, ¢) be a fuzzifying topological space and let w(€) : IX — I be defined
by w(€)(A) = A, e; &(0r(A)) for A € I, where 0,(A) = {z|A(z) > r,x € X}. Then w(£) is an
I-fuzzy topology on X, it is also called generated I-fuzzy topology by fuzzifying topology &.

2. Definitions and properties of degrees of compactness
Definition 2.1 Let 7: LX — L be a map. Ya € Iy, let 7, = {U € IX,7(U) > a}. Vu € IX, let
S ={al \ (W@ vV a@) < VA (W@v V A). W Cr)
rzeX Aeld vea) zeX A€y

and DCr (1) = Vyes. () @ = (Naes, (@)~ If (X,7) is I-fuzzy topological space, then Sy ()
is called value set of compactness of u with respect to I-fuzzy topology 7, and DC.(u) is called

degree of compactness of . with respect to 7.
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Let (X,T) be a fuzzy topological space. Then 7 can be regarded as map 7 : IX — I (such
that 7(A) = 1 when A € 7 and 7(A) = 0 others). If regarding (X,7) as a special I-fuzzy

topological space (X, 7), we can easily prove the following theorem.

Theorem 2.2 Let (X,7) be an I-topological space. Yu € IX, DC,(u) = 1 if and only if p is
fuzzy compact in (X, 7).

Theorem 2.3 Let (X, 7) be an I-fuzzy topological space. For any u, A € I, then DC, (V) >
DC, (1) AN DC-(N).

Proof Let o € S;(p) and 8 € S;(N). For any U C 74v3, since

/\(u\/)\ \/A )

zeX AelU

= A @V Aa@)r A (V@ v\ Aw)

reX AelU recX AeU

VA W@y a@)a VoA (Ve vV A )

vea) zeX AelU veaW) zeX

\/ /\((u’(m)/\X(m))\/\/A(x): \/ /\(u\/)\ \/A )

vea) zeX AelUd vea) zeX AeUd

aVp eSS (uVA). Hence /\aeST(u),ﬁeST(/\)(avﬁ) > A, le,
YES-(UVA)

!/

A 7) 2( N (oz\/ﬁ))l

YES (V) a€S7(n),BES-(N)

=(CA avC A 0)=( A o)n( A 8

€S (1) BeS () €S, (1) pES (V)
Therefore, DC; (1 V X) = DC(u) A DC(N). O

Theorem 2.4 Let (X, 7) be an I-fuzzy topological space and j, A € IX. If 7*(\) > « for any
a € S-(p), then DC- (A X) = DC- ().

Proof Let o€ Sy (), U C 7o and V = {N} UU. Since 7(X') =7*(\) = a, N € 7,. Hence

A ((nay (@) \/A )= A (W@ v\ B@)

rzeX rzeX BeV
\/ /\ (,u )V \/ C( x)
we2WV) xeX cew
=V A (@ vx@ v\ pw)v A (@ v\ D)
pe2U) zeX Deg pe2U) zeX De¢
=V AE@vyev\ p@) =\ A (@rwy@v pw).
pe2W) zeX De¢ pe2) zeX Deg¢

This is to say a € S;(uw A X). Hence S; (1) C S-(uw A A). Therefore, DC;(u A X) > DCr(p). O

Theorem 2.5 Let 7,8 : LX — L be two maps and satisfy B < 7. Then Yu € IX, DC,(u) <
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DCg(u).

Proof Vu € I, suppose a € S, (1) and U C B,. Then U C 7, since B < 7. Thus a € Sp(u).
This is to say that S;(u) € Sg(u). Therefore, DC; (1) < DCg(u). O

Corollary 2.6 Let (X,7),(X,B) be two I-fuzzy topological spaces and satisfy B < 7. Then
Vu € IX, DC,(u) < DCp(u).

Theorem 2.7 If f : (X,7) — (Y,9) is continuous with respect to I-fuzzy topologies T and 9,
then DC; () < DCs(f~ ().

Proof Suppose a € S:(u) and U C §,. Let V = {f(A)|A € U}. For any B € V, there exists
an A € U such that B = f~(4). 7(B) = 7(f~(4)) > §(4) > «a since f is continuous with

respect to 7 and 6, i.e., ¥V C 7. Since

A (FwwmvVAam)=A (A @V Ar@)

yey AeU yeY  f(x)=y AeU
A A (H@v V@)= A (K@v  Be)

yeY f(x)=y AeU zeX Bey

V A (F@v Vo)

we2W) zeX Cew

-V A( /\ (w@v V@)=V A (~wwv\ pw),
b2 yeY - f(z)=y De¢ be2W) yeY Deg

a € Ss(f7(u). Hence S; (1) € Ss(f~(u)). Therefore, DC; (1) < DCs(f (). O

Definition 2.8 Let (X,£) be a fuzzifying topological space and &, = {U € P(X),&(U) > a},
a € Iy. For any G € P(X), a set

Se(G) = {alevery cover U C &, of G, there exists a finite subfamily V of U is a cover of G}

is called value set of compactness of G with respect to £. The degree of compactness of G with

respect to £ is defined by DCe(G)= Vo' =( A «a).
a€Se (@) a€Se(G)

Theorem 2.9 Let (X, &) be a fuzzifying topological space and w(§) be generated I-fuzzy topol-
ogy by f Then DC&(X) = DOM(@ (l)

Proof Let o € S,)(1). For any cover U C &, of X, let V = {xu|U € U}. Then V C w(§)a
since w(§)(V) = A,er&(or (V) = N §(U) = £U) =2 o« for any V = xy € V. Thus
I < Asex Vaev A@) < Viyeon (/\zeX \/BewB(I)) since U is a cover of X. We know
that there exists a finite subfamily W of V such that A .y Vpgey B(z) > % Let Q = {U €
U|B = xuv € W}. Then Q C U is finite subcover of X. Thus a € S¢(X). This is to say
Sue)(1) € Se(X). Therefore, DO, ¢y (1) < DCe(X).

On the other hand, let a € S¢(X). For any U C w(§)a, let A oy Vacy Alz) = B.

If =0, then /\meX \/Aeu Alz) =0 < VVE2<“> /\meX VBeV B(z);
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Else V0 < v < 3, we know that W, = {04(A4)|A € U} is a cover of X and W, C &, since
£(C) = &(04(A) = Noer&(or(A) = w(é)(A) = a for any C = 0,(A) € W,, where A € U.
Since o € S¢(X), there exists a finite subfamily Q. of W, such that Q. is cover of X. Let
P, = {A cU|o,(A) € Q,}. Then P, is a finite subfamily of U, i.e., P, € 2¢). Hence

V AVB@= V AV Aw = V v=8= A\ V A@.

veaW) zeX BEY 0<y<BzeX AcP, 0<y<pB reX AeU
Thus o € Sy(¢)(1). This means that S¢(X) C S, e)(1). Therefore, DC¢(X) < DCyg)(1). So
DCg (X) = DCW(E) (l) O

Theorem 2.10 Let (X,7) be an I-fuzzy topological space and ¢ be a subbase of 7. Then
DC. (1) = DCy(p) for any p € IX.

Proof For any p € IX, DC, (i) < DCg(u) is obvious by ¢ < 7 and Corollary 2.6. We need
only prove DCy (1) < DC-(p).
We say that A C IX has the finite property for yu if

A @y am) ¢ VA (W@ vV Aw).

rzeX AcA ve2(A) zeX Aev

Suppose a € Sg(p), now we prove that for any 5 € I and > «, § € S-(u).
Let U C 7. If U has the finite property for pu, let

I' = {P|U C P C 75 and P has the finite property for pu}.
Then (T, C) is nonempty partially ordered set. Now we prove that each chain in (T, C) has an
upper bound.
For any chain A in T', let @ = |J P. Since VP € A, P has the finite property for pu,

A (H@v \ A@) = A\ (W@vV \ Aw)

zeX AeQ zeX PeA AcP

AV (H@vV Aw)

zeX PeEA AeP

VA @V aw)

PeAzeX AeP

> \/ /\ (,u’(a:)\/ \/ A(a:))

ve2(Q) zeX Aey

WV

Thus Q has the finite property for u, i.e., @ € I'. Therefore, Q is upper bound of A.
Considering the arbitrariness of A, we conclude that each chain in (I", C) has an upper bound.

Hence by Zorn’s Lemma, I' has a maximal element 2. Now we prove that 2 satisfies the
following conditions:

Q) QC7g;

Q) VB e1s,if C € Qand C > B, then B € Q;

Q3) If B,C €T3, BAC €, then Be Qor C €.
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We only verify Q3). If B ¢ Q and C ¢ Q, then neither {B} U Q, nor {C'} U has the finite
property. We obtain that

A (W@ v BAC)E) v\ AWw)

reX AeQ
< /\ (u’(x)\/B(:v) % \/ A(x)) A /\ (u'(x)\/C(:v) % \/ A(x))
reX AeQ rzeX AEQ
<V A (,u/(a:)\/B(:zr)\/ \/ A(x)) SAVAN (,u/(x)\/C(a:)\/ \/ Alz)
Vve2@) zeX Aey ve2@) zeX Aey
=V A W@vEio@y )\ Aw).
ve2® zeX Aey

This implies that B A C' ¢ €2, which contradicts B A C € Q. 3) is proved.
VD € Q, 7(D) =V y v,—p /\AGA\/(W)BGA)\WXB:VX Nsen, @Wi3) = 8 > a by Q) and

AEA

Definition 1.2. Then there exist {Vy}rea such that

Dy) \/AEA V=D

D) For each A € A, there exists {W )} gea, satisfying (M)gea, WA% = V;

Ds3) For each 3 € Ay, p(W3)) > o

On the other hand, D = \/, ., (M)gea, Wi € Q by Q3) and Q3). We obviously know VD € Q
satisfies the following conditions:

Qp1) Foreach X € A, (M)pen, Wi € O

Qp2) There exists B € Ay such that W) o € Q.

Let R = {W ﬁD|D e N W/\%f satisfies the conditions Qp1),Q2p2)}. Then R C ¢, and
R C Q. Thus

A (F@v V D@) < A (v VYV Wh@) = A (W@v V Uw)

recX DeQ reX DeQ e eX UeR
V A @V vw)<s VA ey V ve).
Ve2(R) zeX Vey ve2(@) zeX Vey

This is a contradiction. Then U/ does not have the finite property. Thus 5 € S;(u).

I
Therefore, DCy (1) = Va68¢(u) o = eé/(#) (/\B>a 6) = va68¢(u) vﬁ>a B < v’YEST(N) V=
€Sy

DC'(u). The proof is completed. O

Theorem 2.11 Let (X, 7) be the product I-fuzzy topological space of {(X;,7;)};jes. Then
DC- (1) 2 Njey DCr;(pj) for any p=11;c ;1 € Mies Xi where p; € I for any j € J.

Proof Let ¢: IX — I, ¢(A) = Vies \/P_H(U):A 7;(U),VA € I be subbase of product I-fuzzy
topological space (X, 7). Then

Ac=(V A o) =( A Vew)= V (Verm)

jeJ JET a€S-; (1y) fe Il Sryuy) i€ FETL S-(nj) J€J
JjeJ

Vf €1ljesSr(ny), let =V, ; P (f). Now we prove that V3 > a, 8 € Sg(p).
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Suppose that & C ¢g. Then VA € U, there exists j € J and B € I such that P“(B) =
A and 7;(B) > « since ¢(A) = \/geJ\/P*(B) 7j(B) for any A € U. Let B; = {B|B €
I%,P;(B) = A,7j(B) > a, A€ U} and U; = {P; (B)|B € I3, P, (B) = A,7(B) > o, A €
U},je€ICJ. ThenU =, U; and B C (7)a,Vj € I. Thus for any K € I,

A (Mk Ty) \/ Bwk)< V A (Mk z) v/ C(fck))-

rr€Xk VkGQ(Bk)szXk CeVy

We know that

2
[l
>

(

(V ipi@n v\ BP@)
reX jeJ j€I BEB;

(

(

I
=

Wi (Py@) v\ (P @) v\ ) B(P ()

J¢I jeI JjEI BEB;

WP v\ (B @) v\ BE@)).

zeX jgI jer BEB;

(1) Ify < \/jeJ /\xjer /‘;‘(xj)a then

< VA den< A (Viu@e))= Av@< VA W@y Aw).

jeJxeX; zeX jedJ reX ve2) xeX AeVy

I
=

(2) Else, Vj € J, there exists z; € X; such that uj(z;) <a <.
If k\/ AV (u%(xk) V' Vges, B(a:k)) < 7, then Vj € I, there exists a y; € X; such that
el
,u;-(yj)\/\/Begj B(y;) <b <. Let z = {z;};es such that z; = y; when j € I, z; = x; otherwise.
Then

v= A (V@) v\ @) v\ BEe))

zeX I jerI j€I BEB;

<V B v V@) v\ BE()

j¢I jer j€I BEB;

=\ BV (1) v\ BR(2) <avb<a.

jeI jel BeB;

This is a contradiction. Thus \V,c; A, cx, (u}c(xk) V' Vges, B(xk)) > ~. Ulteriorly, we have
that

\/ \/ /\ (,Uk Tk) \/ Ck(xk)) < \/ /\ (,u’(x)\/ \/ O(x))

kel v, e2B) Xy CreVy vea) zeX cevy

Hence 3 € Sy(1). Therefore,

N\ DCr ()= \/ ( \ P;(f))/ =V o
S S

jeJ FETT Sey(uy) G€J FE Il 8, (ns)

JjeJ JjeJ
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!
-V (A= V V&
fe_l;[~ Sr;(ps)  B>a fejl;[]STj (ns) B>

JjeJ

< ¥ = DCy(p) = DC: ().
YESy (1)
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