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1. Introduction

Multifunction theory has extensive applications in cybernetics, functional analysis and quan-

titative economics, etc. The basic question in multifunction theory is the relationship between

topological properties of multifunction spaces and those of base spaces, that is to say, to find

topological property P and Q such that multifunction space C(X, R) has property Q if and

only if base space X has property P , where R denotes real line and C(X, R) denotes continuous

multifunction family from X to R with some topological structure. There have been descriptions

about tightness and fan tightness in continuous single-valued function spaces([1,2]), but these

two characteristics have not been solved in continuous multifunction spaces. The reason is that

there are no homogeneity and extendable property of continuous multifunctions. But these two

characteristics are the key to investigate tightness and fan tightness. In this paper, we do not use

homogeneity and extendable property of continuous multifunctions and give the characteristics

of continuous multifunction family Ck(X, R), and obtain two dual theorems about space X and

Ck(X, R).

In this paper, topological spaces X and Y are completely regular T1, M(X, Y ) is the mul-

tifunction family from space X to Y , K(X) denotes the family of all the non-empty compact

subsets of X , R denotes real line, ℵ0 is countable cardinal, and λ is any infinite cardinal. In the

paper the terminologies and symbols are referred to [3].

Suppose f ∈ M(X, Y ). For A ⊂ X , let f(A) =
⋃

x∈A f(x) and for B ⊂ Y , let

f+(B) = {x ∈ X : f(x) ⊂ B}
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and

f−(B) = {x ∈ X : f(x) ∩ B 6= ∅}.

Let f ∈ M(X, Y ), x0 ∈ X . f is said to be upper continuous at x0, if f(x0) ⊂ U for any

open set U of Y , there exists an open neighbourhood V of x0 such that when x ∈ V , we have

f(x) ⊂ U . f is said to be lower continuous at x0, if f(x0)∩U 6= ∅ for any open set U of Y , there

exists an open neighbourhood V of x0 such that when x ∈ V , we have f(x)∩U 6= ∅. f is said to

be continuous at x0, if it is both upper continuous and lower continuous at x0. If f is continuous

at every point of X , it is said to be continuous. Obviously, f is continuous if and only if for any

open set U of Y , f+(U) and f−(U) are all open in X .

For K ⊂ X , U, V ⊂ Y , let

W+[K, U ] = {f ∈ M(X, Y ) : f(x) ⊂ U, x ∈ K};

W−[K, V ] = {f ∈ M(X, Y ) : f(x) ∩ V 6= ∅, x ∈ K}.

The compact-open topology Tk on M(X, Y ) is the one having all sets of the forms W+[K, U ]

and W−[K, V ] as a subbase, where K is a compact set of X , and U and V are open in Y . The

pointwise convengence topology Tp on M(X, Y ) is the one having all sets of the forms W+[{x}, U ]

and W−[{x}, V ] as a subbase, where x ∈ X , and U and V are open in Y .

2. Tightness of multifunction spaces

The tightness of a space X is defined as t(X) = sup{t(X, x) : x ∈ X}, where the tightness at

x of X is defined as t(X, x) = ℵ0 + min{λ: for Y ⊂ X , if x ∈ Y , there exists Z ⊂ Y , such that

|Z| ≤ λ and x ∈ Z}.

A family U of subsets of X is called α cover[1] of X , if for each K of α, there exists U ∈ U ,

such that K ⊂ U . If U consists of open sets of X , and α consists of non-empty compact sets of

X , then U is called open k cover of X .

The k-Lindelöf number of X is defined as kL(X) = ℵ0 + min{λ: each open k cover of X has

an open k subcover U such that |U| ≤ λ}.

A family U of open subsets of X is called open ω cover of X , if for each finite subset F of X ,

there exists U ∈ U such that F ⊂ U .

The p-Lindelöf number of X is defined as pL(X) = ℵ0 + min{λ: each open ω cover of X has

an open ω subcover U such that |U| ≤ λ}.

C(X, R) denotes the family of all the single-valued continuous functions from X to R and

Ck(X, R) denotes the family of all the point-compact continuous multifunctions from X to R.

We shall use the symbol C(X) and Ck(X) instead of C(X, R) and Ck(X, R).

Theorem 2.1 For every space X , the following conditions are equivalent:

(1) (C(X), Tp) is a closed subspace of (Ck(X), Tp);

(2) (C(X), Tk) is a closed subspace of (Ck(X), Tk).

Definition 2.2 For any A, B ⊂ R, put ρ(x, A) = inf{|x − y| : y ∈ A}, ρ(A, B) = sup{ρ(x, B) :
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x ∈ A} and d(A, B) = sup{ρ(A, B), ρ(B, A)}. For x ∈ R, put d(x, A) = d({x}, A).

Theorem 2.3 For every space X , we have t(Ck(X), Tk) = kL(X).

Proof Suppose that t(Ck(X), Tk) = λ, and let U be an open k cover of X . Then for each

compact set A ⊂ X , there exists UA ∈ U such that A ⊂ UA. Let F = {fA : A ∈ K(X), fA ∈

Ck(X), fA(A) = {0}, fA(X − UA) ⊂ {1}}. Then F 6= ∅. We can take a single-valued function

fA ∈ C(X) such that fA(A) = {0}, fA(X − UA) ⊂ {1}. Let V be an open neighbourhood of 0

in R. Take fA ∈ F . Then fA ∈ W+[A, V ]. Because f0 ≡ {0} ∈ F , there exists a subset F ′ of F

such that |F ′| ≤ λ and f0 ∈ F ′. Let V= {UA : fA ∈ F ′}. Then V is a k subcover of U . In fact,

suppose A ∈ K(X). Then W+[A, (−1, 1)] is a neighbourhood of f0. So there exists B ∈ K(X)

such that fB ∈ F ′ ∩ W+[A, (−1, 1)]. For each x ∈ A, we have max{fB(x)} < 1, and for each

x ∈ X −UB, we have fB(x) = 1, so A ⊂ UB. Hence V is a k subcover of U and |V| ≤ λ. Finally,

we have kL(X) ≤ t(Ck(X), Tk).

On the other hand, suppose that kL(X) = λ, F ⊂ (Ck(X), Tk) and f ∈ F . For each

A ∈ K(X), n ∈ N, x ∈ A, let U
(n)
f(x) = {y ∈ R : d(y, f(x)) < 1

2n
}. Then U

(n)
f(x) is an open set

and f(x) ⊂ U
(n)
f(x), so {U

(n)
f(x) : x ∈ A} is an open cover of f(A), hence there exists a subcover

{U
(n)
f(xi)

: xi ∈ A, 1 ≤ i ≤ k}. Because f is continuous, there exists a closed neighbourhood U
(n)
xi

of x such that when x′ ∈ U
(n)
xi , we always have f(x′) ⊂ U

(n)
f(xi)

. Thus f ∈ W+[A,
⋃k

i=1 U
(n)
f(xi)

].

Take g
(n)
A ∈ F ∩ (W+[A,

⋃k
i=1 U

(n)
f(xi)

]) and U
(n)
A = {x ∈ X : d(g

(n)
A (x), f(x)) < 1

n
}. Then

A ⊂ U
(n)
A . This is because if x ∈ A, then there exists some U

(n)
f(xi)

such that x ∈ U
(n)
f(xi)

. From

g
(n)
A ∈ W+[A,

⋃k
i=1 U

(n)
f(xi)

], we have g
(n)
A (x) ⊂

⋃k
i=1 U

(n)
f(xi)

, and for each y ∈ g
(n)
A (x), there

exists U
(n)
f(xi)

such that when y ∈ U
(n)
f(xi)

, we have d(y, f(xi)) < 1
2n

. But d(f(xi), f(x)) < 1
2n

,

so d(g
(n)
A (x), f(x)) < 1

n
, and A ⊂ U

(n)
A . Obviously, U

(n)
A is an open set, so Vn = {U

(n)
A : A ∈

K(X)} is an open k cover of X , hence there exists an open k subcover Wn whose cardinal

does not exceed λ. Let F ′ = {g
(n)
A : U

(n)
A ∈ Wn}. Then F ′ ⊂ F and |F ′| ≤ λ. For each

open base neighbourhood W [B,V ] of f , B ∈ K(X),V is a finite open set in R. Let V ∈ V .

Then for x ∈ B, we have f(x) ∩ V 6= ∅. Take y(x,V ) ∈ f(x) ∩ V and δ(x,V ) > 0 such that

(y(x,V ) − δ(x,V ), y(x,V ) + δ(x,V )) ⊂ V . Then there exists an open neighbourhood U(x,V ) of x

such that U(x,V ) ⊂ f−((y(x,V ) −
δ(x,V )

2 , y(x,V ) +
δ(x,V )

2 )). Because {U(x,V ) : x ∈ B} covers B,

there exists a finite subcover {U(xi,V ) : 1 ≤ i ≤ kV }. Take Lebesgue number δ of V about

f(B). Then the open cover {(y − δ
2 , y + δ

2 ) : y ∈ f(B)} of f(B) refines V . So there exists

a finite subcover {(yi −
δ
2 , yi + δ

2 ) : yi ∈ f(B), 1 ≤ i ≤ k}. Take n ∈ N , such that 1
n

<

min{
δ(xi,V )

2 , δ
2 : 1 ≤ i ≤ kV , V ∈ V}. Then for x ∈ B, V ∈ V , there exists U(xi,V ) such

that x ∈ U(xi,V ). Take U
(n)
A and g

(n)
A ∈ F ′ such that B ⊂ U

(n)
A and d(g

(n)
A (x), f(x)) < 1

n
.

Then f(x) ∩ (y(xi,V ) −
δ(xi,V )

2 , y(xi,V ) +
δ(xi,V )

2 ) 6= ∅. Thus d(g
(n)
A (x), y(xi,V )) < δ(xi,V ), that is,

g
(n)
A (x) ∩ V 6= ∅. For each x ∈ B, we have f(x) ⊂

⋃k
i=1(yi −

δ
2 , yi + δ

2 ), and for each y ∈ g
(n)
A (x),

we have d(y, f(x)) < 1
n

< δ
2 , then for each y′ ∈ f(x), there exists some (yi −

δ
2 , yi + δ

2 ) such that

y′ ∈ (yi−
δ
2 , yi+

δ
2 ), so y ∈ (yi−δ, yi+δ) and g

(n)
A (x) ⊂

⋃
V . Finally, we have g

(n)
A ⊂ W [B,V ]∩F ′.

Thus f ∈ F ′, t((Ck(X), Tk), f) ≤ λ and t(Ck(X), Tk) ≤ λ.
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Corollary 2.4 The tightness of space (Ck(X), Tk) is countable if and only if each open k cover

of X has a countable k subcover.

If we replace the topology Tk of Theorem 2.3 with Tp, and replace k cover with ω cover, then

we have following results.

Theorem 2.5 For every space X , we have t(Ck(X), Tp) = pL(X).

Corollary 2.6 The tightness of space (Ck(X), Tp) is countable if and only if each open ω cover

of X has a countable ω subcover.

Lemma 2.7[1] For every space X , we have sup{L(Xn) : n ∈ N} = pL(X).

Corollary 2.8 For every space X , we have t(Ck(X), Tp) = sup{L(Xn) : n ∈ N}.

Corollary 2.9 The tightness of space (Ck(X), Tp) is countable if and only if for each n ∈ N ,

the Cartesian product space Xn is Lindelöf space.

3. Fan tightness of multifunction spaces

Definition 3.1 Let Y be a family of topological spaces and
∏

Yα∈Y Yα be its Tychonoff product

topology. For each Yα ∈ Y, let pYα
:

∏
Yα∈Y Yα −→ Yα be the projection mapping. If X is

a topological space, we define a topological product multifunction T : M(X,
∏

Yα∈Y Yα) −→
∏

Yα∈Y M(X, Yα) as follows: for each f ∈ M(X,
∏

Yα∈Y Yα) and Yα ∈ Y, we have

pM(X,Yα)(T (f)) = pYα
(f).

Theorem 3.2 Let Y be a family of topological spaces and X be a topological space. Then

topological product multifunction T : Ck(X,
∏

Yα∈Y Yα) −→
∏

Yα∈Y Ck(X, Yα) is a homeomor-

phism.

Proof We define a mapping T ′ :
∏

Yα∈Y Ck(X, Yα) −→ Ck(X,
∏

Yα∈Y Yα) as follows: pYα
◦

T ′(g) = pCk(X,Yα)(g), where g ∈
∏

Yα∈Y Ck(X, Yα), Yα ∈ Y. Let f ∈ Ck(X,
∏

Yα∈Y Yα). Then

for each Yα ∈ Y, we have pYα
◦ T ′(T (f)) = pCk(X,Yα)(T (f)) = pYα

(f), so T ′ ◦ T (f) = f . On the

other hand, let g ∈
∏

Yα∈Y Ck(X, Yα). Then for each Yα ∈ Y, we have pCk(X,Yα) ◦ T (T ′(g)) =

pYα
(T ′(g)) = pCk(X,Yα)(g), and T ◦ T ′(g) = g. Combining the two conclusions, we have

T (Ck(X,
∏

Yα∈Y Yα)) =
∏

Yα∈Y Ck(X, Yα). So T is a bijection. Next we prove that T is a

continuous mapping.

For each Yα ∈ Y, compact set A ⊂ X , and open set Uα ⊂ Yα, we have

T−1(p−1
Ck(X,Yα)(W

+[A, Uα])) = W+[A, p−1
Ck(X,Yα)(U)].

Similarly, T−1(p−1
Ck(X,Yα)(W

−[A, Uα])) = W−[A, p−1
Ck(X,Yα)(Uα)]. So T is continuous.

The fan tightness of a space X is defined by ft(X) = sup{ft(X, x) : x ∈ X}, where the fan

tightness at x of X is defined by ft(X, x) = ℵ0 + min{λ : for subset sequence {An} of X and

x ∈
⋂

n∈N An, there exists a subset Bn of An such that |Bn| ≤ λ and x ∈
⋃

n∈N Bn}.
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Theorem 3.3 For a space X , the following conditions are equivalent:

(1) ft(Ck(X), Tk) = ℵ0;

(2) ft(Cω
k (X), Tk) = ℵ0;

(3) For each open k over sequence {Un} of X , there exists finite subsets U ′
n of Un such that

⋃
n∈N U ′

n is a k over of X .

Proof (1) ⇒ (3). Suppose that {Un} is an open k cover sequence of X , for each n ∈ N , put

An = {f ∈ (Ck(X), Tk): there exists U ∈ Un such that f(X − U) ⊂ {0}}. Next we will prove

that An is a dense subset of (Ck(X), Tk).

Let W [K, V1, V2, . . . , Vk] = {f ∈ (Ck(X), Tk) : f(x) ∩ Vi 6= ∅, x ∈ K, 1 ≤ i ≤ k, f(K) ⊂
⋃k

i=1 Vi} be a base open set of (Ck(X), Tk), where K is compact in X , V1, V2, . . . , Vk are open

in R. Take U ∈ Un such that K ⊂ U and let f ∈ W [K, V1, V2, . . . , Vk]. Then f(x) ∩ Vi 6=

∅, x ∈ K, 1 ≤ i ≤ k, f(K) ⊂
⋃k

i=1 Vi. For x ∈ K, by the complete regularity of X , there

exists f
(i)
x ∈ C(X) such that f

(i)
x (x) ∈ f(x) ∩ Vi, f

(i)
x (X − U) = {0}. Thus there exists an

open neighbourhood U
(i)
x of x such that for each x′ ∈ U

(i)
x , we have f

(i)
x (x′) ∈ Vi. Since {U

(i)
x :

x ∈ K} covers K, there exists a finite subcover Vi = {U
(i)
xj : xj ∈ K, 1 ≤ j ≤ ji}. We define

g ∈ M(X, R) by g(x) = {f
(i)
xj (x) : 1 ≤ i ≤ k, 1 ≤ j ≤ ji}. Obviously, g is point-compact and

g ∈ W [K, V1, V2, . . . , Vk]. Because for any x ∈ K, 1 ≤ i ≤ k, there exists U
(i)
xj ∈ Vi such that

x ∈ U
(i)
xj , f

(i)
xj (Uxj

) ⊂ Vi. Thus we have f
(i)
xj (x) ∈ Vi, g(x)∩Vi 6= ∅ and g(x) ⊂

⋃k
i=1 Vi. Therefore

g ∈ W [K, V1, V2, . . . , Vk], and finally g is continuous. For any x ∈ X and open set V of R, if

g(x)∩V 6= ∅, then there exists some f
(i)
xj such that f

(i)
xj (x) ∈ V . Because each f

(i)
xj is single-valued

and continuous, there exists an open neighbourhood Ux of x such that for any x′ ∈ Ux, we always

have f
(i)
xj (x′) ∈ V . So Ux ⊂ g−(V ) and g−(V ) is open. For any x ∈ X , if g(x) ⊂ V , then for

each f
(i)
xj , we have f

(i)
xj (x) ∈ V . So there exists an open neighbourhood U

(i)
xj of x such that for

any x′ ∈ U
(i)
xj , we have f

(i)
xj (x′) ∈ V . Put Ux =

⋂
1≤j≤ji,1≤i≤k U

(i)
xj . Then Ux ⊂ g+(V ), and

g+(V ) is open. Thus g is continuous. Obviously, we have g(X − U) ⊂ {0}. Therefore, g ∈ An,

so g ∈ An ∩ W [K, V1, V2, . . . , Vk].

Now we take f1 ≡ {1}. Since each An is a dense subset of (Ck(X), Tk), f1 ∈ An. So

f1 ∈
⋂

n∈N An. From ft(Ck(X), Tk) = ℵ0, there exists a finite subset Bn of An such that

f1 ∈
⋃

n∈N Bn. Let Bn = {f(n,i) : 1 ≤ i ≤ kn}. Then there exists U(n,i) ∈ Un such that

f(n,i)(X − U(n,i)) ⊂ {0}. Put U ′
n = {U(n,i) : 1 ≤ i ≤ kn}. Then

⋃
n∈N U ′

n is a k cover of X . In

fact, for each compact subset K, from f1 ∈ W+[K, (0, 2)], there exists n ∈ N, i ≤ kn such that

f(n,i) ∈ W+[K, (0, 2)]. Hence K ⊂ U(n,i).

(3) ⇒ (2). By Theorem 3.2, (Cω
k (X, R), Tk) is homeomorphic to (Ck(X, Rω), Tk). Next

we prove that ft(Ck(X, Rω), Tk) = ℵ0. Put f ∈
⋂

n∈N An, where An ⊂ (Ck(X, Rω), Tk). Let

U be a countable base of R and U♯ be a finite subfamily of U . Then {U♯ : U♯ ⊂ U} is also

countable. The base of hyper-space K(R) of compact sets of R is of all the sets of 〈U♯〉 =

{K ∈ K(R) : K ⊂
⋃
U♯, K ∩ U 6= ∅, U ∈ U♯}. Thus the base of compact subset hyper-space

(K(R))ω of product space R
ω is of all the sets of 〈Πn∈N 〈U♯

(n,1)〉, Πn∈N 〈U♯

(n,2)〉, . . . , Πn∈N 〈U♯

(n,k)〉〉,

where k ∈ N,U♯

(n,i)(1 ≤ i ≤ k) are 〈R〉 except finite n. So the base of (K(R))ω is countable
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and we denote it by {Vn : n ∈ N}, where Vn is some element in the base. Put Vn = {{x :

g(x) ∈ Vn} : g ∈ An}. Then Vn is an open k cover of X . Because for any compact A ⊂ X ,

any base neighbourhood W [A, Vn] = {g ∈ Ck(X, Rω) : g(x) ∈ Vn, x ∈ A} of f , there exists

g ∈ W [A, Vn] ∩ An such that A ⊂ {x : g(x) ∈ Vn} ∈ Vn. Put N1 = {n ∈ N : X ∈ Vn}. If

N1 is infinite, then for any neighbourhood W [A, 〈U1, U2, . . . , Uk〉], because of the compactness

of f(A), there exists a base open set Vm(m ∈ N1) of (K(R))ω such that for each x ∈ A, we

have f(x) ∈ Vm ⊂ 〈U1, U2, . . . , Uk〉, and there exists gm ∈ Am such that gm(X) ∈ Vm. Thus

gm ∈ W [A, 〈U1, U2, . . . , Uk〉], therefore {gm : m ∈ N1} converge to f . If N1 is finite, then there

exists n0 ∈ N such that when m ≥ n0, for gm ∈ Am, we have X 6= {x : gm(x) ∈ Vm}. But

{Vm : m ≥ n0} is an open k cover sequence of X . Then there exists a finite subset V ′
m of Vm

such that
⋃

m≥n0
V ′

m is an open k cover of X . Let V ′
m = {U(m,j) : j ≤ im}. Then there exists

f(m,j) ∈ Am such that U(m,j) = {x : f(m,j)(x) ∈ Vm}. Then f ∈ {f(m,j) : m ≥ n0, j ≤ im}.

Because for any base neighbourhood W [A, 〈U1, U2, . . . , Uk〉] of f , we put N2 = {(m, j) ∈ N ×

N : m ≥ n0, j ≤ im, A ⊂ U(m,j)}. If N2 is finite, then for (m, j) ∈ N2, U(m,j) 6= X . We

can take x(m,j) ∈ X − U(m,j) and A′ = A
⋃
{x(m,j) : (m, j) ∈ N2}. Then there exists no

element in
⋃

m≥n0
V ′

m containing A′, a contradiction. So N2 is infinite, and there exists m ≥

n0, j ≤ im such that A ⊂ U(m,j) = {x : f(m,j)(x) ∈ Vm} and Vm ⊂ 〈U1, U2, . . . , Uk〉. Thus

for each x ∈ A, we have f(m,j)(x) ∈ 〈U1, U2, . . . , Uk〉, so f(m,j) ∈ W [A, 〈U1, U2, . . . , Uk〉], and

f ∈ {f(m,j) : m ≥ n0, j ≤ im}.

(2) ⇒ (1). Because (Ck(X), Tk) is a closed subspace of (Cω
k (X), Tk), the conclusion is

obvious.

By Theorem 2.1, (C(X), Tp) and (C(X), T k) are subspaces of (Ck(X), Tp) and (Ck(X), Tk),

respectively. So the results in this paper are right to continuous single-valued function spaces

(C(X), Tp) and (C(X), Tk).
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