Journal of Mathematical Research & Exposition Jan., 2009, Vol. 29, No. 1, pp. 43–51 DOI:10.3770/j.issn:1000-341X.2009.01.006 Http://jmre.dlut.edu.cn

Strong Convergence Theorems for Asymptotically Strictly Pseudocontractive Maps in Hilbert Spaces

QIN Xiao Long¹, WU Chang Qun², SHANG Mei Juan³

(1. Department of Mathematics, Tianjin Polytechnic University, Tianjin 300160, China;

2. School of Business and Administration, Henan University, Henan 475001, China;

3. Department of Mathematics, Shijiazhuang University, Hebei 050035, China)

(E-mail: qxlxajh@163.com)

Abstract The Mann iterations have no strong convergence even for nonexpansive mappings in Hilbert spaces. The aim of this paper is to propose a modification of the Mann iterations for strictly asymptotically pseudocontractive maps in Hilbert spaces to have strong convergence. Our results extend those of Kim, Xu^[4], Nakajo, Takahashi^[3] and many others.

Keywords nonexpansive mappings; strictly pseudocontractive mappings; Hilbert spaces; projection.

Document code A MR(2000) Subject Classification 47H09; 65J15 Chinese Library Classification 0177.91

1. Introduction and preliminaries

Mann's iteration process^[1] is often used to approximate a fixed point of a nonexpansive mapping. Mann's iteration process is defined as

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T x_n, \quad n \ge 0,$$
(1.1)

where the initial guess x_0 is taken in C arbitrarily and the sequence $\{\alpha_n\}_{n=0}^{\infty}$ is in the interval [0, 1].

If T is a nonexpansive mapping with a fixed point and if the control sequence $\{\alpha_n\}$ is chosen so that $\sum_{n=0}^{\infty} \alpha_n (1 - \alpha_n) = \infty$, then the sequence $\{x_n\}$ generated by Mann's algorithm (1.1) converges weakly to a fixed point of T (This is also valid in a uniformly convex Banach space with a Fréchet differentiable norm^[2]).

Attempts to modify the Mann iteration method (1.1) so that strong convergence is guaranteed have recently been made. Nakajo and Takahashi^[3] proposed the following modification of the Mann iteration (1.1) for a single nonexpansive mapping T in a Hilbert space:

Theorem 1.1 Let C be a closed convex subset of a Hilbert space H and let $T : C \to C$ be a nonexpansive mapping such that $F(T) \neq \emptyset$. Assume that $\{\alpha_n\}_{n=0}^{\infty}$ is a sequence in [0, 1] such

Received date: 2006-12-06; Accepted date: 2007-07-13

Foundation item: Research Foundation of Henan University (No. 06YBZR034).

that $\alpha_n \leq 1 - \delta$ for some $\delta \in (0, 1]$. Define a sequence $\{x_n\}_{n=0}^{\infty}$ in C by the following algorithm: $\begin{cases} x_0 \in C & \text{chosen arbitrarily,} \end{cases}$

$$\begin{cases} y_n = \alpha_n x_n + (1 - \alpha_n) T x_n, \\ C_n = \{ z \in C : ||y_n - z|| \le ||x_n - z|| \}, \\ Q_n = \{ z \in C : \langle x_0 - x_n, x_n - z \rangle \ge 0 \}, \\ x_{n+1} = P_{C_n \cap Q_n} x_0. \end{cases}$$
(1.2)

Then $\{x_n\}$ converges in norm to $P_{F(T)}x_0$.

Recently, Kim and Xu^[4] adapted the iteration (1.2) in Hilbert spaces. They extended the recent one of Nakajo and Takahashi^[3] from nonexpansive mappings to asymptotically nonexpansive mappings. More precisely, they gave the following result.

Theorem 1.2^[4] Let C be a nonempty bounded closed convex subset of a Hilbert space H and let $T : C \to C$ be an asymptotically nonexpansive mapping with a sequence $\{k_n\}$ such that $k_n \to 1$ as $n \to \infty$. Assume that $\{\alpha_n\}_{n=0}^{\infty}$ is a sequence in [0,1] such that $\limsup_{n\to\infty} \alpha_n < 1$. Define a sequence $\{x_n\}$ in C by the following algorithm:

$$\begin{cases} x_{0} \in C \text{ chosen arbitrarily,} \\ y_{n} = \alpha_{n}x_{n} + (1 - \alpha_{n})T^{n}x_{n}, \\ C_{n} = \{z \in C : \|y_{n} - z\|^{2} \leq \|x_{n} - z\|^{2} + \theta_{n}\}, \\ Q_{n} = \{z \in C : \langle x_{0} - x_{n}, x_{n} - z \rangle \geq 0\}, \\ x_{n+1} = P_{C_{n} \cap Q_{n}}x_{0}, \end{cases}$$
(1.3)

where

$$\theta_n = (1 - \alpha_n)(k_n^2 - 1)(\operatorname{diam} C)^2 \to 0, \text{ as } n \to \infty.$$

Then $\{x_n\}$ defined by (1.3) converges strongly to $P_{F(T)}x_0$.

On the other hand, Halpern iterations $process^{[5]}$ which is defined as

$$x_{n+1} = \alpha_n x_0 + (1 - \alpha_n) T x_n, \quad n \ge 0, \tag{1.4}$$

where $\{\alpha_n\}_{n=0}^{\infty}$ is a sequence in the interval [0,1], is also usually used to approximate a fixed point of nonexpansive mappings. The iteration process (1.4) has been proved to be strongly convergent in both Hilbert spaces^[5-7] and uniformly smooth Banach spaces^[8-10] provided that the sequence $\{\alpha_n\}$ satisfies the conditions (C₁): $\alpha_n \to 0$; (C₂): $\sum_{n=0}^{\infty} \alpha_n = \infty$ and (C₃): either $\sum_{n=0}^{\infty} |\alpha_n - \alpha_{n+1}|$ or $\lim_{n\to\infty} \frac{\alpha_n}{\alpha_{n+1}} = 1$. It is well known that the iterative process (1.4) is widely believed to have slow convergence because of the restriction of condition (C₂). Moreover, Halpern^[5] proved that condition (C₁) and (C₂) are indeed necessary in the sense that if process (1.4) is strongly convergent for all closed convex subsets *C* of a Hilbert space *H* and all nonexpansive mappings *T* on *C*, then the sequence $\{\alpha_n\}$ must satisfy conditions (C₁) and (C₂). Thus to improve the rate of convergence of process (1.4), one cannot rely only on the process itself. In [11], Martinez-Yanes and Xu proved the following theorem:

Theorem 1.3 Let H be a real Hilbert space, C a closed convex subset of H and $T : C \to C$ a nonexpansive mapping such that $F(T) \neq \emptyset$. Assume that $\alpha_n \subset (0,1)$ is chosen such that $\lim_{n\to\infty} \alpha_n = 0$. Then the sequence $\{x_n\}_{n=0}^{\infty}$ generated by

$$\begin{cases} x_0 \in C \text{ chosen arbitrarily,} \\ y_n = \alpha_n x_0 + (1 - \alpha_n) T x_n, \\ C_n = \{ z \in C : \|y_n - z\|^2 \le \|x_n - z\|^2 + \alpha_n (\|x_0\|^2 + 2\langle x_n - x_0, z \rangle) \}, \\ Q_n = \{ z \in C : \langle x_0 - x_n, x_n - z \rangle \ge 0 \}, \\ x_{n+1} = P_{C_n \cap Q_n} x_0 \end{cases}$$

converges strongly to $P_{F(T)}x_0$.

In [12], Qin and Su extended the results of Mantinez-Yanes and $Xu^{[11]}$ from Hilbert spaces to Banach spaces by using generalized projection operators. Recently, Kim and $Xu^{[13]}$ introduced another modification of Mann's iteration method which is a convex combination of a fixed point in subset C of a Banach space E and the Mann's iteration method (1.1) to get a strong convergence theorem for nonexpansive mappings. More precisely, they proved the following theorem:

Theorem 1.4 Let C be a closed convex subset of a uniformly smooth Banach space X and let $T: C \to C$ be a nonexpansive mapping such that the set of fixed points $F(T) \neq \emptyset$. Given a point $u \in C$ and given sequences $\{\alpha_n\}$ and $\{\beta_n\}$ in (0,1), the following conditions are satisfied: (i) $\alpha_n \to 0, \beta_n \to 0$:

(i)
$$\sum_{n=0}^{\infty} \alpha_n = \infty, \sum_{n=0}^{\infty} \alpha_n = \infty;$$

(ii) $\sum_{n=0}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty, \sum_{n=0}^{\infty} |\beta_{n+1} - \beta_n| < \infty.$ Define a sequence $\{x_n\}$ in C by

$$\begin{cases} x_0 = x \in C \text{ chosen arbitrarily,} \\ y_n = \alpha_n x_n + (1 - \alpha_n)Tx_n, \\ x_{n+1} = \beta_n u + (1 - \beta_n)y_n. \end{cases}$$

Then $\{x_n\}$ strongly converges to a fixed point of T.

The purpose of this paper is to combine Nakajo and Takahashi^[3] with Kim and Xu^[13]'s idea to modify Mann iterative process (1.1) for asymptotically k-strictly pseudocontractive mappings and k-strictly pseudocontractive mappings, respectively to have strong convergence theorems in Hilbert spaces without any compactness on T. Our results improve and extend the recent ones announced by Nakajo and Takahashi^[3], Kim and Xu^[13] and some others.

Let K be a nonempty subset of a Hilbert space H. Recall that a mapping $T: K \to K$ is said to be asymptotically k-strictly pseudocontractive (The class of asymptotically k-strictly pseudocontractive maps was first introduced in Hilbert spaces by $\text{Liu}^{[14]}$.) if there exists a sequence $\{k_n\} \subset [1, \infty)$ with $\lim_{n\to\infty} k_n = 1$ such that

$$||T^{n}x - T^{n}y||^{2} \le k_{n}^{2}||x - y||^{2} + k||(I - T^{n})x - (I - T^{n})y||^{2},$$
(1.5)

for some $k \in [0, 1)$, for all $x, y \in K$ and $n \in \mathbb{N}$.

Note that the class of asymptotically k-strictly pseudocontractive mappings strictly includes the class of asymptotically nonexpansive mappings^[15] which are mappings T on K such that

$$||T^n x - T^n y|| \le k_n ||x - y||$$
, for all $x, y \in K$,

where the sequence $\{k_n\} \subset [1,\infty)$ such that $\lim_{n\to\infty} k_n = 1$. That is, T is asymptotically

nonexpansive if and only if T is asymptotically 0-strictly pseudocontractive.

Recall that a mapping $T: K \to K$ is said to be asymptotically demicontractive (The class of asymptotically demicontractive maps was first introduced in Hilbert spaces by $\text{Liu}^{[14]}$.) if the set of fixed point of T, that is, F(T), is nonempty and if there exists a sequence $\{k_n\} \subset [1, \infty)$ with $\lim_{n\to\infty} k_n = 1$ such that

$$||T^{n}x - p||^{2} \le k_{n}^{2} ||x - p||^{2} + k||x - T^{n}x||^{2}, \qquad (1.6)$$

for some $k \in [0, 1)$, $\forall p \in F(T)$, for all $x \in K$ and $n \in \mathbb{N}$.

Recall that a mapping $T: K \to K$ is said to be strictly pseudocontractive if there exists a constant $0 \le k < 1$ such that

$$||Tx - Ty||^{2} \le ||x - y||^{2} + k||(I - T)x - (I - T)y||^{2},$$
(1.7)

for all $x, y \in K$. (If (1.7) holds, we also say that T is a k-strictly pseudocontractive map.)

Note that the class of k-strictly pseudocontractive maps strictly includes the class of nonexpansive mappings which are mappings T on K such that

$$||Tx - Ty|| \le ||x - y||$$
, for all $x, y \in K$

That is, T is nonexpansive if and only if T is 0-strictly pseudocontractive.

In order to prove our main results, we need the following Lemmas.

Lemma 1.1 Let H be a real Hilbert space. There hold the following identities:

- (i) $||x y||^2 = ||x||^2 ||y||^2 2\langle x y, y \rangle, \forall x, y \in H.$
- $(ii) \quad \|tx+(1-t)y\|^2 = t\|x\|^2 + (1-t)\|y\|^2 t(1-t)\|x-y\|^2, \, \forall t \in [0,1], \, \forall x,y \in H.$

Lemma 1.2^[16] Let H be a real Hilbert space. Let K be a nonempty closed convex subset of E and $T: K \to K$ a asymptotically k-strictly pseudocontractive mapping with a nonempty fixed point set. Then (I - T) is demiclosed at zero.

Lemma 1.3 Let *H* be a real Hilbert space, *K* a nonempty subset of *E* and *T* : $K \to K$ a asymptotically *k*-strictly pseudocontractive mapping. Then *T* is uniformly *L*-Lipschitzian.

Proof It follows from the definition of asymptotically k-strictly pseudocontractive mappings that

$$\begin{aligned} \|T^{n}x - T^{n}y\|^{2} &\leq k_{n}^{2} \|x - y\|^{2} + k\|(x - T^{n}x) - (y - T^{n}x)\|^{2} \\ &\leq (k_{n}\|x - y\| + \sqrt{k}\|(x - T^{n}x) - (y - T^{n}x)\|)^{2} \end{aligned}$$

That is,

$$\|T^{n}x - T^{n}y\| \leq k_{n}\|x - y\| + \sqrt{k}\|(x - T^{n}x) - (y - T^{n}x)\|$$

$$\leq k_{n}\|x - y\| + \sqrt{k}\|x - y\| + \sqrt{k}\|T^{n}x - T^{n}y\|,$$

which yields that

$$||T^n x - T^n y|| \le \frac{k_n + \sqrt{k}}{1 - \sqrt{k}} ||x - y||.$$

Since $\{k_n\}$ is bounded, we have $k_n \leq M$ for all $n \geq 0$ and for some M > 0. Therefore, we obtain

$$|T^{n}x - T^{n}y|| \le L||x - y||,$$

where $L = \frac{M + \sqrt{k}}{1 - \sqrt{k}}$. This completes the proof.

Lemma 1.4^[16] Let H be a real Hilbert space, K a nonempty subset of H and $T : K \to K$ a asymptotically k-strictly pseudocontractive mapping. Then the fixed points set F(T) of T is closed and convex so that the projection $P_{F(T)}$ is well defined.

2. Main results

Theorem 2.1 Let C be a closed bounded convex subset of a Hilbert space H and let $T : C \to C$ be a asymptotically k-strictly pseudocontractive mapping with a sequence $\{k_n\} \subset [1, \infty)$ such that $\lim_{n\to\infty} k_n = 1$. Define a sequence $\{x_n\}_{n=0}^{\infty}$ in C by the following algorithm:

$$\begin{cases} x_{0} \in C \text{ chosen arbitrarily,} \\ z_{n} = \beta_{n}x_{n} + (1 - \beta_{n})T^{n}x_{n}, \\ y_{n} = \alpha_{n}x_{0} + (1 - \alpha_{n})z_{n}, \\ C_{n} = \{z \in C : \|y_{n} - z\|^{2} \leq \|x_{n} - z\|^{2} + (k_{n}^{2} - 1)(1 - \alpha_{n})M + \\ \alpha_{n}(\|x_{0}\|^{2} - \|x_{n}\|^{2} + 2\langle x_{n} - x_{0}, z\rangle) + \\ (k - \beta_{n})(1 - \beta_{n})(1 - \alpha_{n})\|T^{n}x_{n} - x_{n}\|^{2} - \alpha_{n}(1 - \alpha_{n})\|z_{n} - x_{0}\|^{2} \}, \\ Q_{n} = \{z \in C : \langle x_{0} - x_{n}, x_{n} - z \rangle \geq 0 \}, \\ x_{n+1} = P_{C_{n} \cap Q_{n}}x_{0}, \end{cases}$$

where M is a constant such that $M \ge ||x_n - p||^2$ for any $p \in F(T)$. Assume that the control sequences $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ are chosen such that $\lim_{n\to\infty} \alpha_n = 0$ and $\beta_n \in [0, a]$ for some $a \in [0, 1)$. Then $\{x_n\}$ converges in norm to $P_{F(T)}x_0$.

Proof We first show that C_n and Q_n are closed and convex for each $n \ge 0$. From the definition of C_n and Q_n , it is obvious that C_n is closed and Q_n is closed and convex for each $n \ge 0$. We prove that C_n is convex. Since

$$\|y_n - z\|^2 \le \|x_n - z\|^2 + (k_n^2 - 1)(1 - \alpha_n)M + \alpha_n(\|x_0\|^2 - \|x_n\|^2 + 2\langle x_n - x_0, z \rangle) + (k - \beta_n)(1 - \beta_n)(1 - \alpha_n)\|T^n x_n - x_n\|^2 - \alpha_n(1 - \alpha_n)\|z_n - x_0\|^2$$
(2.1)

is equivalent to

$$\langle 2(1 - \alpha_n)x_n - 2y_n - 2\alpha_n x_0, z \rangle \leq \|x_n\|^2 - \|y_n\|^2 + (k_n^2 - 1)(1 - \alpha_n)M + \alpha_n(\|x_0\|^2 - \|x_n\|^2) + (k - \beta_n)(1 - \beta_n)(1 - \alpha_n)\|Tx_n - x_n\|^2 - \alpha_n(1 - \alpha_n)\|z_n - x_0\|^2.$$
 (2.2)

So, C_n is convex. Next, we show that $F(T) \subset C_n$ for all n. Indeed, we have, for all $p \in F(T)$

$$||y_n - p||^2 = ||\alpha_n(x_0 - p) + (1 - \alpha_n)(z_n - p)||^2$$

= $\alpha_n ||x_0 - p||^2 + (1 - \alpha_n) ||z_n - p||^2 - \alpha_n (1 - \alpha_n) ||z_n - x_0||^2$
= $\alpha_n ||x_0 - p||^2 + (1 - \alpha_n) ||\beta_n(x_n - p) + (1 - \beta_n)(T^n x_n - p)||^2 -$

$$\begin{aligned} &\alpha_n(1-\alpha_n)\|z_n-x_0\|^2 \\ &\leq \alpha_n\|x_0-p\|^2 + (1-\alpha_n)\beta_n\|x_n-p\|^2 + \\ &(1-\alpha_n)(1-\beta_n)\|T^nx_n-p\|^2 - \beta_n(1-\beta_n)(1-\alpha_n)\|T^nx_n-x_n\|^2 - \\ &\alpha_n(1-\alpha_n)\|z_n-x_0\|^2 \\ &\leq \|x_n-p\|^2 + (1-\alpha_n)(k_n^2-1)M + \alpha_n(\|x_0\|^2 - \|x_n\|^2 + 2\langle x_n-x_0,p\rangle) + \\ &(1-\alpha_n)(1-\beta_n)(k-\beta_n)\|T^nx_n-x_n\|^2 - \alpha_n(1-\alpha_n)\|z_n-x_0\|^2. \end{aligned}$$

So $p \in C_n$ for all n. Next we show that

$$F(T) \subset Q_n, \text{ for all } n \ge 0.$$
 (2.3)

We prove this by induction. For n = 0, we have $F(T) \subset C = Q_0$. Assume that $F(T) \subset Q_n$. Since x_{n+1} is the projection of x_0 onto $C_n \cap Q_n$, by Lemma 1.2 we have $\langle x_0 - x_{n+1}, x_{n+1} - z \rangle \geq 0$, $\forall z \in C_n \cap Q_n$. As $F(T) \subset C_n \cap Q_n$ by the induction assumptions, the last inequality holds, in particular, for all $z \in F(T)$. This together with the definition of Q_{n+1} implies that $F(T) \subset Q_{n+1}$. Hence (2.3) holds for all $n \geq 0$. In order to prove $\lim_{n\to\infty} ||x_{n+1} - x_n|| = 0$, from the definition of Q_n we have $x_n = P_{Q_n} x_0$ which together with the fact that $x_{n+1} \in C_n \cap Q_n \subset Q_n$ implies that $||x_0 - x_n|| \leq ||x_0 - x_{n+1}||$. This shows that the sequence $||x_n - x_0||$ is nondecreasing. Since C is bounded, we obtain that $\lim_{n\to\infty} ||x_n - x_0||$ exists. Noticing again that $x_n = P_{Q_n} x_0$ and $x_{n+1} \in Q_n$, which give that $\langle x_{n+1} - x_n, x_n - x_0 \rangle \geq 0$, we have

$$||x_{n+1} - x_n||^2 = ||(x_{n+1} - x_0) - (x_n - x_0)||^2$$

= $||x_{n+1} - x_0||^2 - ||x_n - x_0||^2 - 2\langle x_{n+1} - x_n, x_n - x_0 \rangle$
 $\leq ||x_{n+1} - x_0||^2 - ||x_n - x_0||^2.$

It follows that

$$|x_n - x_{n+1}|| \to 0$$
, as $n \to \infty$. (2.4)

On the other hand, it follows from $x_{n+1} \in C_n$ that

$$\begin{aligned} \|y_n - x_{n+1}\|^2 &\leq \|x_n - x_{n+1}\|^2 + (1 - \alpha_n)(k_n^2 - 1)M + \\ &\alpha_n(\|x_0\|^2 - \|x_n\|^2 + 2\langle x_n - x_0, x_{n+1}\rangle) + \\ &(1 - \alpha_n)(1 - \beta_n)(k - \beta_n)\|T^n x_n - x_n\|^2 - \alpha_n(1 - \alpha_n)\|z_n - x_0\|^2. \end{aligned}$$
(2.5)

Observing that

$$y = \alpha_n x_0 + (1 - \alpha_n) z_n, \tag{2.6}$$

we have

$$\|y_n - x_{n+1}\|^2 = \alpha_n \|x_0 - x_n\|^2 + (1 - \alpha_n) \|z_n - x_{n+1}\|^2 - \alpha_n (1 - \alpha_n) \|z_n - x_0\|^2.$$
(2.7)

Combining (2.5) and (2.7), we obtain

$$(1 - \alpha_n) \|z_n - x_{n+1}\|^2 \le (1 - \alpha_n) \|x_n - x_{n+1}\|^2 + (1 - \alpha_n) (k_n^2 - 1)M + (k - \beta_n) (1 - \beta_n) (1 - \alpha_n) \|T^n x_n - x_n\|^2.$$

Since $\alpha_n < 1$, we obtain

$$||z_n - x_{n+1}||^2 \le ||x_n - x_{n+1}||^2 + (k_n^2 - 1)M + (k - \beta_n)(1 - \beta_n)||T^n x_n - x_n||^2.$$
(2.8)

Similarly, observing that $z_n = \beta_n x_n + (1 - \beta_n) T^n x_n$, we have that

$$||z_n - x_{n+1}||^2 = \beta_n ||x_n - x_{n+1}||^2 + (1 - \beta_n) ||T^n x_n - x_{n+1}||^2 - \beta_n (1 - \beta_n) ||T^n x_n - x_n||^2.$$
(2.9)

Combining (2.8) and (2.9), we have

$$\beta_n \|x_n - x_{n+1}\|^2 + (1 - \beta_n) \|T^n x_n - x_{n+1}\|^2 - \beta_n (1 - \beta_n) \|T^n x_n - x_n\|^2$$

$$\leq \|x_n - x_{n+1}\|^2 + (k_n^2 - 1)M + (k - \beta_n)(1 - \beta_n) \|T^n x_n - x_n\|^2.$$

Since $\beta_n \in [0, a]$ for some $a \in [0, 1)$ and $\lim_{n \to \infty} k_n = 1$, we obtain

$$||Tx_n - x_{n+1}||^2 \le ||x_n - x_{n+1}||^2 + k||T^n x_n - x_n||^2 + \frac{(k_n^2 - 1)M}{1 - \beta_n}.$$
(2.10)

On the other hand, we have

$$||T^{n}x_{n} - x_{n+1}||^{2} = ||T^{n}x_{n} - x_{n} + x_{n} - x_{n+1}||^{2}$$
$$= ||T^{n}x_{n} - x_{n}||^{2} + ||x_{n} - x_{n+1}||^{2} + 2\langle T^{n}x_{n} - x_{n}, x_{n} - x_{n+1}\rangle.$$
(2.11)

Substituting (2.11) into (2.10), we obtain

$$(1-k)||T^n x_n - x_n||^2 \le \frac{(k_n^2 - 1)M}{1 - \beta_n} + 2||T^n x_n - x_n|| ||x_n - x_{n+1}||.$$

It follows from (2.4) and k < 1 that $\lim_{n\to\infty} ||T^n x_n - x_n|| = 0$. Observe that

$$||Tx_n - x_n|| \le ||Tx_n - T^{n+1}x_n|| + ||T^{n+1}x_n - T^{n+1}x_{n+1}|| + ||T^{n+1}x_{n+1} - x_{n+1}|| + ||x_{n+1} - x_n||.$$

Since T is uniformly L-Lipschitzian, we obtain $\lim_{n\to\infty} ||Tx_n - x_n|| = 0$. Assume that $\{x_{n_i}\}$ is a subsequence of $\{x_n\}$ such that $x_{n_i} \rightharpoonup \tilde{x}$. by Lemma 1.3 we have $\tilde{x} \in F(T)$. Next we show that $\tilde{x} = P_{F(T)}x_0$ and convergence is strong. Put $\bar{x} = P_{F(T)}x_0$ and consider the sequence $\{x_0 - x_{n_i}\}$. Then we have $x_0 - x_{n_i} \rightharpoonup x_0 - \tilde{x}$. By the weak lower semicontinuity of the norm and by the fact that $||x_0 - x_{n+1}|| \le ||x_0 - \bar{x}||$ for all $n \ge 0$, which is implied by the fact that $x_{n+1} = P_{C_n \cap Q_n}x_0$, we have

$$||x_0 - \bar{x}|| \le ||x_0 - \tilde{x}|| \le \liminf_{i \to \infty} ||x_0 - x_{n_i}|| \le \limsup_{i \to \infty} ||x_0 - x_{n_i}|| \le ||x_0 - \bar{x}||,$$

which gives that $||x_0 - \bar{x}|| = ||x_0 - \tilde{x}||$ and $||x_0 - x_{n_i}|| \to ||x_0 - \bar{x}||$. It follows that $x_0 - x_{n_i} \to x_0 - \bar{x}$. Hence, we have $x_{n_i} \to \bar{x}$. Since $\{x_{n_i}\}$ is an arbitrary subsequence of $\{x_n\}$, we conclude that $x_n \to \bar{x}$. The proof is completed.

Theorem 2.2 Let C be a closed convex subset of a Hilbert space H and let $T : C \to C$ be a k-strictly pseudocontractive maps and assume that the fixed point set F(T) of T is nonempty.

Define a sequence $\{x_n\}_{n=0}^{\infty}$ in C by the following algorithm:

$$\begin{cases} x_0 \in C & \text{chosen arbitrarily,} \\ z_n = \beta_n x_n + (1 - \beta_n) T x_n, \\ y_n = \alpha_n x_0 + (1 - \alpha_n) z_n, \\ C_n = \{ z \in C : \|y_n - z\|^2 \le \|x_n - z\|^2 + \alpha_n (\|x_0\|^2 - \|x_n\|^2 + 2\langle x_n - x_0, z \rangle) + \\ (k - \beta_n) (1 - \beta_n) (1 - \alpha_n) \|T x_n - x_n\|^2 - \alpha_n (1 - \alpha_n) \|z_n - x_0\|^2 \}, \\ Q_n = \{ z \in C : \langle x_0 - x_n, x_n - z \rangle \ge 0 \}, \\ \chi_{n+1} = P_{C_n \cap Q_n} x_0. \end{cases}$$

Assume that the control sequences $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ are chosen such that $\lim_{n\to\infty} \alpha_n = 0$ and $\beta_n < 1$. Then $\{x_n\}$ converges in norm to $P_{F(T)}x_0$.

Proof Taking the sequence $\{k_n\} = 1$ and from the proof of Theorem 2.1, we can get the desired conclusion easily.

As corollaries of Theorems 2.1 and 2.2, we have the following results.

Corollary 2.3^[11] Let H be a real Hilbert space, C a closed convex subset of H and $T : C \to C$ a nonexpansive mapping such that $F(T) \neq \emptyset$. Assume that $\{\alpha_n\} \subset (0,1)$ is chosen such that $\lim_{n\to\infty} \alpha_n = 0$. Then the sequence $\{x_n\}_{n=0}^{\infty}$ generated by the following algorithm:

$$\begin{cases} x_0 \in C & \text{chosen arbitrarily,} \\ y_n = \alpha_n x_0 + (1 - \alpha_n) T x_n, \\ C_n = \{ z \in C : \|y_n - z\|^2 \le \|x_n - z\|^2 + \alpha_n (\|x_0\|^2 + 2\langle x_n - x_0, z \rangle) \}, \\ Q_n = \{ z \in C : \langle x_0 - x_n, x_n - z \rangle \ge 0 \}, \\ x_{n+1} = P_{C_n \cap Q_n} x_0 \end{cases}$$

converges strongly to $P_{F(T)}x_0$.

Proof Note that the class of k-strictly pseudocontractive maps strictly includes the class of nonexpansive mappings. That is, T is a nonexpansive mapping if and only if T is a 0-strictly pseudocontractive mapping. By using Theorem 2.2, we can obtain the desired conclusion immediately. This completes the proof.

Corollary 2.4 Let *H* be a real Hilbert space, *C* a bounded closed convex subset of *H* and $T: C \to C$ an asymptotically nonexpansive mapping. Assume that $\{\alpha_n\} \subset (0, 1)$ is chosen such that $\lim_{n\to\infty} \alpha_n = 0$. The sequence $\{x_n\}_{n=0}^{\infty}$ generated by

$$\begin{cases} x_0 \in C \text{ chosen arbitrarily,} \\ y_n = \alpha_n x_0 + (1 - \alpha_n) T^n x_n, \\ C_n = \{z \in C : \|y_n - z\|^2 \le \|x_n - z\|^2 + (k_n^2 - 1)(1 - \alpha_n)M \\ + \alpha_n (\|x_0\|^2 - \|x_n\|^2 + 2\langle x_n - x_0, z \rangle)\}, \\ Q_n = \{z \in C : \langle x_0 - x_n, x_n - z \rangle \ge 0\}, \\ x_{n+1} = P_{C_n \cap Q_n} x_0, \end{cases}$$

where M is a constant such that $M \ge ||x_n - p||^2$ for any $p \in F(T)$, converges strongly to $P_{F(T)}x_0$.

Proof Note that the class of asymptotically k-strictly pseudocontractive maps strictly includes the class of asymptotically nonexpansive mappings. That is, T is an asymptotically nonexpansive mapping if and only if T is a asymptotically 0-strictly pseudocontractive mapping. By using Theorem 2.1, we can obtain the desired conclusion easily. This completes the proof. \Box

References

- [1] MANN W R. Mean value methods in iteration [J]. Proc. Amer. Math. Soc., 1953, 4: 506–510.
- [2] REICH S. Weak convergence theorems for nonexpansive mappings in Banach spaces [J]. J. Math. Anal. Appl., 1979, 67(2): 274–276.
- [3] NAKAJO K, TAKAHASHI W. Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups [J]. J. Math. Anal. Appl., 2003, 279(2): 372–379.
- [4] KIM T H, XU Hongkun. Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups [J]. Nonlinear Anal., 2006, 64(5): 1140–1152.
- [5] HALPERN B. Fixed points of nonexpanding maps [J]. Bull. Amer. Math. Soc., 1967, 73: 957–961.
- [6] LIONS P L. Approximation de points fixes de contractions [J]. C. R. Acad. Sci. Paris Sér. A-B, 1977, 284(21): 1357–1359.
- [7] WITTMANN R. Approximation of fixed points of nonexpansive mappings [J]. Arch. Math. (Basel), 1992, 58(5): 486–491.
- [8] REICH S. Strong convergence theorems for resolvents of accretive operators in Banach spaces [J]. J. Math. Anal. Appl., 1980, 75(1): 287–292.
- SHIOJI N, TAKAHASHI W. Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces [J]. Proc. Amer. Math. Soc., 1997, 125(12): 3641–3645.
- [10] XU Hongkun. Iterative algorithms for nonlinear operators [J]. J. London Math. Soc. (2), 2002, 66(1): 240–256.
- [11] MARTINEZ-YANES C, XU Hongkun. Strong convergence of the CQ method for fixed point iteration processes [J]. Nonlinear Anal., 2006, 64(11): 2400–2411.
- [12] QIN Xiaolong, SU Yongfu. Strong convergence theorems for relatively nonexpansive mappings in a Banach space [J]. Nonlinear Anal., 2007, 67(6): 1958–1965.
- [13] KIM T H, XU Hongkun. Strong convergence of modified Mann iterations [J]. Nonlinear Anal., 2005, 61(1-2): 51–60.
- [14] LIU Qihou. Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings [J]. Nonlinear Anal., 1996, 26(11): 1835–1842.
- [15] GOEBEL K, KIRK W A. A fixed point theorem for asymptotically nonexpansive mappings [J]. Proc. Amer. Math. Soc., 1972, 35: 171–174.
- [16] KIM T H, XU Hongkun. Convergence of the modified Mann's iteration method for asymptotically strict pseudo-contractions [J]. Nonlinear Anal., 2008, 68(9): 2828–2836.