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Abstract The aim of this paper is to study the adjoint action for the quantum algebra

Uq(f(K, H)), which is a natural generalization of quantum algebra Uq(sl2) and is regarded

as a class of generalized Weyl algebra. The structure theorem of its locally finite subalgebra

F(Uq(f(K, H))) is given.
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0. Introduction

Most important quantum algebras are the q-deformations of the universal enveloping algebra

U(g) of the simple Lie algebra g. And the simplest and most important example is the Drinfeld-

Jimbo quantum group Uq(sl2), which appeared first in 1983 in a paper by Kulish and Reshtikhin[1]

on the study of integrable XY Z module with highest spin and whose Hopf algebra structure

was discovered later by Sklyanin[2]. Various generalized (Weyl) algebras of U(sl2) and Uq(sl2)

have been studied by many authors[3−6]. In particular, Wang[7] introduced a quantum algebra

Uq(f(K, H)) as a natural generalization of Uq(sl2). Moreover, it can be regarded not only as a

generalization of Drinfeld double D(sl2)
[7], but also as a class of generalized Weyl algebras defined

by Bavula[4]. Thus studying the structure of Uq(f(K, H)) is a very interesting and significant

work. In [7], a necessary and sufficient condition for Uq(f(K, H)) to be a Hopf algebra was given,

moreover, finite dimensional representations and the center of Uq(f(K, H)) were discussed. Our

main aim in this paper is to discuss the irreducible Uq(f(K, H))-submodules of Uq(f(K, H)) under

the adjoint action and give the structure theorem of its locally finite subalgebra F(Uq(f(K, H))).

1. Quantum algebra Uq(f(K, H))

Throughout this paper k denotes the complex field and q ∈ k \ {0} is not a root of the unity.
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Definition 1.1[7] Define Uq(f(K, H)) as the algebra generated by E, F, K, H and K−1, H−1

with the relations

KH = HK, KK−1 = K−1K = 1, HH−1 = H−1H = 1,

KEK−1 = q2E, KFK−1 = q−2F,

HEH−1 = q−2E, HFH−1 = q2F,

[E, F ] = EF − FE = f(K, H),

where, f(K, H) =
∑N

i,j=−N aijK
iHj ∈ k[K, H, K−1, H−1] and N ∈ Z

+.

Set (n)q = 1 + q2 + · · · + qn−1 = qn−1
q−1 . For any Laurent polynomial

g(K, H) =
N

∑

i,j=−N

aijK
iHj ∈ k[K, H, K−1H−1],

we define the following notations. For any s, m ∈ N, set

g+(s)(K, H) =

N
∑

i,j=−N

q2s(i−j)aijK
iHj ,

g−(s)(K, H) =

N
∑

i,j=−N

q−2s(i−j)aijK
iHj ,

g+(m)(K, H) =

N
∑

i,j=−N

(m)q2(i−j)aijK
iHj ,

g−(m)(K, H) =

N
∑

i,j=−N

(m)−q−2(i−j)aijK
iHj.

Then, we have

g(K, H)F s = F sg−(s)(K, H), F sg(K, H) = g+(s)(K, H)F s,

g+(m)(K, H) =

m−1
∑

s=0

g+(s)(K, H), g−(m)(K, H) =

m−1
∑

s=0

g−(s)(K, H).

Moreover, for any m ∈ N, the following relations hold in Uq(f(K, H)):

EFm − FmE = Fm−1f−(m)(K) = f+(m)(K)Fm−1,

EmF − FEm = Em−1f+(m)(K) = f−(m)(K)Em−1.

The algebra Uq(f(K, H)) is Noetherian and has no zero divisors, and the set {EiF jK lHr}

(i, j ∈ N, l, r ∈ Z) is its basis.

In what follows, we always assume f(K) = a(KmHn−K−m′

H−n′

) for some a ∈ k \{0}, and

some m, m′, n, n′ ∈ Z
+ with M = m − n = m′ − n′. In this situation, the algebra Uq(f(K, H))

has a Hopf algebra structure: In fact, for some h, k, s, t, h′, k′, s′, t′ ∈ Z,

∆(K) = K ⊗ K, ∆(K−1) = K−1 ⊗ K−1,
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∆(H) = H ⊗ H, ∆(H−1) = H−1 ⊗ H−1,

∆(E) = KsHt ⊗ E + E ⊗ KhHk,

∆(F ) = K−h′

H−k′

⊗ F + F ⊗ K−s′

H−t′ ,

ε(K) = ε(K−1) = 1, ε(H) = ε(H−1) = 1, ε(E) = ε(F ) = 0,

S(K) = K−1, S(K−1) = K, S(H) = H−1, S(H−1) = H,

S(E) = −K−sH−tEK−hH−k, S(F ) = −Kh′

Hk′

FKs′

Ht′ ,

where, M = h + t − k − s, and s − t = s′ − t′, h − k = h′ − k′.

Set

f+
q (K, H) = a(

KmHn

q2(m−n) − 1
−

K−m′

H−n′

q−2(m′−n′) − 1
),

f−
q (K, H) = a(

KmHn

1 − q−2(m−n)
−

K−m′

H−n′

1 − q−2(m′−n′)
).

Then the element Cq(f(K)) = EF +f+
q (K) = FE +f−

q (K), which is called the Casimir element

of Uq(f(K, H)), generates the center of Uq(f(K, H)) as a polynomial algebra.

By [7, Proposition 3.4], for all i, j ∈ N, we have the following equations:

∆(F j) =

j
∑

r=0

(

j

r

)

q−2M

q2r(j−r)(h′
−k′)F j−rK−rh′

H−rk′

⊗ F rK−s′(j−r)H−t′(j−r), (1.1)

∆(Ei) =

i
∑

r=0

(

i

r

)

q2M

q2r(i−r)(s−t)Ei−rKrsHrt ⊗ ErKh(i−r)Hk(i−r). (1.2)

Where,
(

i

s

)

q2M ,
(

j

r

)

q−2M are the Gauss polynomials (see [8, Chapter 4]).

Definition 1.2 Let V be a Uq(f(K, H))-module and a, b scalars. An element v 6= 0 in V is

called a highest (resp. lowest) weight vector of weight (a, b) ∈ k × k if K · v = av, H · v = bv,

and if E · v = 0 (resp. F · v = 0). A Uq(f(K, H))-module is called a highest weight module if it

is generated by a highest weight vector.

Let d ∈ N. We define a Uq(f(K, H))-module denoted by V (d) as follows: The set {v0, v1, . . . , vd}

is its basis and satisfies the following relations:

K · vi = qd−2ivi for 0 ≤ i ≤ d, H · vi = q−d+2ivi for 0 ≤ i ≤ d,

F · vi = vi+1 for 0 ≤ i < d, and F · vd = 0,

E · vi = f−(i)(q
d, q−d)vi−1 for 0 < i ≤ d, and E · v0 = 0.

Then V (d) is a highest weight Uq(f(K, H))-module of weight (qd, q−d) and its dimension is d+1.

Thus by [7, Theorem 4.5], we know that V (d) is simple, moreover, any d + 1 dimensional simple

Uq(f(K, H))-module is isomorphic to V (d).

2. The locally finite subalgebra of Uq(f(K, H))

Let H be a Hopf algebra over a field k with a comultiplication ∆, a counit ε and an antipode

S. We use the Sweedler’s notation to denote ∆, i.e., ∆(x) = x1 ⊗ x2 for all x ∈ H . For a Hopf
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algebra H and x, y ∈ H , we set (adx)(y) = x1yS(x2). Then, the action endows H with the

structure of a left module algebra on itself, which is called the left adjoint action of H [8,9]. Let

F(H) denote the set of all elements on which the left adjoint action is locally finite, i.e.,

F(H) = {x ∈ H | dimk(adH)x < ∞},

which is a subalgebra and a submodule of H , and is called the locally finite subalgebra of H . As

we know, the left adjoint action of H and the locally finite subalgebra F(H) play important roles

in the study of Prim(H), the set of all prime ideals of H [10,11]. Catoiu[10] studied the structure

of F(H) when H is the universal enveloping algebra U(sl2). Li and Zhang[12] studied that of

F(H) when H is the quantized enveloping algebra Uq(sl2).

For quantum algebra Uq(f(K, H), the adjoint actions of generators of Uq(f(K, H)) can be

represented as

(adK)(x) = KxK−1, (adK−1)(x) = K−1xK,

(adH)(x) = HxH−1, (adH−1)(x) = H−1xH,

(adE)(x) = ExK−hH−k − KsHtxK−sH−tEK−hH−k,

(adF )(x) = FxKs′

Ht′ − K−h′

H−k′

xKh′

Hk′

FKs′

Ht′ , (2.1)

for all x ∈ Uq(f(K, H)). And the locally finite subalgebra of Uq(f(K, H)), F(Uq(f(K, H)), is a

left Uq(f(K, H))-module algebra and is semisimple. Let x ∈ Uq(f(K, H)) and set

[x] = ad(Uq(f(K, H))(x)

denoting the Uq(f(K, H))-submodule of Uq(f(K, H)) generated by x.

Proposition 2.1 For any d ∈ N, we have [EdK−dsH−dt] ∼= V (2d).

Proof By [7, Theorem 4.5], we only need prove that EdK−dsH−dt is a highest weight vector of

weight (q2d, q−2d) and the endomorphism induced by F is nilpotent.

In fact, by the equation (2.1), we have

(adK)(EdK−dsH−dt) = q2dEdK−dsH−dt, (adH)(EdK−dsH−dt) = q−2dEdK−dsH−dt,

and (adE)(EdK−dsH−dt) = 0. Therefore, EdK−dsH−dt is a highest weight vector of weight

(q2d, q−2d).

Now, we prove that the relation (adF 2d+1)(EdK−dsH−dt) = 0 holds for d ∈ N. First, we

consider the situation when d = 1. By the equation (2.1), we have

(adF )(EK−sH−t) = FEK−sH−tKs′

Ht′ − K−h′

H−k′

EK−sH−tKh′

Hk′

FKs′

Ht′

= FEKs′−sHt′−t − q2(k′−h′+s−t)EFKs′−sHt′−t

= FEKs′−sHt′−t − q−2MEFKs′−sHt′−t,

hence

(adF 2)(EK−sH−t)

= (adF )(FEKs′−sHt′−t − q−2MEFKs′−sHt′−t)
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= F (FEKs′−sHt′−t − q−2MEFKs′−sHt′−t)Ks′

Ht′−

K−h′

H−k′

(FEKs′−sHt′−t − q−2MEFKs′−sHt′−t)Kh′

Hk′

FKs′

Ht′

= F (FEKs′−sHt′−t − q−2MEFKs′−sHt′−t)Ks′

Ht′−

FEKs′−sHt′−tFKs′

Ht′ + q−2MEFKs′−sHt′−tFKs′

Ht′

= F (FEK2s′−sH2t′−t − q−2MEFK2s′−sH2t′−t)−

q2(s−s′+t′−t)FEFK2s′−sH2t′−t + q−2Mqt′−t−s′+sEFFK2s′−sH2t′−t

= −F (EF − FE)K2s′−sH2t′−t + q−2M (EF − FE)FK2s′−sH2t′−t

= −Fa(KmHn − K−m′

H−n′

)K2s′−sH2t′−t+

q−2Ma(KmHn − K−m′

H−n′

)FK2s′−sH2t′−t

= −aF (KmHn − K−m′

H−n′

)K2s′−sH2t′−t + q−2Maq2n−2mFKmHnK2s′−sH2t′−t−

q−2Maq2m′−2n′

FK−m′

H−n′

K2s′−sH2t′−t

= −aF (KmHn − K−m′

H−n′

)K2s′−sH2t′−t+

q−4MaFKmHnK2s′−sH2t′−t − aFK−m′

H−n′

K2s′−sH2t′−t

= (q−4M − 1)aFK2s′−s+mH2t′−t+n,

and

(adF 3)(EK−sH−t)

= (adF )(q−4M − 1)aFK2s′−s+mH2t′−t+n

= a(q−4M − 1)(FFK2s′−s+mH2t′−t+nKs′

Ht′−

K−h′

H−k′

FK2s′−s+mH2t′−t+nKh′

Hk′

FKs′

Ht′)

= a(q−4M − 1)(F 2K3s′−s+mH3t′−t+n − q2h′−2k′

FK2s′−s+mH2t′−t+nFKs′

Ht′)

= a(q−4M − 1)(F 2K3s′−s+mH3t′−t+n − F 2K3s′−s+mH3t′−t+n) = 0.

Then, we assume d > 1 and that the relation (adF 2i+1)(EiK−isH−it) = 0 holds for all i < d.

By the equations (1.1), (2.1) and the assumption, we have

(adF 2d+1)(EdK−dsH−dt)

= q2(d−1)(t−s)(adF 2d+1)(Ed−1K−(d−1)sH−(d−1)tEK−sH−t)

=

2d+1
∑

r=0

(

2d + 1

r

)

q−2M

q2(d−1)(t−s)q2r(2d+1−r)(h′−k′)

(ad(F 2d+1−rK−rh′

H−rk′

))(Ed−1K−(d−1)sH−(d−1)t)

(ad(F rK−s′(2d+1−r)H−t′(2d+1−r)))(EK−sH−t)

=

2d+1
∑

r=0

(

2d + 1

r

)

q−2M

q2(d−1)(t−s)+2r(2d+1−r)(h′−k′)q2r(d−1)(k′−h′)q2(2d+1−r)(s′−t′)

(ad(F 2d+1−r))(Ed−1K−(d−1)sH−(d−1)t)(ad(F r))(EK−sH−t)

= 0.
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Hence the action of F on EdK−dsH−dt is nilpotent and [EdK−dsH−dt] ∼= V (2d). The proof is

completed. 2

Corollary 2.2 For any d ∈ N, (adF 2d)(EdK−dsH−dt) is a lowest weight vector of weight

(q2d, q−2d), hence [(adF 2d)(EdK−dsH−dt)] ∼= V (2d).

The following proposition determines all irreducible Uq(f(K, H))-submodules of F(Uq(f(K, H))).

Proposition 2.3 Let V be any irreducible Uq(f(K, H))-submodule of F(Uq(f(K, H))). Then

V = [g(Cq)E
dK−dsH−dt] for some polynomial g(Cq) 6= 0 and d ≥ 0. Moreover, we have

V ∼= [EdK−dsH−dt].

Proof Suppose V is any irreducible Uq(f(K, H))-submodule of F(Uq(f(K, H))) with its di-

mension c + 1. Then by [7, Theorems 4.4, 4.5], there exists a highest weight vector v of weight

(qc, q−c) in V . We may assume v =
∑

i,j,l,r EiF jK lHr. Considering the equations (adK)v = qcv

and (adH)v = q−cv, we easily get c = 2d and i = d + j. So, we can rewrite v as the form

∑

j

Ed+jF jgj(K, H, K−1, H−1) = Ed(
∑

j

EjF jgj(K, H, K−1, H−1))

for some Laurent polynomials gj(K, H, K−1, H−1).

According to Cq(f(K)) = EF + f+
q (K) = FE + f−

q (K), we can rewrite v as the form

Edh(Cq, K, H, K−1, H−1) for some polynomial h(Cq, K, H, K−1, H−1). Now we consider the

equation (adE)v = 0. Then we have

EEdh(Cq, K, H, K−1, H−1)K−hH−k

= KsHtEdh(Cq, K, H, K−1, H−1)K−sH−tEK−hH−k

= q2d(s−t)Edh(Cq, K, H, K−1, H−1)EK−hH−k.

Since Uq(f(K, H)) has no zero divisors, we have

Eh(Cq, K, H, K−1, H−1) = q2d(s−t)h(Cq, K, H, K−1, H−1)E.

Note that Cq belongs to the center of Uq(f(K, H)) and q is not a root of the unity. It follows

that h(Cq, K, H, K−1, H−1) has the form g(Cq)K
−dsH−dt. Thus v = g(Cq)E

dK−dsH−dt, and

[v] = [g(Cq)E
dK−dsH−dt] ∼= [EdK−dsH−dt]. 2

Proposition 2.4 Suppose v =
∑m

i=1 gi(Cq)E
diK−disH−dit, where gi(Cq) 6= 0, and the integers

di are pairwise distinct. Then

[v] =

m
⊕

i=1

[gi(Cq)E
diK−disH−dit] ∼=

m
⊕

i=1

[EdiK−disH−dit].

Proof Since gi(Cq) belongs to the center of Uq(f(K, H)) for every i, we have that

[gi(Cq)E
diK−disH−dit] ∼= [EdiK−disH−dit] ∼= V (2di)
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by Proposition 2.1. Note that the integers di are pairwise distinct. It follows that

m
∑

i=1

[gi(Cq)E
diK−disH−dit] =

m
⊕

i=1

[gi(Cq)E
diK−disH−dit]

∼=

m
⊕

i=1

[EdiK−disH−dit].

Clearly, we have [v] ⊆
∑m

i=1[gi(Cq)E
diK−disH−dit]. On the other hand, without loss of

generality, we may assume that d1 < d2 < · · · < dm. Then we have

(adF )2dm(v) = (adF )2dm(gm(Cq)E
dmK−dmsH−dmt) ∈ [v].

By Corollary 2.2, (adF )2dm(gm(Cq)E
dmK−dmsH−dmt) is a lowest weight vector with weight

(q2dm , q−2dm) in the irreducible module [gm(Cq)E
dmK−dmsH−dmt], which implies that

[gm(Cq)E
dmK−dmsH−dmt] ⊆ [v] gm(Cq)E

dmK−dmsH−dmt ∈ [v].

Set u = v − gm(Cq)E
dmK−dmsH−dmt ∈ [v]. In the same way, we can prove that

gi(Cq)E
diK−disH−dit ∈ [v]

for 1 ≤ i < m. Thus,
∑m

i=1[gi(Cq)E
diK−disH−dit] ⊆ [v]. 2

By the results obtained above, we can get the following theorem.

Theorem 2.5 As Uq(f(K, H))-modules, we have

F(Uq(f(K, H))) =
⊕

i,j≥0

[Cj
qEiK−isH−it].

Corollary 2.6 Assume that m = m′ = h − s, n = n′ = k − t, t = t′, s = s′. Then we have

[KmHn] = [EK−sH−t] ⊕ [Cq].

Proof On the one hand, from the proof of Proposition 2.1, we know that [EK−sH−t] is spanned

by

EK−sH−t, FE − q−2MEF, FKs+mHt+n.

On the other hand, by assumption we have

(adK)Kh−sHk−t = Kh−sHk−t,

(adE)Kh−sHk−t = EK−sH−t − q2(h−s+t−k)EK−sH−t = (1 − q2M )EK−sH−t,

(adF )Kh−sHk−t = FKhHk − q2(k−t+h−s)FKhHk = (1 − q−2M )FKhHk.

Then [Kh−sHk−t] is spanned by Kh−sHk−t, EK−sH−t, FKhHk, FE − q−2MEF . But

−qM

a(qM + q−M )
(FE − q−2MEF ) +

qM − q−M

a(qM + q−M )
Cq

=
−qM

a(qM + q−M )
(FE − q−2MEF )+

qM − q−M

a(qM + q−M )
(EF + a(

KmHn

q2M − 1
−

K−mH−n

q−2M − 1
))
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=
−qM

a(qM + q−M )
(FE − EF − (q−2M − 1)EF )+

qM − q−M

a(qM + q−M )
(EF + a(

KmHn

q2M − 1
−

K−mH−n

q−2M − 1
))

=
−qM

a(qM + q−M )
(FE − EF ) +

qM (q−2M − 1)

a(qM + q−M )
EF+

qM − q−M

a(qM + q−M )
(EF + a(

KmHn

q2M − 1
−

K−mH−n

q−2M − 1
))

=
qM

a(qM + q−M )
(EF − FE) +

qM − q−M

qM + q−M
(

KmHn

q2M − 1
−

K−mH−n

q−2M − 1
)

=
qM

qM + q−M
(KmHn − K−mH−n) +

qM − q−M

(qM + q−M )(q2M − 1)
KmHn−

qM − q−M

(qM + q−M )(q−2M − 1)
K−mH−n

= KmHn − (
qM

qM + q−M
+

qM − q−M

(qM + q−M )(q−2M − 1)
)K−mH−n

= KmHn.

Hence, we have

KmHn =
−qM

a(qM + q−M )
(FE − q−2MEF ) +

qM − q−M

a(qM + q−M )
Cq,

[KmHn] ⊆ [EK−sH−t] ⊕ [Cq ].

The proof is completed. 2
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