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1. Introduction

To solve the distrust problem of the transmitter and the receiver in the communications

system, Simmons[1] introduced a model of authentication codes with arbitration, we write symply

(A2-code) defined as follows:

Let S, ET , ER and M be four non-empty finite sets, and f : S×ET 7−→ M and g : M×ER 7−→

S∪{reject} be two maps. The six tuple (S, ET , ER, M, f, g) is called an authentication code with

arbitration (A2-code) , if

1) The maps f and g are surjective;

2) For any m ∈ M and eT ∈ ET , if there is an s ∈ S, satisfying f(s, eT ) = m, then such an

s is uniquely determined by the given m and eT ;

3) p(eT , eR) 6= 0 and f(s, eT ) = m implies g(m, eR) = s, otherwise, g(m, eR) ={reject}.

S, ET , ER and M are called the set of source states, the set of transmitter’s encoding rules,

the set of receiver’s decoding rules and the set of messages, respectively; f and g are called the

encoding map and decoding map respectively. The cardinals |S|, |ET |, |ER| and |M | are called

the size parameters of the code.
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In an authentication system that permits arbitration, this model includes four attendance:

the transmitter, the receiver, the opponent and the arbiter, and includes five attacks:

1) The opponent’s impersonation attack: the largest probability of an opponent’s successful

impersonation attack is PI . Then

PI = max
m∈M

{ |{eR ∈ ER|eR ⊂ m}|

|ER|

}

.

2) The opponent’s substitution attack: the largest probability of an opponent’s successful

substitution attack is PS . Then

PS = max
m∈M

{ max
m′∈M

|{eR ∈ ER|eR ⊂ m and eR ⊂ m′}|

|{eR ∈ ER|eR ⊂ m}|

}

.

3) The transmitter’s impersonation attack: the largest probability of a transmitter’s suc-

cessful impersonation attack is PT . Then

PT = max
eT ∈ET

{
max

m can not be encoded by eT

|{eR ∈ ER|eR ⊂ m and p(eR, eT ) 6= 0}|

|{eR ∈ ER|p(eR, eT ) 6= 0}|

}

.

4) The receiver’s impersonation attack: the largest probability of a receiver’s successful

impersonation attack is PR0
. Then

PR0
= max

eR∈ER

{max
m∈M

|{eT ∈ ET |eT ⊂ m and p(eR, eT ) 6= 0}|

|{eT ∈ ET |p(eR, eT ) 6= 0}|

}

.

5) The receiver’s substitution attack: the largest probability of a receiver’s successful sub-

stitution attack is PR1
. Then

PR1
= max

eR∈ER,m∈M

{ max
m′∈M

|{eT ∈ ET |eT ⊂ m, m′ and p(eR, eT ) 6= 0}|

|{eT ∈ ET |eT ⊂ m and p(eR, eT ) 6= 0}|

}

.

In the 1990s, Wan, Feng, et al., constructed authentication codes without arbitration from

geometry space of classical groups and special matrices over finite fields[2−5]. In the late 1990s,

Ma, Li, et al., constructed A2-code from geometry space of classical groups over finite fields[6−8].

In the present paper, a new A2-code will be constructed from singular pseudo-symplectic geome-

try over finite fields, and the parameters and the probabilities of successful attacks of these codes

are also computed.

Assume that Fq is a finite field of characteristic 2, n = 2ν + δ + l and δ = 1, 2. Let

Sδ,l =

(

Sδ

0(l)

)

,

where Sδ is the (2ν + δ) × (2ν + δ) non-alternate symmetric matrix:

S1 =






0 I(ν)

I(ν) 0

1




 , S2 =









0 I(ν)

I(ν) 0

0 1

1 1









.
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The singular pseudo-symplectic group of degree (2ν + δ + l) over Fq is defined to be the set of

matrices

PS2ν+δ+l,2ν+δ
(Fq) = {g : gSδ,lg

T = Sδ,l}

denoted by PS2ν+δ+l,2ν+δ
(Fq).

Let F
(2ν+δ+l)
q be the (2ν + δ + l)-dimensional row vector space over Fq. PS2ν+δ+l,2ν+δ

(Fq) has

an action on F
(2ν+δ+l)
q defined as follows:

F (2ν+δ+l)
q × PS2ν+δ+l,2ν+δ

(Fq) −→ F (2ν+δ+l)
q

((x1, x2, . . . , x2ν+δ+l), T ) 7−→ (x1, x2, . . . , x2ν+δ+l)T .

The vector space F
(2ν+δ+l)
q together with this action of the group PS2ν+δ+l,2ν+δ

(Fq) is called the

singular pseudo-symplectic space of dimension (2ν + δ + l) over Fq. An m-dimensional subspace

P of F
(2ν+δ+l)
q is said to be of type (m, 2s+τ, s, ε), where τ = 0, 1 or 2 and ε = 0 or 1, if PSδ,lP

T

is cogredient to M(m, 2s + τ, s) and P does not or does contain a vector of the form






(0, 0 · · · 0
︸ ︷︷ ︸

2ν

, 1, x2ν+2, . . . , x2ν+1+l), where δ = 1,

(0, 0 · · · 0
︸ ︷︷ ︸

2ν

, 1, 0, x2ν+3, . . . , x2ν+2+l), where δ = 2

corresponding to the cases ε = 0 or 1, respectively. Let E be the subspace of F
(2ν+δ+l)
q generated

by e2ν+δ+1, . . . , e2ν+δ+l. Then dimE = l. An m-dimensional subspace P of F
(2ν+δ+l)
q is called a

subspace of type (m, 2s + τ, s, ε, k), if

(i) P is a subspace of type (m, 2s + τ, s, ε) and

(ii) dim(P ∩ E) = k.

From [9] we know that the set of all subspaces of type (m, 2s + τ, s, ε, k) in F
(2ν+δ+l)
q forms an

orbit under PS2υ+δ+l,2ν+δ
(Fq). Let P be a subspace of F

(2ν+δ+l)
q . We define the dual subspace of

P as

P⊥ = {x|x ∈ F (2ν+δ+l)
q , xSδ,ly

⊤ = 0, ∀y ∈ P}.

2. Construction

Assume that n = 2ν + 1 + l, 1 ≤ r < r + t < ν. Let P be a fixed subspace of type

(r + l, 0, 0, 0, l) in the (2ν + 1 + l)-dimensional singular pseudo-symplectic space F
(2ν+1+l)
q .

Then P⊥ is a subspace of type (2ν − r + 1 + l, 2(ν − r) + 1, ν − r, 1, l). Let Q = 〈e2ν+2〉, the

set of source states S = {s|s is a subspace of type (r−1+k, 0, 0, 0, k) and 1 ≤ k < l, Q ⊂ s ⊂ P};

the set of transmitter’s encoding rules ET = {eT |eT is a subspace of type (2t + 2, 2t + 1, t, 1, 1)

and eT ∩P = Q, eT ⊂ P⊥}; the set of receiver’s decoding rules ER = {eR|eR is a subspace of type

(2t− 1, 2(t− 1)+1, t− 1, 1, 0), eR ⊂ P⊥}; the set of messages M = {m|m is a subspace of type

(r + 2t + k, 2t + 1, t, 1, k) and m∩P is a subspace of type (r− 1 + k, 0, 0, 0, k); Q ⊂ m ⊂ P⊥}.

Define the encoding map:

f : S × ET −→ M, (s, eT ) 7−→ m = s + eT
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and the decoding map:

g : M × ER −→ S ∪ {reject}

(m, eR) 7−→

{

s, if eR ⊂ m, where s = m ∩ P

{reject}, if eR 6⊂ m.

We know the six tuple (S, ET , ER, M, f, g) is an authentication code with arbitration.

Assuming the transmitter’s encoding rules and the receiver’s decoding rules are chosen ac-

cording to a uniform probability distribution, we can assume that

P =

(

I(r) 0 0 0 0 0

0 0 0 0 0 I(l)

)

,

r ν−r r ν−r 1 l

and

P⊥ =











I(r) 0 0 0 0 0

0 I(ν−r) 0 0 0 0

0 0 0 I(ν−r) 0 0

0 0 0 0 1 0

0 0 0 0 0 I(l)











.

r ν−r r ν−r 1 l

In the following we compute the parameters of this code and the probabilities of success for

different types of attacks.

Lemma 1 The number of the source states is

|S| =

q(r−1)(l−k)(qr − 1)
l−1∏

i=l−k+1

(qi − 1)

(q − 1)
k−1∏

i=1

(qi − 1)

.

Proof The number of the subspace of type (r − 1 + k, 0, 0, 0, k) which contains Q and is

contained in P is

q(r−1)(l−k)N(r − 1, r)N(k − 1, l − 1) =

q(r−1)(l−k)(qr − 1)
l−1∏

i=l−k+1

(qi − 1)

(q − 1)
k−1∏

i=1

(qi − 1)

.

Lemma 2 The number of the transmitter’s encoding rules is

|ET | = q2tr+(2t+1)(l−1)N(2t, t; 2(ν − r)).

Proof Since eT ⊂ P⊥, and eT ∩ P = Q, the transmitter’s encoding rules have the form as

follows





R1 R2 0 R4 0 0 R7

0 0 0 0 1 0 L7

0 0 0 0 0 1 0




 ,

r ν−r r ν−r 1 1 l−1
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where (R2, R4) is a subspace of type (2t, t) in the symplectic space Fq
(2(ν−r)) and its number is

N(2t, t; 2(ν−r)). Therefore, the number of the transmitter’s encoding rules is q2tr+(2t+1)(l−1)N(2t,

t; 2(ν − r)).

Lemma 3 The number of the receiver’s decoding rules is

|ER| = q2(t−1)r+(2t−1)lN(2(t − 1), t − 1; 2(ν − r)).

Proof Since the receiver’s decoding rules is a subspace of type (2t− 1, 2(t− 1) + 1, t− 1, 1, 0)

in P⊥, it has the form as follows
(

R1 R2 0 R4 0 R6

0 0 0 0 1 L6

)

,

r ν−r r ν−r 1 l

where (R2, R4) is a subspace of type (2(t − 1), t − 1) in the symplectic space Fq
(2(ν−r)) and

its number is N(2(t − 1), t − 1; 2(ν − r)). Then the number of the receiver’s decoding rules is

q2(t−1)r+(2t−1)lN(2(t − 1), t − 1; 2(ν − r)).

Lemma 4 The number of the transmitter’s encoding rules contained in a message is q2t(r−1)+(2t+1)(k−1).

Proof Let P1 be a message. Then Q ⊂ P1 ⊂ P⊥, P1 is a subspace of type (r+2t+k, 2t+1, t, 1, k)

and P ∩ P1 is a subspace of type (r − 1 + k, 0, 0, 0, k). Clearly, P1 has a form as follows

P1 =











Q1 0 0 0 0 0 0 0

R1 R2 0 R4 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 I(k−1) 0











,

r ν−r r ν−r 1 1 k−1 l−k

and

P ∩ P1 =

(

Q1 0 0 0 0 0 0

0 0 0 0 0 I(k) 0

)

r ν−r r ν−r 1 k l−k

is a source state. If eT ⊂ P1, then we can assume

eT =






R1 R2 0 R4 0 0 R7 0

0 0 0 0 1 0 L7 0

0 0 0 0 0 1 0 0




 ,

r ν−r r ν−r 1 1 k−1 l−k

where (R2, R4) is a subspace of type (2t, t) in the symplectic space Fq
(2(ν−r)) and it is uniquely

determined by the message P1. Therefore, the number of the transmitter’s encoding rules con-

tained in a message is q2t(r−1)+(2t+1)(k−1).
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Lemma 5 The number of the messages is

|M | = q(2t+1)(l−k)+2t |S| N(2t, t; 2(ν − r)).

Proof We easily know that a message contains a source state and the number of the transmitter’s

encoding rules contained in a message is q2t(r−1)+(2t+1)(k−1). Therefore, we have

|M | =
|S||ET |

q2t(r−1)+(2t+1)(k−1)
= q(2t+1)(l−k)+2t |S| N(2t, t; 2(ν − r)).

Lemma 6 The probability of an opponent’s successful impersonation attack is

PI =
q2t − 1

q(2t−1)(l−k)(q2 − 1)N(2(t − 1), t − 1; 2(ν − r))
.

Proof Let P1 be a message and Q ⊂ P1 ⊂ P⊥. P1 is a subspace of type (r + 2t + 1 + k, 2t +

2, t, 1, k) and P ∩ P1 is a subspace of type (r − 1 + k, 0, 0, 0, k). It is easy to know that P1 has

a form as follows

P1 =









Q1 0 0 0 0 0 0

R1 R2 0 R4 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 I(k) 0









.

r ν−r r ν−r 1 k l−k

We can assume that

eR =

(

R1
′ R2

′ 0 R4
′ 0 R6

′ 0

0 0 0 0 1 L6
′ 0

)

,

r ν−r r ν−r 1 k l−k

where (R1 R2 0 R4) is a subspace of type (2t, t) in the symplectic space F
(2ν)
q , and the number

of subspaces of type (2(t − 1), t − 1) contained in this subspace of type (2t, t) is N(2(t − 1), t −

1; 2t, t; 2(ν − r)), so the number of the receiver’s decoding rules contained in the message P1 is

q2(t−1)(r−1)+(2t−1)kN(2(t − 1), t − 1; 2t, t; 2(ν − r)). Therefore, the probability of an opponent’s

successful impersonation attack is

PI =
q2(t−1)(r−1)+(2t−1)kN(2(t − 1), t − 1; 2t, t; 2(ν − r))

q2(t−1)r+(2t−1)lN(2(t − 1), t − 1; 2(ν − r))

=
q2t − 1

q(2t−1)(l−k)(q2 − 1)N(2(t − 1), t − 1; 2(ν − r))
.

Lemma 7 The probability of an opponent’s successful substitution attack is

PS =
1

q2(t−1)
.

Proof It is easy to know that any two distinct messages contain q2(t−1)(r−2)+(2t−1)k

N(2(t−1), t−1; 2t, t; 2(ν−r)) receiver’s decoding rules at most. Since the number of the receiver’s

decoding rules contained in any fixed message is q2(t−1)(r−1)+(2t−1)kN(2(t−1), t−1; 2t, t; 2(ν−r)).

Therefore, the probability of an opponent’s successful substitution attack is

PS =
q2(t−1)(r−2)+(2t−1)kN(2(t − 1), t − 1; 2t, t; 2(ν − r))

q2(t−1)(r−1)+(2t−1)kN(2(t − 1), t − 1; 2t, t; 2(ν − r))
=

1

q2(t−1)
.
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Lemma 8 The probability of a transmitter’s successful impersonation attack is

PT =
q2 − 1

q2t − 1
.

Proof Let eT be the transmitter’s secret encoding rules, s be a source state, and P1 be the

message corresponding to the source state s encoded by eT . Then the number of the receiver’s

decoding rules contained in P1 is q2(t−1)(r−1)+(2t−1)kN(2(t − 1), t − 1; 2t, t; 2(ν − r)). Assume

that P2 is a distinct message corresponding to s, but P2 cannot be encoded by eT . Then P1 ∩P2

contains q2(t−1)(r−1)+(2t−1)kN(2(t − 1), t − 1; 2t − 1, t − 1; 2(ν − r)) receiver’s decoding rules at

most. Therefore the probability of a transmitter’s successful impersonation attack is

PT =
q2(t−1)(r−1)+(2t−1)kN(2(t − 1), t − 1; 2t− 1, t − 1; 2(ν − r))

q2(t−1)(r−1)+(2t−1)kN(2(t − 1), t − 1; 2t, t; 2(ν − r))
=

q2 − 1

q2t − 1
.

Lemma 9 The probability of a receiver’s successful impersonation attack is

PR0
=

1

q2(l−k+1)N(2, 1; 2(ν − r − t + 1))
.

Proof We can assume that the receiver’s secret decoding rules are

eR =






0 I(t−1) 0 0 0 0 0 0

0 0 0 0 I(t−1) 0 0 0

0 0 0 0 0 0 1 0




 .

r t−1 ν−r−(t−1) r t−1 ν−r−(t−1) 1 l

Connecting with it gives the transmitter’s encoding rules of the form:

eT =














0 I(t−1) 0 0 0 0 0 0 0

R1 0 R3 0 0 R6 0 0 R9

0 0 0 0 I(t−1) 0 0 0 0

R1
′ 0 R3

′ 0 0 R6
′ 0 0 R9

′

0 0 0 0 0 0 I(2) 0 0

0 0 0 0 0 0 0 1 0














r t−1 ν−r−(t−1) r t−1 ν−r−(t−1) 1 1 l−1

(*)

where

(

R3 R6

R3
′ R6

′

)

is a subspace of type (2, 1) contained in the symplectic space F
2(ν−r−(t−1))
q .

So the number of transmitter’s encoding rules as above is q2rN(2, 1; 2(ν − r − t + 1))q2(l−1). A

message containing eR has q2(r−1)q2(k−1) transmitter’s encoding rules as above form, hence the

probability of a receiver’s successful impersonation attack is

PR0
=

q2(r−1)q2(k−1)

q2rN(2, 1; 2(ν − r − t + 1))q2(l−1)
=

1

q2(l−k+1)N(2, 1; 2(ν − r − t + 1))
.

Lemma 10 The probability of a receiver’s successful substitution attack is

PR1
=

1

q2
.

Proof When the receiver received a message P1, we know that P1 contains q2(r−1)q2(k−1)
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transmitter’s encoding rules as form (∗). Substitute P1 by message P2 corresponding to the

other source state. Then P1 ∩P2 contains q2(r−2)q2(k−1) transmitter’s encoding rules as form (∗)

at most. Therefore the probability of a receiver’s successful substitution attack is

PR1
=

q2(r−2)q2(k−1)

q2(r−1)q2(k−1)
=

1

q2
.

Theorem 1 The A2-code constructed as above has the following parameters:

|S| =

q(r−1)(l−k)(qr − 1)
l−1∏

i=l−k+1

(qi − 1)

(q − 1)
k−1∏

i=1

(qi − 1)

;

|ET | = q2tr+(2t+1)(l−1)N(2t, t; 2(ν − r));

|ER| = q2(t−1)r+(2t−1)lN(2(t − 1), t − 1; 2(ν − r));

|M | = q(2t+1)(l−k)+2t |S| N(2t, t; 2(ν − r));

PI =
q2t − 1

q(2t−1)(l−k)(q2 − 1)N(2(t − 1), t − 1; 2(ν − r))
; PS =

1

q2(t−1)
;

PT =
q2 − 1

q2t − 1
; PR0

=
1

q2(l−k+1)N(2, 1; 2(ν − r − t + 1))
; PR1

=
1

q2
.

3. Realization of A
2-code

The receiver wants to prove whether the message m is an authentication, it suffices to prove

eR ⊂ m. If the equation (k1, k2, . . . , kr+2t+k)m = eR has the solution, then m will be received

as authentication, otherwise it will be regarded as deception.

To describe easily, we assume that r = 2, t = 2, k = 1 as example to explain the A2-code’s

encoding and decoding process.

(1) The process of encoding.

Let

P =

(

I(2) 0 0 0 0 0

0 0 0 0 0 I(l)

)

,

2 ν−2 2 ν−2 1 l

and

P⊥ =











I(2) 0 0 0 0 0

0 I(ν−2) 0 0 0 0

0 0 0 I(ν−2) 0 0

0 0 0 0 1 0

0 0 0 0 0 I(l)











.

2 ν−2 2 ν−2 1 l
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Then the transmitter’s encoding rules eT has the form:

eT =














X1 1 0 0 0 0 0 X8 0 0 X11

X ′
1 0 1 0 0 0 0 X ′

8 0 0 X ′
11

Y1 0 0 Y4 0 1 0 0 0 0 Y11

Y ′
1 0 0 Y ′

4 0 0 1 0 0 0 Y ′
11

0 0 0 0 0 0 0 0 1 0 Z11

0 0 0 0 0 0 0 0 0 1 0














2 1 1 ν−2 2 1 1 ν−2 1 1 l−1

=














α1

α2

β1

β2

γ1

e2ν+2














corresponding to eT , and the receiver’s decoding rules eR has the form:

eR =






α1 + λα2

β1 + µβ2

γ1 + be2ν+2




 ,

where (α1 + λα2)Kl(β1 + µβ2)
T 6= 0.

Let s be a source state. Then let

s =

(

L1 0 0 0 0 0 L7

0 0 0 0 0 1 0

)

2 ν−2 2 ν−2 1 1 l−1

=

(

η

e2ν+2

)

,

and s be encoded to be m = s + eT by eT .

(2) The process of decoding

If the receiver received a message m, then by the definition of m, we know that

m =











N1 N2 0 N4 0 0 N7

Q1 Q2 0 Q4 0 0 Q7

R1 R2 0 R4 0 0 R7

0 0 0 0 1 0 Z7

0 0 0 0 0 1 0











.

2 ν−2 2 ν−2 1 1 l−1

If there are ki ∈ Fq(i = 1, 2, . . . , 6), such that (k1, k2, . . . , k6)m = eR, and every row has solution,

then m will be accepted as authentication, and be decoded s = m∩P , otherwise m will be seen

as deception.
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