Quantum Adjoint Action for Quantum Algebra $\mathcal{U}_{q}(f(K, H))$

HOU Bo ${ }^{1}$, WANG Zhi Xi ${ }^{2}$
(1. College of Mathematics and Information Science, Hebei Teacher's University, Hebei 050016, China;
2. Department of Mathematics, Capital Normal University, Beijing 100037, China)

(E-mail: wangzhx@mailcnu.edu.cn)

Abstract

The aim of this paper is to study the adjoint action for the quantum algebra $\mathcal{U}_{q}(f(K, H))$, which is a natural generalization of quantum algebra $\mathcal{U}_{q}\left(\mathrm{sl}_{2}\right)$ and is regarded as a class of generalized Weyl algebra. The structure theorem of its locally finite subalgebra $\mathcal{F}\left(\mathcal{U}_{q}(f(K, H))\right)$ is given.

Keywords adjoint action; locally finite subalgebra; highest weight vector.
Document code A
MR(2000) Subject Classification 16W30; 16W35
Chinese Library Classification O153

0. Introduction

Most important quantum algebras are the q-deformations of the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$ of the simple Lie algebra \mathfrak{g}. And the simplest and most important example is the DrinfeldJimbo quantum group $\mathcal{U}_{q}\left(\mathrm{sl}_{2}\right)$, which appeared first in 1983 in a paper by Kulish and Reshtikhin ${ }^{[1]}$ on the study of integrable $X Y Z$ module with highest spin and whose Hopf algebra structure was discovered later by Sklyanin ${ }^{[2]}$. Various generalized (Weyl) algebras of $\mathcal{U}\left(\mathrm{sl}_{2}\right)$ and $\mathcal{U}_{q}\left(\mathrm{sl}_{2}\right)$ have been studied by many authors ${ }^{[3-6]}$. In particular, Wang ${ }^{[7]}$ introduced a quantum algebra $\mathcal{U}_{q}(f(K, H))$ as a natural generalization of $\mathcal{U}_{q}\left(\mathrm{sl}_{2}\right)$. Moreover, it can be regarded not only as a generalization of Drinfeld double $\mathcal{D}\left(\mathrm{sl}_{2}\right)^{[7]}$, but also as a class of generalized Weyl algebras defined by Bavula ${ }^{[4]}$. Thus studying the structure of $\mathcal{U}_{q}(f(K, H))$ is a very interesting and significant work. In [7], a necessary and sufficient condition for $\mathcal{U}_{q}(f(K, H))$ to be a Hopf algebra was given, moreover, finite dimensional representations and the center of $\mathcal{U}_{q}(f(K, H))$ were discussed. Our main aim in this paper is to discuss the irreducible $\mathcal{U}_{q}(f(K, H))$-submodules of $\mathcal{U}_{q}(f(K, H))$ under the adjoint action and give the structure theorem of its locally finite subalgebra $\mathcal{F}\left(\mathcal{U}_{q}(f(K, H))\right)$.

1. Quantum algebra $\mathcal{U}_{q}(f(K, H))$

Throughout this paper k denotes the complex field and $q \in k \backslash\{0\}$ is not a root of the unity.
Received date: 2006-12-25; Accepted date: 2007-11-22
Foundation item: the National Natural Science Foundation of China (No. 10871227); the Science Foundation of Hebei Province (No. 2008000135).

Definition 1.1 ${ }^{[7]}$ Define $\mathcal{U}_{q}(f(K, H))$ as the algebra generated by E, F, K, H and K^{-1}, H^{-1} with the relations

$$
\begin{aligned}
K H=H K, \quad K K^{-1} & =K^{-1} K=1, \quad H H^{-1}=H^{-1} H=1 \\
K E K^{-1} & =q^{2} E, \quad K F K^{-1}=q^{-2} F \\
H E H^{-1} & =q^{-2} E, \quad H F H^{-1}=q^{2} F \\
{[E, F] } & =E F-F E=f(K, H)
\end{aligned}
$$

where, $f(K, H)=\sum_{i, j=-N}^{N} a_{i j} K^{i} H^{j} \in k\left[K, H, K^{-1}, H^{-1}\right]$ and $N \in \mathbb{Z}^{+}$.
Set $(n)_{q}=1+q^{2}+\cdots+q^{n-1}=\frac{q^{n}-1}{q-1}$. For any Laurent polynomial

$$
g(K, H)=\sum_{i, j=-N}^{N} a_{i j} K^{i} H^{j} \in k\left[K, H, K^{-1} H^{-1}\right]
$$

we define the following notations. For any $s, m \in \mathbb{N}$, set

$$
\begin{gathered}
g^{+(s)}(K, H)=\sum_{i, j=-N}^{N} q^{2 s(i-j)} a_{i j} K^{i} H^{j}, \\
g^{-(s)}(K, H)=\sum_{i, j=-N}^{N} q^{-2 s(i-j)} a_{i j} K^{i} H^{j}, \\
g_{+(m)}(K, H)=\sum_{i, j=-N}^{N}(m)_{q^{2(i-j)}} a_{i j} K^{i} H^{j}, \\
g_{-(m)}(K, H)=\sum_{i, j=-N}^{N}(m)_{-q^{-2(i-j)}} a_{i j} K^{i} H^{j} .
\end{gathered}
$$

Then, we have

$$
\begin{gathered}
g(K, H) F^{s}=F^{s} g^{-(s)}(K, H), \quad F^{s} g(K, H)=g^{+(s)}(K, H) F^{s}, \\
g_{+(m)}(K, H)=\sum_{s=0}^{m-1} g^{+(s)}(K, H), \quad g_{-(m)}(K, H)=\sum_{s=0}^{m-1} g^{-(s)}(K, H) .
\end{gathered}
$$

Moreover, for any $m \in \mathbb{N}$, the following relations hold in $\mathcal{U}_{q}(f(K, H))$:

$$
\begin{aligned}
& E F^{m}-F^{m} E=F^{m-1} f_{-(m)}(K)=f_{+(m)}(K) F^{m-1} \\
& E^{m} F-F E^{m}=E^{m-1} f_{+(m)}(K)=f_{-(m)}(K) E^{m-1}
\end{aligned}
$$

The algebra $\mathcal{U}_{q}(f(K, H))$ is Noetherian and has no zero divisors, and the set $\left\{E^{i} F^{j} K^{l} H^{r}\right\}$ $(i, j \in \mathbb{N}, l, r \in \mathbb{Z})$ is its basis.

In what follows, we always assume $f(K)=a\left(K^{m} H^{n}-K^{-m^{\prime}} H^{-n^{\prime}}\right)$ for some $a \in k \backslash\{0\}$, and some $m, m^{\prime}, n, n^{\prime} \in \mathbb{Z}^{+}$with $M=m-n=m^{\prime}-n^{\prime}$. In this situation, the algebra $\mathcal{U}_{q}(f(K, H))$ has a Hopf algebra structure: In fact, for some $h, k, s, t, h^{\prime}, k^{\prime}, s^{\prime}, t^{\prime} \in \mathbb{Z}$,

$$
\Delta(K)=K \otimes K, \quad \Delta\left(K^{-1}\right)=K^{-1} \otimes K^{-1}
$$

$$
\begin{gathered}
\Delta(H)=H \otimes H, \quad \Delta\left(H^{-1}\right)=H^{-1} \otimes H^{-1} \\
\Delta(E)=K^{s} H^{t} \otimes E+E \otimes K^{h} H^{k} \\
\Delta(F)=K^{-h^{\prime}} H^{-k^{\prime}} \otimes F+F \otimes K^{-s^{\prime}} H^{-t^{\prime}} \\
\varepsilon(K)=\varepsilon\left(K^{-1}\right)=1, \quad \varepsilon(H)=\varepsilon\left(H^{-1}\right)=1, \quad \varepsilon(E)=\varepsilon(F)=0, \\
S(K)=K^{-1}, \quad S\left(K^{-1}\right)=K, \quad S(H)=H^{-1}, \quad S\left(H^{-1}\right)=H \\
S(E)=-K^{-s} H^{-t} E K^{-h} H^{-k}, \quad S(F)=-K^{h^{\prime}} H^{k^{\prime}} F K^{s^{\prime}} H^{t^{\prime}}
\end{gathered}
$$

where, $M=h+t-k-s$, and $s-t=s^{\prime}-t^{\prime}, h-k=h^{\prime}-k^{\prime}$.
Set

$$
\begin{aligned}
f_{q}^{+}(K, H) & =a\left(\frac{K^{m} H^{n}}{q^{2(m-n)}-1}-\frac{K^{-m^{\prime}} H^{-n^{\prime}}}{q^{-2\left(m^{\prime}-n^{\prime}\right)}-1}\right) \\
f_{q}^{-}(K, H) & =a\left(\frac{K^{m} H^{n}}{1-q^{-2(m-n)}}-\frac{K^{-m^{\prime}} H^{-n^{\prime}}}{1-q^{-2\left(m^{\prime}-n^{\prime}\right)}}\right)
\end{aligned}
$$

Then the element $C_{q}(f(K))=E F+f_{q}^{+}(K)=F E+f_{q}^{-}(K)$, which is called the Casimir element of $\mathcal{U}_{q}(f(K, H))$, generates the center of $\mathcal{U}_{q}(f(K, H))$ as a polynomial algebra.

By [7, Proposition 3.4], for all $i, j \in \mathbb{N}$, we have the following equations:

$$
\begin{gather*}
\Delta\left(F^{j}\right)=\sum_{r=0}^{j}\binom{j}{r}_{q^{-2 M}} q^{2 r(j-r)\left(h^{\prime}-k^{\prime}\right)} F^{j-r} K^{-r h^{\prime}} H^{-r k^{\prime}} \otimes F^{r} K^{-s^{\prime}(j-r)} H^{-t^{\prime}(j-r)}, \tag{1.1}\\
\Delta\left(E^{i}\right)=\sum_{r=0}^{i}\binom{i}{r}_{q^{2 M}} q^{2 r(i-r)(s-t)} E^{i-r} K^{r s} H^{r t} \otimes E^{r} K^{h(i-r)} H^{k(i-r)} \tag{1.2}
\end{gather*}
$$

Where, $\binom{i}{s}_{q^{2 M}},\binom{j}{r}_{q^{-2 M}}$ are the Gauss polynomials (see [8, Chapter 4]).
Definition 1.2 Let V be a $\mathcal{U}_{q}(f(K, H))$-module and a, b scalars. An element $v \neq 0$ in V is called a highest (resp. lowest) weight vector of weight $(a, b) \in k \times k$ if $K \cdot v=a v, H \cdot v=b v$, and if $E \cdot v=0($ resp. $F \cdot v=0)$. $A \mathcal{U}_{q}(f(K, H)$)-module is called a highest weight module if it is generated by a highest weight vector.

Let $d \in \mathbb{N}$. We define a $\mathcal{U}_{q}(f(K, H))$-module denoted by $V(d)$ as follows: The set $\left\{v_{0}, v_{1}, \ldots, v_{d}\right\}$ is its basis and satisfies the following relations:

$$
\begin{aligned}
& K \cdot v_{i}=q^{d-2 i} v_{i} \text { for } 0 \leq i \leq d, H \cdot v_{i}=q^{-d+2 i} v_{i} \text { for } 0 \leq i \leq d, \\
& F \cdot v_{i}=v_{i+1} \text { for } 0 \leq i<d, \text { and } F \cdot v_{d}=0 \\
& E \cdot v_{i}=f_{-(i)}\left(q^{d}, q^{-d}\right) v_{i-1} \text { for } 0<i \leq d, \text { and } E \cdot v_{0}=0
\end{aligned}
$$

Then $V(d)$ is a highest weight $\mathcal{U}_{q}(f(K, H))$-module of weight $\left(q^{d}, q^{-d}\right)$ and its dimension is $d+1$. Thus by [7, Theorem 4.5], we know that $V(d)$ is simple, moreover, any $d+1$ dimensional simple $\mathcal{U}_{q}(f(K, H))$-module is isomorphic to $V(d)$.

2. The locally finite subalgebra of $\mathcal{U}_{q}(f(K, H))$

Let H be a Hopf algebra over a field k with a comultiplication Δ, a counit ε and an antipode S. We use the Sweedler's notation to denote Δ, i.e., $\Delta(x)=x_{1} \otimes x_{2}$ for all $x \in H$. For a Hopf
algebra H and $x, y \in H$, we set $(\operatorname{ad} x)(y)=x_{1} y S\left(x_{2}\right)$. Then, the action endows H with the structure of a left module algebra on itself, which is called the left adjoint action of $H^{[8,9]}$. Let $\mathcal{F}(H)$ denote the set of all elements on which the left adjoint action is locally finite, i.e.,

$$
\mathcal{F}(H)=\left\{x \in H \mid \operatorname{dim}_{k}(\operatorname{ad} H) x<\infty\right\}
$$

which is a subalgebra and a submodule of H, and is called the locally finite subalgebra of H. As we know, the left adjoint action of H and the locally finite subalgebra $\mathcal{F}(H)$ play important roles in the study of $\operatorname{Prim}(H)$, the set of all prime ideals of $H^{[10,11]}$. Catoiu ${ }^{[10]}$ studied the structure of $\mathcal{F}(H)$ when H is the universal enveloping algebra $\mathcal{U}\left(s l_{2}\right)$. Li and Zhang ${ }^{[12]}$ studied that of $\mathcal{F}(H)$ when H is the quantized enveloping algebra $\mathcal{U}_{q}\left(s l_{2}\right)$.

For quantum algebra $\mathcal{U}_{q}\left(f(K, H)\right.$, the adjoint actions of generators of $\mathcal{U}_{q}(f(K, H))$ can be represented as

$$
\begin{align*}
& (\operatorname{ad} K)(x)=K x K^{-1}, \quad\left(\operatorname{ad} K^{-1}\right)(x)=K^{-1} x K \\
& (\operatorname{ad} H)(x)=H x H^{-1}, \quad\left(\operatorname{ad} H^{-1}\right)(x)=H^{-1} x H \\
& (\operatorname{ad} E)(x)=E x K^{-h} H^{-k}-K^{s} H^{t} x K^{-s} H^{-t} E K^{-h} H^{-k} \\
& (\operatorname{ad} F)(x)=F x K^{s^{\prime}} H^{t^{\prime}}-K^{-h^{\prime}} H^{-k^{\prime}} x K^{h^{\prime}} H^{k^{\prime}} F K^{s^{\prime}} H^{t^{\prime}} \tag{2.1}
\end{align*}
$$

for all $x \in \mathcal{U}_{q}(f(K, H))$. And the locally finite subalgebra of $\mathcal{U}_{q}(f(K, H)), \mathcal{F}\left(\mathcal{U}_{q}(f(K, H))\right.$, is a left $\mathcal{U}_{q}(f(K, H))$-module algebra and is semisimple. Let $x \in \mathcal{U}_{q}(f(K, H))$ and set

$$
[x]=\operatorname{ad}\left(\mathcal{U}_{q}(f(K, H))(x)\right.
$$

denoting the $\mathcal{U}_{q}(f(K, H))$-submodule of $\mathcal{U}_{q}(f(K, H))$ generated by x.
Proposition 2.1 For any $d \in \mathbb{N}$, we have $\left[E^{d} K^{-d s} H^{-d t}\right] \cong V(2 d)$.
Proof By [7, Theorem 4.5], we only need prove that $E^{d} K^{-d s} H^{-d t}$ is a highest weight vector of weight $\left(q^{2 d}, q^{-2 d}\right)$ and the endomorphism induced by F is nilpotent.

In fact, by the equation (2.1), we have

$$
(\operatorname{ad} K)\left(E^{d} K^{-d s} H^{-d t}\right)=q^{2 d} E^{d} K^{-d s} H^{-d t}, \quad(\operatorname{ad} H)\left(E^{d} K^{-d s} H^{-d t}\right)=q^{-2 d} E^{d} K^{-d s} H^{-d t}
$$

and $(\operatorname{ad} E)\left(E^{d} K^{-d s} H^{-d t}\right)=0$. Therefore, $E^{d} K^{-d s} H^{-d t}$ is a highest weight vector of weight $\left(q^{2 d}, q^{-2 d}\right)$.

Now, we prove that the relation $\left(\operatorname{ad} F^{2 d+1}\right)\left(E^{d} K^{-d s} H^{-d t}\right)=0$ holds for $d \in \mathbb{N}$. First, we consider the situation when $d=1$. By the equation (2.1), we have

$$
\begin{aligned}
(\operatorname{ad} F)\left(E K^{-s} H^{-t}\right) & =F E K^{-s} H^{-t} K^{s^{\prime}} H^{t^{\prime}}-K^{-h^{\prime}} H^{-k^{\prime}} E K^{-s} H^{-t} K^{h^{\prime}} H^{k^{\prime}} F K^{s^{\prime}} H^{t^{\prime}} \\
& =F E K^{s^{\prime}-s} H^{t^{\prime}-t}-q^{2\left(k^{\prime}-h^{\prime}+s-t\right)} E F K^{s^{\prime}-s} H^{t^{\prime}-t} \\
& =F E K^{s^{\prime}-s} H^{t^{\prime}-t}-q^{-2 M} E F K^{s^{\prime}-s} H^{t^{\prime}-t}
\end{aligned}
$$

hence

$$
\begin{aligned}
& \left(\operatorname{ad} F^{2}\right)\left(E K^{-s} H^{-t}\right) \\
& \quad=(\operatorname{ad} F)\left(F E K^{s^{\prime}-s} H^{t^{\prime}-t}-q^{-2 M} E F K^{s^{\prime}-s} H^{t^{\prime}-t}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & F\left(F E K^{s^{\prime}-s} H^{t^{\prime}-t}-q^{-2 M} E F K^{s^{\prime}-s} H^{t^{\prime}-t}\right) K^{s^{\prime}} H^{t^{\prime}}- \\
& K^{-h^{\prime}} H^{-k^{\prime}}\left(F E K^{s^{\prime}-s} H^{t^{\prime}-t}-q^{-2 M} E F K^{s^{\prime}-s} H^{t^{\prime}-t}\right) K^{h^{\prime}} H^{k^{\prime}} F K^{s^{\prime}} H^{t^{\prime}} \\
= & F\left(F E K^{s^{\prime}-s} H^{t^{\prime}-t}-q^{-2 M} E F K^{s^{\prime}-s} H^{t^{\prime}-t}\right) K^{s^{\prime}} H^{t^{\prime}}- \\
& F E K^{s^{\prime}-s} H^{t^{\prime}-t} F K^{s^{\prime}} H^{t^{\prime}}+q^{-2 M} E F K^{s^{\prime}-s} H^{t^{\prime}-t} F K^{s^{\prime}} H^{t^{\prime}} \\
= & F\left(F E K^{2 s^{\prime}-s} H^{2 t^{\prime}-t}-q^{-2 M} E F K^{2 s^{\prime}-s} H^{2 t^{\prime}-t}\right)- \\
& q^{2\left(s-s^{\prime}+t^{\prime}-t\right)} F E F K^{2 s^{\prime}-s} H^{2 t^{\prime}-t}+q^{-2 M} q^{t^{\prime}-t-s^{\prime}+s} E F F K^{2 s^{\prime}-s} H^{2 t^{\prime}-t} \\
= & -F(E F-F E) K^{2 s^{\prime}-s} H^{2 t^{\prime}-t}+q^{-2 M}(E F-F E) F K^{2 s^{\prime}-s} H^{2 t^{\prime}-t} \\
= & -F a\left(K^{m} H^{n}-K^{-m^{\prime}} H^{-n^{\prime}}\right) K^{2 s^{\prime}-s} H^{2 t^{\prime}-t}+ \\
& q^{-2 M} a\left(K^{m} H^{n}-K^{-m^{\prime}} H^{-n^{\prime}}\right) F K^{2 s^{\prime}-s} H^{2 t^{\prime}-t} \\
= & -a F\left(K^{m} H^{n}-K^{-m^{\prime}} H^{-n^{\prime}}\right) K^{2 s^{\prime}-s} H^{2 t^{\prime}-t}+q^{-2 M} a q^{2 n-2 m} F K^{m} H^{n} K^{2 s^{\prime}-s} H^{2 t^{\prime}-t}- \\
& q^{-2 M} a q^{2 m^{\prime}-2 n^{\prime}} F K^{-m^{\prime}} H^{-n^{\prime}} K^{2 s^{\prime}-s} H^{2 t^{\prime}-t} \\
= & -a F\left(K^{m} H^{n}-K^{-m^{\prime}} H^{-n^{\prime}}\right) K^{2 s^{\prime}-s} H^{2 t^{\prime}-t}+ \\
& q^{-4 M} a F K^{m} H^{n} K^{2 s^{\prime}-s} H^{2 t^{\prime}-t}-a F K^{-m^{\prime}} H^{-n^{\prime}} K^{2 s^{\prime}-s} H^{2 t^{\prime}-t} \\
= & \left(q^{-4 M}-1\right) a F K^{2 s^{\prime}-s+m} H^{2 t^{\prime}-t+n},
\end{aligned}
$$

and

$$
\begin{aligned}
(\operatorname{ad} & \left.F^{3}\right)\left(E K^{-s} H^{-t}\right) \\
\quad= & (\operatorname{ad} F)\left(q^{-4 M}-1\right) a F K^{2 s^{\prime}-s+m} H^{2 t^{\prime}-t+n} \\
= & a\left(q^{-4 M}-1\right)\left(F F K^{2 s^{\prime}-s+m} H^{2 t^{\prime}-t+n} K^{s^{\prime}} H^{t^{\prime}}-\right. \\
& \left.K^{-h^{\prime}} H^{-k^{\prime}} F K^{2 s^{\prime}-s+m} H^{2 t^{\prime}-t+n} K^{h^{\prime}} H^{k^{\prime}} F K^{s^{\prime}} H^{t^{\prime}}\right) \\
= & a\left(q^{-4 M}-1\right)\left(F^{2} K^{3 s^{\prime}-s+m} H^{3 t^{\prime}-t+n}-q^{2 h^{\prime}-2 k^{\prime}} F K^{2 s^{\prime}-s+m} H^{2 t^{\prime}-t+n} F K^{s^{\prime}} H^{t^{\prime}}\right) \\
= & a\left(q^{-4 M}-1\right)\left(F^{2} K^{3 s^{\prime}-s+m} H^{3 t^{\prime}-t+n}-F^{2} K^{3 s^{\prime}-s+m} H^{3 t^{\prime}-t+n}\right)=0 .
\end{aligned}
$$

Then, we assume $d>1$ and that the relation $\left(\operatorname{ad} F^{2 i+1}\right)\left(E^{i} K^{-i s} H^{-i t}\right)=0$ holds for all $i<d$. By the equations (1.1), (2.1) and the assumption, we have

$$
\begin{aligned}
(\operatorname{ad} & \left.F^{2 d+1}\right)\left(E^{d} K^{-d s} H^{-d t}\right) \\
= & q^{2(d-1)(t-s)}\left(\operatorname{ad} F^{2 d+1}\right)\left(E^{d-1} K^{-(d-1) s} H^{-(d-1) t} E K^{-s} H^{-t}\right) \\
= & \sum_{r=0}^{2 d+1}\binom{2 d+1}{r}_{q^{-2 M}} q^{2(d-1)(t-s)} q^{2 r(2 d+1-r)\left(h^{\prime}-k^{\prime}\right)} \\
& \left(\operatorname{ad}\left(F^{2 d+1-r} K^{-r h^{\prime}} H^{-r k^{\prime}}\right)\right)\left(E^{d-1} K^{-(d-1) s} H^{-(d-1) t}\right) \\
& \left(\operatorname{ad}\left(F^{r} K^{-s^{\prime}(2 d+1-r)} H^{-t^{\prime}(2 d+1-r)}\right)\right)\left(E K^{-s} H^{-t}\right) \\
= & \sum_{r=0}^{2 d+1}\binom{2 d+1}{r}_{q^{-2 M}} q^{2(d-1)(t-s)+2 r(2 d+1-r)\left(h^{\prime}-k^{\prime}\right)} q^{2 r(d-1)\left(k^{\prime}-h^{\prime}\right)} q^{2(2 d+1-r)\left(s^{\prime}-t^{\prime}\right)} \\
& \left(\operatorname{ad}\left(F^{2 d+1-r}\right)\right)\left(E^{d-1} K^{-(d-1) s} H^{-(d-1) t}\right)\left(\operatorname{ad}\left(F^{r}\right)\right)\left(E K^{-s} H^{-t}\right) \\
= & 0
\end{aligned}
$$

Hence the action of F on $E^{d} K^{-d s} H^{-d t}$ is nilpotent and $\left[E^{d} K^{-d s} H^{-d t}\right] \cong V(2 d)$. The proof is completed.

Corollary 2.2 For any $d \in \mathbb{N},\left(\operatorname{ad} F^{2 d}\right)\left(E^{d} K^{-d s} H^{-d t}\right)$ is a lowest weight vector of weight $\left(q^{2 d}, q^{-2 d}\right)$, hence $\left[\left(\operatorname{ad} F^{2 d}\right)\left(E^{d} K^{-d s} H^{-d t}\right)\right] \cong V(2 d)$.

The following proposition determines all irreducible $\mathcal{U}_{q}(f(K, H))$-submodules of $\mathcal{F}\left(\mathcal{U}_{q}(f(K, H))\right)$.
Proposition 2.3 Let V be any irreducible $\mathcal{U}_{q}(f(K, H))$-submodule of $\mathcal{F}\left(\mathcal{U}_{q}(f(K, H))\right)$. Then $V=\left[g\left(C_{q}\right) E^{d} K^{-d s} H^{-d t}\right]$ for some polynomial $g\left(C_{q}\right) \neq 0$ and $d \geq 0$. Moreover, we have $V \cong\left[E^{d} K^{-d s} H^{-d t}\right]$.

Proof Suppose V is any irreducible $\mathcal{U}_{q}(f(K, H))$-submodule of $\mathcal{F}\left(\mathcal{U}_{q}(f(K, H))\right)$ with its dimension $c+1$. Then by [7, Theorems 4.4, 4.5], there exists a highest weight vector v of weight $\left(q^{c}, q^{-c}\right)$ in V. We may assume $v=\sum_{i, j, l, r} E^{i} F^{j} K^{l} H^{r}$. Considering the equations $(\operatorname{ad} K) v=q^{c} v$ and $(\operatorname{ad} H) v=q^{-c} v$, we easily get $c=2 d$ and $i=d+j$. So, we can rewrite v as the form

$$
\sum_{j} E^{d+j} F^{j} g_{j}\left(K, H, K^{-1}, H^{-1}\right)=E^{d}\left(\sum_{j} E^{j} F^{j} g_{j}\left(K, H, K^{-1}, H^{-1}\right)\right)
$$

for some Laurent polynomials $g_{j}\left(K, H, K^{-1}, H^{-1}\right)$.
According to $C_{q}(f(K))=E F+f_{q}^{+}(K)=F E+f_{q}^{-}(K)$, we can rewrite v as the form $E^{d} h\left(C_{q}, K, H, K^{-1}, H^{-1}\right)$ for some polynomial $h\left(C_{q}, K, H, K^{-1}, H^{-1}\right)$. Now we consider the equation $(\operatorname{ad} E) v=0$. Then we have

$$
\begin{aligned}
& E E^{d} h\left(C_{q}, K, H, K^{-1}, H^{-1}\right) K^{-h} H^{-k} \\
& \quad=K^{s} H^{t} E^{d} h\left(C_{q}, K, H, K^{-1}, H^{-1}\right) K^{-s} H^{-t} E K^{-h} H^{-k} \\
& \quad=q^{2 d(s-t)} E^{d} h\left(C_{q}, K, H, K^{-1}, H^{-1}\right) E K^{-h} H^{-k} .
\end{aligned}
$$

Since $\mathcal{U}_{q}(f(K, H))$ has no zero divisors, we have

$$
E h\left(C_{q}, K, H, K^{-1}, H^{-1}\right)=q^{2 d(s-t)} h\left(C_{q}, K, H, K^{-1}, H^{-1}\right) E
$$

Note that C_{q} belongs to the center of $\mathcal{U}_{q}(f(K, H))$ and q is not a root of the unity. It follows that $h\left(C_{q}, K, H, K^{-1}, H^{-1}\right)$ has the form $g\left(C_{q}\right) K^{-d s} H^{-d t}$. Thus $v=g\left(C_{q}\right) E^{d} K^{-d s} H^{-d t}$, and $[v]=\left[g\left(C_{q}\right) E^{d} K^{-d s} H^{-d t}\right] \cong\left[E^{d} K^{-d s} H^{-d t}\right]$.

Proposition 2.4 Suppose $v=\sum_{i=1}^{m} g_{i}\left(C_{q}\right) E^{d_{i}} K^{-d_{i} s} H^{-d_{i} t}$, where $g_{i}\left(C_{q}\right) \neq 0$, and the integers d_{i} are pairwise distinct. Then

$$
[v]=\bigoplus_{i=1}^{m}\left[g_{i}\left(C_{q}\right) E^{d_{i}} K^{-d_{i} s} H^{-d_{i} t}\right] \cong \bigoplus_{i=1}^{m}\left[E^{d_{i}} K^{-d_{i} s} H^{-d_{i} t}\right]
$$

Proof Since $g_{i}\left(C_{q}\right)$ belongs to the center of $\mathcal{U}_{q}(f(K, H))$ for every i, we have that

$$
\left[g_{i}\left(C_{q}\right) E^{d_{i}} K^{-d_{i} s} H^{-d_{i} t}\right] \cong\left[E^{d_{i}} K^{-d_{i} s} H^{-d_{i} t}\right] \cong V\left(2 d_{i}\right)
$$

by Proposition 2.1. Note that the integers d_{i} are pairwise distinct. It follows that

$$
\begin{aligned}
\sum_{i=1}^{m}\left[g_{i}\left(C_{q}\right) E^{d_{i}} K^{-d_{i} s} H^{-d_{i} t}\right] & =\bigoplus_{i=1}^{m}\left[g_{i}\left(C_{q}\right) E^{d_{i}} K^{-d_{i} s} H^{-d_{i} t}\right] \\
& \cong \bigoplus_{i=1}^{m}\left[E^{d_{i}} K^{-d_{i} s} H^{-d_{i} t}\right]
\end{aligned}
$$

Clearly, we have $[v] \subseteq \sum_{i=1}^{m}\left[g_{i}\left(C_{q}\right) E^{d_{i}} K^{-d_{i} s} H^{-d_{i} t}\right]$. On the other hand, without loss of generality, we may assume that $d_{1}<d_{2}<\cdots<d_{m}$. Then we have

$$
(\operatorname{ad} F)^{2 d_{m}}(v)=(\operatorname{ad} F)^{2 d_{m}}\left(g_{m}\left(C_{q}\right) E^{d_{m}} K^{-d_{m} s} H^{-d_{m} t}\right) \in[v]
$$

By Corollary 2.2, $(\operatorname{ad} F)^{2 d_{m}}\left(g_{m}\left(C_{q}\right) E^{d_{m}} K^{-d_{m} s} H^{-d_{m} t}\right)$ is a lowest weight vector with weight $\left(q^{2 d_{m}}, q^{-2 d_{m}}\right)$ in the irreducible module $\left[g_{m}\left(C_{q}\right) E^{d_{m}} K^{-d_{m} s} H^{-d_{m} t}\right]$, which implies that

$$
\left[g_{m}\left(C_{q}\right) E^{d_{m}} K^{-d_{m} s} H^{-d_{m} t}\right] \subseteq[v] \quad g_{m}\left(C_{q}\right) E^{d_{m}} K^{-d_{m} s} H^{-d_{m} t} \in[v]
$$

Set $u=v-g_{m}\left(C_{q}\right) E^{d_{m}} K^{-d_{m} s} H^{-d_{m} t} \in[v]$. In the same way, we can prove that

$$
g_{i}\left(C_{q}\right) E^{d_{i}} K^{-d_{i} s} H^{-d_{i} t} \in[v]
$$

for $1 \leq i<m$. Thus, $\sum_{i=1}^{m}\left[g_{i}\left(C_{q}\right) E^{d_{i}} K^{-d_{i} s} H^{-d_{i} t}\right] \subseteq[v]$.
By the results obtained above, we can get the following theorem.
Theorem 2.5 As $\mathcal{U}_{q}(f(K, H))$-modules, we have

$$
\mathcal{F}\left(\mathcal{U}_{q}(f(K, H))\right)=\bigoplus_{i, j \geq 0}\left[C_{q}^{j} E^{i} K^{-i s} H^{-i t}\right]
$$

Corollary 2.6 Assume that $m=m^{\prime}=h-s, n=n^{\prime}=k-t, t=t^{\prime}, s=s^{\prime}$. Then we have $\left[K^{m} H^{n}\right]=\left[E K^{-s} H^{-t}\right] \oplus\left[C_{q}\right]$.

Proof On the one hand, from the proof of Proposition 2.1, we know that $\left[E K^{-s} H^{-t}\right]$ is spanned by

$$
E K^{-s} H^{-t}, \quad F E-q^{-2 M} E F, \quad F K^{s+m} H^{t+n}
$$

On the other hand, by assumption we have

$$
\begin{gathered}
(\operatorname{ad} K) K^{h-s} H^{k-t}=K^{h-s} H^{k-t} \\
(\operatorname{ad} E) K^{h-s} H^{k-t}=E K^{-s} H^{-t}-q^{2(h-s+t-k)} E K^{-s} H^{-t}=\left(1-q^{2 M}\right) E K^{-s} H^{-t} \\
(\operatorname{ad} F) K^{h-s} H^{k-t}=F K^{h} H^{k}-q^{2(k-t+h-s)} F K^{h} H^{k}=\left(1-q^{-2 M}\right) F K^{h} H^{k}
\end{gathered}
$$

Then $\left[K^{h-s} H^{k-t}\right]$ is spanned by $K^{h-s} H^{k-t}, E K^{-s} H^{-t}, F K^{h} H^{k}, F E-q^{-2 M} E F$. But

$$
\begin{aligned}
& \frac{-q^{M}}{a\left(q^{M}+q^{-M}\right)}\left(F E-q^{-2 M} E F\right)+\frac{q^{M}-q^{-M}}{a\left(q^{M}+q^{-M}\right)} C_{q} \\
& =\frac{-q^{M}}{a\left(q^{M}+q^{-M}\right)}\left(F E-q^{-2 M} E F\right)+ \\
& \quad \frac{q^{M}-q^{-M}}{a\left(q^{M}+q^{-M}\right)}\left(E F+a\left(\frac{K^{m} H^{n}}{q^{2 M}-1}-\frac{K^{-m} H^{-n}}{q^{-2 M}-1}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{-q^{M}}{a\left(q^{M}+q^{-M}\right)}\left(F E-E F-\left(q^{-2 M}-1\right) E F\right)+ \\
& \frac{q^{M}-q^{-M}}{a\left(q^{M}+q^{-M}\right)}\left(E F+a\left(\frac{K^{m} H^{n}}{q^{2 M}-1}-\frac{K^{-m} H^{-n}}{q^{-2 M}-1}\right)\right) \\
= & \frac{-q^{M}}{a\left(q^{M}+q^{-M}\right)}(F E-E F)+\frac{q^{M}\left(q^{-2 M}-1\right)}{a\left(q^{M}+q^{-M}\right)} E F+ \\
& \frac{q^{M}-q^{-M}}{a\left(q^{M}+q^{-M}\right)}\left(E F+a\left(\frac{K^{m} H^{n}}{q^{2 M}-1}-\frac{K^{-m} H^{-n}}{q^{-2 M}-1}\right)\right) \\
= & \frac{q^{M}}{a\left(q^{M}+q^{-M}\right)}(E F-F E)+\frac{q^{M}-q^{-M}}{q^{M}+q^{-M}}\left(\frac{K^{m} H^{n}}{q^{2 M}-1}-\frac{K^{-m} H^{-n}}{q^{-2 M}-1}\right) \\
= & \frac{q^{M}}{q^{M}+q^{-M}}\left(K^{m} H^{n}-K^{-m} H^{-n}\right)+\frac{q^{M}-q^{-M}}{\left(q^{M}+q^{-M}\right)\left(q^{2 M}-1\right)} K^{m} H^{n}- \\
& \frac{q^{M}-q^{-M}}{\left(q^{M}+q^{-M}\right)\left(q^{-2 M}-1\right)} K^{-m} H^{-n} \\
= & K^{m} H^{n}-\left(\frac{q^{M}}{q^{M}+q^{-M}}+\frac{q^{M}-q^{-M}}{\left(q^{M}+q^{-M}\right)\left(q^{-2 M}-1\right)}\right) K^{-m} H^{-n} \\
= & K^{m} H^{n} .
\end{aligned}
$$

Hence, we have

$$
\begin{gathered}
K^{m} H^{n}=\frac{-q^{M}}{a\left(q^{M}+q^{-M}\right)}\left(F E-q^{-2 M} E F\right)+\frac{q^{M}-q^{-M}}{a\left(q^{M}+q^{-M}\right)} C_{q} \\
{\left[K^{m} H^{n}\right] \subseteq\left[E K^{-s} H^{-t}\right] \oplus\left[C_{q}\right]}
\end{gathered}
$$

The proof is completed.

References

[1] KULIŠ P P, REŠETIHIN N J. Quantum linear problem for the sine-Gordon equation and higher representations [J]. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 1981, 101: 101-110, 207. (in Russian)
[2] SKLYANIN E K. On an algebra generated by quadratic relations [J]. Uspekhi. Mth. Nauk., 1985, $40: 214$.
[3] SMITH S P. A class of algebras similar to the enveloping algebra of sl(2) [J]. Trans. Amer. Math. Soc., 1990, 322(1): 285-314.
[4] BAVULA V V, JORDAN D A. Isomorphism problems and groups of automorphisms for generalized Weyl algebras [J]. Trans. Amer. Math. Soc., 2001, 353(2): 769-794.
[5] JING Naihuan, ZHANG J. Quantum Weyl algebras and deformations of $U(g)$ [J]. Pacific J. Math., 1995, 171(2): 437-454.
[6] CHEN Huixiang. Irreducible representations of a class of quantum doubles [J]. J. Algebra, 2000, 225(1): 391-409.
[7] WANG Dingguo, JI Qingzhong, YANG Shilin. Finite-dimensional representations of quantum group $U_{q}(f(K, H))$ [J]. Comm. Algebra, 2002, 30(5): 2191-2211.
[8] KASSEL C. Quantum Groups [M]. Springer-Verlag, New York, 1995.
[9] MONTGOMERY S. Hopf Algebras and Their Actions on Rings [M]. American Mathematical Society, Providence, RI, 1993.
[10] CATOIU S. Ideals of the enveloping algebra $U\left(\mathrm{sl}_{2}\right)$ [J]. J. Algebra, 1998, $202(1): 142-177$.
[11] JOSEPH A, LETZTER G. Local finiteness of the adjoint action for quantized enveloping algebras [J]. J. Algebra, 1992, 153(2): 289-318.
[12] LI Libin, ZHANG Pu. Quantum adjoint action for $U_{q}(\mathrm{sl}(2))$ [J]. Algebra Colloq., 2000, 7(4): 369-379.

