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1. Introduction

Let {Xn, n ≥ 1} be a sequence of independent random variables and Sn =
∑n

i=1 Xi.

Rosenthal[1] established the following inequality:

c−1
p {[(

n∑

i=1

EX2
i )p/2]1/p + (

n∑

i=1

E|Xi|p)1/p} ≤ (E|Sn|p)1/p

≤ Cp{[(
n∑

i=1

EX2
i )p/2]1/p + (

n∑

i=1

E|Xi|p)1/p}, p ≥ 2, (1)

where cp and Cp are positive constants depending only on p. This inequality is a generalization

of Khintchine’s inequality and is known as Rosenthal’s inequality. Rosenthal’s inequality is now

a fundamental inequality with wide applications in probability and statistics. Recently, a lot

of attention has been given to the best constants or growth rates of the constants appearing

in various Rosenthal’s inequalities. In 1973, Burkholder[2] extended Rosenthal’s inequality to

discrete time martingales and gave the following result.

Let {fn,Fn, n ≥ 0} be a discrete time martingale, f0 = 0. Then for p ≥ 2, the following

Rosenthal’s inequality holds:

d−1
p {(E(

n∑

i=1

E[d2
i /Fi−1])

p/2)1/p + (E[ sup
1≤i≤n

|di|]p)1/p} ≤ (E[ sup
1≤i≤n

|fi|]p)1/p

≤ Dp{(E(

n∑

i=1

E[d2
i /Fi−1])

p/2)1/p + (E[ sup
1≤i≤n

|di|]p)1/p}, (2)
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where {dn = fn − fn−1, n ≥ 1} is the martingale difference sequence with respect to filtration

{Fn, n ≥ 0}, dp and Dp are positive constants depending only on p.

As for the the growth rates of constants, Rosenthal’s proof yielded only exponential of p

estimate for the growth rate of Cp (for the best constant) as p → ∞. Burkholder did not give

the growth rate of Dp either, but from the proof one can show that Dp ≤ Kp(ln p)ε, where K is

an absolute constant and ε is any positive number. In 1985, Johnson, Schechtman and Zinn[3]

showed that the actual growth rate of Cp is p/ ln p. This is somewhat unexpected since the

growth rate in Khintchine’s inequality is
√

p (for the best constant). Talagrand extended this

result to the case of independent Banach space valued random variables. In 1990, Hitczenko[4]

proved that for discrete-time martingales dp grows like
√

p and Dp grows like p/ ln p as p → ∞,

and the growth rate of the constants is best possible. Rosenthal’s inequality for locally square

integrable martingales was first established by Dzhaparidze and Valkeila in 1990. We shall work

within the framework of general martingale theory and use the standard notions of general

theory of stochastic processes, thus we consider martingales with cadalag paths. This class of

course includes discrete-time martingales, but is much larger. We introduce some notations and

conventions concerning martingales needed for the proofs of our results.

Let (Ω,F , P ) be a complete probability space and (Ft)t≥0 be a filtration satisfying usual

conditions on (Ω,F , P ). Denote by M = {Mt, t ≥ 0} a locally square integrable martingales

based on (Ω,F , Ft, P ). [M ] is the quadratic variation of M and 〈M〉 is the predictable quadratic

variation of M . We write

M∗
t = sup

s≤t
|Ms|, (△M)∗t = sup

s≤t
|△Ms|.

△Mτ = MτI(τ < ∞) − Mτ−I(τ < ∞),

M τ = (Mt∧τ )t≥0, M τ−

= M τ −△MτI([[τ,∞))).

µ = µ((0, t] × B) =
∑

s≤t I{△Ms ∈ B} (B ∈ B(R), t ≥ 0) is the jump measure of M , and ν is

the compensating random measure of µ. Denote

|x|p ∗ µt =

∫

[0, t]×B

|x|pdµ, t ≥ 0,

|x|p ∗ νt =

∫

[0, t]×B

|x|pdν, t ≥ 0.

In 1990, Dzhaparidze and Valkeila[5] established the following different versions of Rosenthal’s

inequality for locally square integrable martingales

A−1
p {E[〈M〉p/2

T + (△M)∗p
T ]}1/p ≤ [E(M∗

T )p]1/p

≤ Bp{E[〈M〉p/2
T + (△M)∗p

T ]}1/p, p ≥ 2. (3)

A−1
p {E[〈M〉p/2

T + |x|p ∗ νT ]}1/p ≤ [E(M∗
T )p]1/p

≤ Bp{E[〈M〉p/2
T + |x|p ∗ νT ]}1/p}, p ≥ 2. (4)

Where Ap and Bp are positive constants depending only on p. Dzhaparidze and Valkeila could

not give the growth rates of Ap and Bp, they only pointed out that Ap → ∞, Bp → ∞, when
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p → ∞. Wood studied the Rosenthal’s inequality for point process martingales and proved that

Ap and Bp appearing in (4) are the same constants as in the discrete-time case for point process

martingales and marked point process martingales. In 2003, Ren and Tian[6] showed that for

general locally square integrable martingales the constants Ap and Bp appearing in (3) have the

same orders as in (2) , i.e., Ap = O(
√

p), Bp = O(p/ ln p).

In this paper, we prove that the orders of Ap and Bp appearing in (4) for general locally

square integrable martingales are the same as that for the discrete-time case too.

2. Main result

We need the following Garsia’s lemma for the proof of our theorem.

Lemma (Garsia’s lemma)[7] Let A = {At, t ≥ 0} be an adapted increasing process, Φ a moderate

increasing and convex function on R+, Φ(0) = 0, ξ and η be nonnegative integrable random

variables, and E[Φ(ξ)] < ∞, ξ ≥ A∞, a.s., ξ ∈ F∞, if one of the two conditions is satisfied:

(a) For any stoping time T

E(ξ/FT ) − AT−I(T > 0) ≤ E(η/FT ) a.s..

(b) A is predictable, A0 = 0, and for any predictable time T

E(ξ/FT ) − AT ≤ E(η/FT ) a.s..

Then E[Φ(ξ)] ≤ ρρ+1E[Φ(η)]. If taking Φ(t) = tp (1 < p < ∞), we have better inequality

E(ξp) ≤ ppE(ηp).

Theorem 1 Let M = {Mt, t ≥ 0} be a locally square integrable martingale with M0 = 0. Then

for p ≥ 2, the following Rosenthal’s inequality holds:

A−1
p {E[〈M〉p/2

T + |x|p ∗ νT ]}1/p ≤ [E(M∗
T )p]1/p ≤ Bp{E[〈M〉p/2

T + |x|p ∗ νT ]}1/p} (5)

for any stopping time T , and Ap = O(
√

p), Bp = O(p/ ln p).

Proof For any stopping time T , define

M̃t = (MT+t − MT−I(T > 0))I(T < ∞), Gt = FT+t, t ≥ 0.

Then M̃ = {M̃t,Gt, t ≥ 0} is a locally square integrable martingale with M̃0 = 0, and we have

[M̃ ]t = ([M ]T+t − [M ]T−)I(T > 0), t ≥ 0.

M̃∗
∞ ≤ M∗

∞ + M∗
T−

≤ 2M∗
∞.

By Burkholder-Davis inequality

E[M̃ ]∞ ≤ E(M̃∗
∞)2. (6)

We get

E([M ]∞ − [M ]T−) ≤ E(2M∗
∞)2. (7)
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Since for any set A ∈ FT , M̃IA = {M̃tIA,Gt, t ≥ 0} is still a locally square integrable martingale

with M̃0IA = 0, we have

E([M̃ ]∞/FT ) ≤ E(M̃∗
∞)2/FT ) a.s.. (8)

So that

E([M ]∞/FT ) − [M ]T−I(T > 0) ≤ E(2M∗
∞)2/FT ) a.s.. (9)

Set A = [M ], ξ = [M ]∞, η = (2M∗
∞)2. Taking Φ(t) = tp/2 (2 < p < ∞), from Garsia’s lemma,

we obtain

E[M ]p/2
∞ ≤ (2p)p/2E(M∗

∞)p. (10)

Since, for p > 2

E(|x|p ∗ ν∞) = E(|x|p ∗ µ∞) = E[
∑

t<∞

| ∆Mt |p ] ≤ E[M ]p/2
∞ ≤ (2p)p/2E(M∗

∞)p,

and by the similar approach, we can prove

E〈M〉p/2
∞ ≤ (2p)p/2E(M∗

∞)p. (11)

Hence, we obtain

E(〈M〉p/2
∞ + |x|p ∗ ν∞) ≤ 2(2p)p/2E(M∗

∞)p. (12)

For any stopping time T , replace M by stopping martingale MT , we get

E(〈M〉p/2
T + |x|p ∗ νT ) ≤ 2(2p)p/2E(M∗

T )p. (13)

Thus the left-hand side inequality of (5) follows with Ap = (2
1

p

√
2p) ≤ 2

√
p. Since for discrete-

time martingales, dp = O(
√

p), we have Ap = O(
√

p), and the order of growth rates Ap is best

possible.

On the other hand, since E[(△M)∗p
T ] ≤ E[

∑
t<∞ | ∆Mt |p ] = E(|x|p ∗ µ∞) = E(|x|p ∗ ν∞),

we have

[E(M∗
T )p]1/p ≤ Bp{E[〈M〉p/2

T + (△M)∗p
T ]}1/p ≤ Bp{E[〈M〉p/2

T + |x|p ∗ νT ]}1/p}.

From [6], Bp = O(p/ ln p).

Thus, we proved that the order of growth rates of the constants Ap and Bp are the same as

in the case of discrete-time martingales.
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