Drazin Invertibility of Operators AB and BA

LU Jian Ming, DU Hong Ke, WEI Xiao Mei

(College of Mathematics and Information Science, Shaanxi Normal University, Shaanxi 710062, China) (E-mail: gandi19817@stu.snnu.edu.cn; hkdu@snnu.edu.cn)

Abstract In this note an alternative proof of the equivalence of Drazin invertibility of operators AB and BA is given. As an application, we will prove that $\sigma_D(AB) = \sigma_D(BA)$ and $\sigma_D(A) = \sigma_D(\widetilde{A})$, where $\sigma_D(M)$ and \widetilde{M} denote the Drazin spectrum and the Aluthge transform of an operator $M \in \mathcal{B}(\mathcal{H})$, respectively.

Keywords Drazin invertibility of operators; Drazin index; Aluthge transforms of operators.

Document code A

MR(2000) Subject Classification 47A05

Chinese Library Classification 0177.1

1. Introduction

Let \mathcal{H} be a complex separable Hilbert space with the inner product $\langle ., . \rangle$ and let $B(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H} . For $A \in B(\mathcal{H})$, the range, the null space, the adjoint, spectrum and its isolated points of spectrum of A are denoted by R(A), N(A), $A^*\sigma(A)$ and iso $\sigma(A)$, respectively. As is well known, that AB is invertible does not imply that BA is invertible for A and $B \in B(\mathcal{H})$.

Example 1.1 Let S be the unilateral shift operator on \mathcal{H} . Then $S^*S = I$ is invertible, but SS^* is not invertible.

Similarly, that AB is Moore-Penrose invertible does not imply that BA is Moore-Penrose invertible.

Example 1.2 Let

$$A = \left(\begin{array}{cc} I & 0 \\ 0 & 0 \end{array}\right) \text{ and } B = \left(\begin{array}{cc} 0 & 0 \\ C & 0 \end{array}\right),$$

with respect to the space decomposition $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$, where the range R(C) of operator $C(\in \mathcal{B}(\mathcal{M}, \mathcal{M}^{\perp}))$ is not closed. Then

$$AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $BA = \begin{pmatrix} 0 & 0 \\ C & 0 \end{pmatrix}$.

Received date: 2006-11-07; Accepted date: 2007-07-13

Foundation item: the National Natural Science Foundation of China (No. 10571113).

This shows that $R(AB) = \{0\}$ is closed and R(BA) = R(C) is not closed. Recall that an operator T is Moore-Penrose invertible if and only if the range R(T) of T is closed. So AB is Moore-Penrose invertible, but BA is not.

Two examples above encourage us to consider whether AB is Drazin invertible implies BA is Drazin invertible. In this note, we shall give a proof of the equivalence between Drazin invertibility of AB and BA by Riesz functional calculus which is different from the proof given by Dajic and Koliha in [1]. Recall that an operator $A \in B(\mathcal{H})$ is called Drazin invertible if there exists an operator $A^D \in B(\mathcal{H})$ such that

$$AA^{D} = A^{D}A, \ A^{D}AA^{D} = A^{D}, \ A^{k+1}A^{D} = A^{k},$$

for some nonnegative integer k. In this case, the least positive integer k satisfying the operator equation $A^{k+1}A^D = A^k$ is called the Drazin index of A and denote it by $\operatorname{ind}(A) = k$. For $A \in B(\mathcal{H})$, if A is Drazin invertible, then the Drazin inverse A^D of A is unique^[2]. The ascent (descent) of $A \in B(\mathcal{H})$ is defined by the smallest integer n such that $N(A^n) = N(A^{n+1})(R(A^n) = R(A^{n+1}))$, that is, $\operatorname{asc}(A) = \min\{n : N(A^n) = N(A^{n+1})\}(\operatorname{des}(A) = \min\{n : R(A^n) = R(A^{n+1})\}$. If such n does not exist, then $\operatorname{asc}(A) = \infty$ ($\operatorname{des}(A) = \infty$). It is well known that $\operatorname{des}(A) = \operatorname{asc}(A)$ if $\operatorname{asc}(A)$ and $\operatorname{des}(A)$ are finite^[3] and A is Drazin invertible if and only if the ascent and the descent of A are both finite, equivalently, A0 is a finite order pole of the resolvent operator A1. In this case, $\operatorname{asc}(A) = \operatorname{des}(A) = \operatorname{ind}(A)$ and A2 is not the accumulated point of A3. Clearly, an invertible operator A4 is Drazin invertible with $A^D = A^{-1}$ 4 and $\operatorname{ind}(A) = A$ 5. A nilpotent operator A5 is Drazin invertible and A6.

Similar to the difinition of the spectrum of an operator in $\mathcal{B}(\mathcal{H})$, we shall define the Drazin spectrum $\sigma_D(A)$ of an operator $A \in \mathcal{B}(\mathcal{H})$ by

$$\sigma_D(A) = \{\lambda : A - \lambda I \text{ is not Drazin invertible}\}.$$

For the spetrum of AB and BA, we have $\sigma(AB) \setminus \{0\} = \sigma(BA) \setminus \{0\}$, but in general case, $\sigma(AB) \neq \sigma(BA)$. However, in this note we show that $\sigma_D(AB) = \sigma_D(BA)$. As an application, we will prove that an operator A is Drazin invertible if and only if its Aluthge transform \widetilde{A} is Drazin invertible. Let $A = V \mid A \mid$ be a polar decomposition of A, where $\mid A \mid = (A^*A)^{\frac{1}{2}}$ and V is a partial isometry with initial space $\overline{R(A^*)}$ and the final space $\overline{R(A)}$. Then the Aluthge transform \widetilde{A} of A is defined by $\widetilde{A} = |A|^{\frac{1}{2}} V \mid A|^{\frac{1}{2}[5]}$.

2. Main results and proofs

We begin with some lemmas.

Lemma 2.1^[6] Let A and $B \in B(\mathcal{H})$. Then $\sigma(AB) \setminus \{0\} = \sigma(BA) \setminus \{0\}$.

Lemma 2.2^[2,3] Let $A \in B(\mathcal{H})$. Then following statements are equivalent:

- (1) A is Drazin invertible with ind(A) = k;
- (2) If $0 \in \sigma(A)$, then 0 is an isolated point of $\sigma(A)$, $A|_{E(\{0\})}$ is nilpotent and $(A|_{E(\{0\})\mathcal{H}})^k = 0$,

where E(0) is the spectral projection of A according to $\{0\}$ which is defined by

$$E(0) = \frac{1}{2\pi i} \int_{\Gamma} (\lambda I - A)^{-1} d\lambda,$$

where Γ is a positively oriented curve such that $\{0\} \in \operatorname{ins}\Gamma$ and $\sigma(A) \setminus \{0\} \in \operatorname{out}\Gamma$ and $T|_M$ is the restriction of $T \in B(\mathcal{H})$ onto a subspace $M \subset H$.

The main result in this note is

Theorem 2.3 Let $A, B \in B(\mathcal{H})$. Then the following statements hold:

- (1) AB is Drazin invertible if and only if BA is Drazin invertible.
- (2) If AB is Drazin invertible, then $|\operatorname{ind}(AB) \operatorname{ind}(BA)| \le 1$.

Proof By the symmetry, it suffices to prove that AB is Drazin invertible implies that BA is Drazin invertible.

For convenience, we divide the proof into two steps:

Step 1. Suppose $0 \notin \sigma(AB)$, i.e., AB is invertible, then AB is Drazin invertible and $\operatorname{ind}(AB) = 0$. In this case, if $0 \notin \sigma(BA)$, i.e., BA is invertible, then BA is Drazin invertible and $\operatorname{ind}(BA) = 0$; if $0 \in \sigma(BA)$, then 0 is an isolated point of $\sigma(BA)$ by Lemma 2.1 and the assumption that $0 \notin \sigma(AB)$. To prove that BA is Drazin invertible, it suffices to show that $BA|_{P_{BA}(0)\mathcal{H}}$ is nilpotent. Here we shall prove that $P_{BA}(0)BAP_{BA}(0) = 0$. Recall that the Riesz projection $P_{AB}(0)$ of $P_{AB}(0)$ of $P_{AB}(0)$ is nilpotent and $P_{AB}(0)$ is nilpotent and $P_{AB}(0)$ is defined by

$$P_{AB}(0) = \frac{1}{2\pi i} \int_{\Gamma} (\lambda I - AB)^{-1} d\lambda,$$

where Γ is a positively oriented curve such that $\{0\} \in \text{ins}\Gamma$ and $\sigma(A)\setminus\{0\} \in \text{out}\Gamma$. Since AB is invertible, $P_{AB}(0) = 0$. Moreover, we have

$$P_{BA}(0)BAP_{BA}(0) = \left(\frac{1}{2\pi i} \int_{\Gamma} (\lambda - BA)^{-1} d\lambda\right) BAP_{BA}(0)$$

$$= B\left(\frac{1}{2\pi i} \int_{\Gamma} (\lambda - AB)^{-1} d\lambda\right) AP_{BA}(0)$$

$$= BP_{AB}(0)AP_{BA}(0) = 0.$$

So BA is Drazin invertible with $ind(BA) \leq 1$ by Lemma 2.2.

Step 2. Suppose $0 \in \sigma(AB)$. Since AB is Drazin invertible, we have $0 \in \text{iso}\sigma(AB)$ by Lemma 2.2. In this case, if $0 \notin \sigma(BA)$, i.e., BA is invertible, then BA is Drazin invertible and ind(BA) = 0. From Step 1, we have $\text{ind}(AB) \leq 1$. If $0 \in \sigma(BA)$, then $0 \in \text{iso}\sigma(BA)$ by the assumption $0 \in \text{iso}\sigma(AB)$ and Lemma 2.1. Moreover, suppose $\text{ind}(AB) = k_0$. Then $(AB|_{P_{AB}(0)} \mathcal{H})^{k_0} = 0$, i.e., $(P_{AB}(0)ABP_{AB}(0))^{k_0} = 0$, so $P_{AB}(0)(AB)^{k_0} = 0$. To prove that BA is Drazin invertible, here we shall prove that $(P_{BA}(0)BAP_{BA}(0))^{k_0+1} = 0$. But

$$(P_{BA}(0)BAP_{BA}(0))^{k_0+1} = P_{BA}(0)(BA)^{k_0+1}$$

= $BP_{AB}(0)(AB)^{k_0}A = 0.$

So BA is Drazin invertible with $\operatorname{ind}(BA) \leq k_0 + 1$.

(2) By the proof of (1), it is clear that $|\operatorname{ind}(AB) - \operatorname{ind}(BA)| \le 1$, if AB is Drazin invertible. The proof is completed.

Remark 2.4 In fact, if AB is Drazin invertible, then $(AB)^D = \int_{\Gamma} \lambda^{-1} (\lambda I - AB)^{-1} d\lambda$ and so $(AB)^D A = A(BA)^D$, where Γ is a positively oriented curve such that $\{0\} \in \operatorname{ins}\Gamma$ and $\sigma(A) \setminus \{0\} \in \operatorname{out}\Gamma$.

Next we give an example to show there exist two operators A and B such that $|\operatorname{ind}(AB) - \operatorname{ind}(BA)| = 1$.

Example 2.5 Let

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

be 2×2 matrices. Then

$$AB = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $BA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

In this case, $\operatorname{ind}(AB) = 2$, $\operatorname{ind}(BA) = 1$ and so $|\operatorname{ind}(AB) - \operatorname{ind}(BA)| = 1$.

In [7], Buoni and Faires proved that the Drazin invertibility of operators $\lambda I - BA$ and $\lambda I - AB$ is equivalent for any $\lambda \neq 0$ and $\operatorname{ind}(\lambda I - AB) = \operatorname{ind}(\lambda I - BA)(\lambda \neq 0)$. Together with Theorem 2.3 and the definition of Drazin spectrum of an operator, we get the following

Corollary 2.6 Let $A, B \in \mathcal{B}(\mathcal{H})$. Then $\sigma_D(AB) = \sigma_D(BA)$.

Recall that an operator A and its Aluthge transform \widetilde{A} share many common properties^[8]. Moreover, by Corollary 2.6 and the definition of Aluthge transform of an operator, we also have the following

Corollary 2.7 Let $A \in B(\mathcal{H})$. Then $\sigma_D(A) = \sigma_D(\widetilde{A})$.

References

- DAJIĆ A, KOLIHA J J. The weighted g-Drazin inverse for operators [J]. J. Aust. Math. Soc., 2006, 81(3): 405–423.
- [2] WANG Guorong, WEI Yiming, QIAO Sanzheng. Generalized Inverses: Theory and Computations, Graduate Series in Mathematics [M]. Beijing: Science Press, 2004.
- [3] TAYLAR A E, LAY D C. Introduction to Functional Analysis (second edition) [M]. New York: Wiley, 1980.
- [4] DU Hongke, DENG Chunyuan. The representation and characterization of Drazin inverses of operators on a Hilbert space [J]. Linear Algebra Appl., 2005, 407: 117–124.
- [5] ALUTHGE A. On p-hyponormal operators for 0 13(3): 307-315.
- [6] MURPHY G J. C*-Algebras and Operator Theory [M]. New York: Academic Press, 1990.
- [7] BUONI J J, FAIRES J D. Ascent, descent, nullity and defect of products of operators [J]. Indiana Univ. Math. J., 1976, 25(7): 703-707.
- [8] JUNG B, KO E, PEARCY C. Aluthge transforms of operators [J]. Integral Equations Operator Theory, 2000, 37(4): 437–448.