
Journal of Mathematical Research & Exposition

Jan., 2009, Vol. 29, No. 1, pp. 99–105

DOI:10.3770/j.issn:1000-341X.2009.01.013

Http://jmre.dlut.edu.cn

Stable Rings for Morita Contexts of Generalized Power
Series Rings

OUYANG Lun Qun1,2

(1. Department of Mathematics, Hunan Science and Technology University, Hunan 411201, China;

2. Department of Mathematics, Hunan Normal University, Hunan 410081, China)

(E-mail: ouyanglqtxy@163.com)

Abstract In this paper, we show that if rings A and B are (s, 2)-rings, then so is the ring of

a Morita Context ([[AS,≤]], [[BS,≤]], [[MS,≤]], [[NS,≤]], ψS, φS) of generalized power series. Also

we get analogous results for unit 1-stable ranges, GM -rings and rings which have stable range

one. These give new classes of rings satisfying such stable range conditions.
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1. Introduction

Let R be an associative ring with identity and (S,≤) a strictly ordered monoid. Let [[RS,≤]]

be the set of all maps f : S −→ R such that supp(f) = {s ∈ S|f(s) 6= 0} is artinian and

narrow. With pointwise addition, [[RS,≤]] is an abelian additive group. For every s ∈ S and

f, g ∈ [[RS,≤]], let Xs(f, g) = {(u, v) ∈ S × S|s = u + v, f(u) 6= 0, g(v) 6= 0}, it follows from [1,

Section 4.1] that Xs(f, g) is finite. This fact allows to define the multiplication:

(fg)(s) =
∑

(u,v)∈Xs(f,g)

f(u)g(v).

With such multipliation and the preceeding pointwise addition, [[RS,≤]] turns out to be a ring

with unit element e∗ given by e∗(0) = 1, e∗(s) = 0 for all 0 6= s ∈ S. such ring is called a ring of

generalized power series.

The elements of [[RS,≤]] are called generalized power series with coefficients in R and expo-

nents in S. For any a ∈ R, Ca ∈ [[RS,≤]] is given by Ca(0) = a, Ca(s) = 0 for all 0 6= s ∈ S.

Ordered monoids (S,≤) is said to satisfy condition (S0) in case s ≥ 0 for all s ∈ S. Henceforth,

unless otherwise mentioned, in this paper, (S,≤) will always denote a strictly ordered monoid

which satisfies condition (S0).

Let M be an R-module. [[MS,≤]] denotes the set of all maps φ : S −→ M such that

supp(φ) = {s ∈ S|φ(s) 6= 0} is artinian and narrow. From [2], it is immediate that [[MS,≤]] is
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an [[RS,≤]]-module. For any f ∈ [[RS,≤]], φ ∈ [[MS,≤]] and s ∈ S, the scalar multiplication is

defined as follows:

(fφ)(s) =
∑

(u,v)∈Xs(f,φ)

f(u)φ(v).

A ring R is said to be a (s, 2)-ring in case every element of R is the sum of two units. We

say that R satisfies unit 1-stable range provided that aR + bR = R implies that a+ bu ∈ U(R)

for a u ∈ U(R). A ring R is said to be a GM -ring provided that for any x, y ∈ R, there exist

e2 = e, f2 = f ∈ R and u ∈ U(R) such that x− eu, y − fu−1 ∈ U(R).

Recall that a Morita Context denoted by (A,B,N,M,ψ, φ) consists of two rings A,B, two

bimodules ANB,BMA and a pair bimodule homomorphisms ψ : N
⊗

B M −→ A and φ :

M
⊗

AN −→ B which satisfy the following associativity: ψ(v, w)v′ = vφ(w, v′) and φ(w, v)w′ =

wψ(v, w′). These conditions will insure that the set T of generalized matrices
(

a n

m b

)

; a ∈ A, b ∈ B,m ∈M,n ∈ N

will form a ring, called the ring of the Morita Context.

In this paper, we show that if (A,B,N,M,ψ, φ) is a Morita context, then ([[AS,≤]], [[BS,≤]],

[[MS,≤]], [[NS,≤]], ψS , φS), where ψS : [[NS,≤]]
⊗

[[BS,≤]][[M
S,≤]] −→ [[AS,≤]], and φS : [[MS,≤]]

⊗

[[AS,≤]][[N
S,≤]] −→ [[BS,≤]] which satisfy the following associativity: ψS(n,m)n′ = nφS(m,n′),

φS(m,n)m′ = mψS(n,m′) for all n, n′ ∈ [[NS,≤]],m,m′ ∈ [[MS,≤]] is a Morita context. The set

T S of generalized matrices
(

f n

m g

)

; a ∈ [[AS,≤]], b ∈ [[BS,≤]],m ∈ [[MS,≤]], n ∈ [[NS,≤]]

will form a ring, called the ring of the Morita Context of generalized power series. Furthermore,

we show that if ring A and B are (s, 2)-rings, then so is the ring T S =

(

[[AS,≤]] [[NS,≤]]

[[MS,≤]] [[BS,≤]]

)

of Morita Context ([[AS,≤]], [[BS,≤]], [[MS,≤]], [[NS,≤]], ψS , φS). Also we get analogous results

for unit 1-stable regular rings, rings which have stable range one and GM -rings over Morita

Contexts. These give new classes of rings statisfying such stable range conditions.

Throughtout, all rings are associative with identity and all modules are unitary. U(R) de-

notes the group of units of R, T always denotes the ring

(

A N

M B

)

of a Morita Context

(A,B,N,M,ψ, φ), and T S the ring

(

[[AS,≤]] [[NS,≤]]

[[MS,≤]] [[BS,≤]]

)

of a Morita Context

([[AS,≤]], [[BS,≤]], [[MS,≤]], [[NS,≤]], ψS , φS).

2. Main results

Theorem 2.1 Let (A,B,N,M,ψ, φ) be a Morita Context. Then there exist a pair of bimodule
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homomorphisms ψS : [[NS,≤]]
⊗

[[BS,≤]][[M
S,≤]] −→ [[AS,≤]] and φS : [[MS,≤]]

⊗

[[AS,≤]][[N
S,≤]] −→

[[BS,≤]] such that ([[AS,≤]], [[BS,≤]], [[MS,≤]], [[NS,≤]], ψS , φS) is a Morita Context.

Proof Since N is a left A-right B-bimodule, and M is a left B-right A-bimodule, by [2], we

have [[NS,≤]] is a left [[AS,≤]]-right [[BS,≤]]-bimodule and [[MS,≤]] is a left [[BS,≤]]-right [[AS,≤]]-

bimodule.

Consider the following diagram:

[[NS,≤]] × [[MS,≤]]
π

−→ [[NS,≤]]
⊗

[[BS,≤]]

[[MS,≤]]

?

�
�

�
�

�
�

�
�

��	

f

ψS

[[AS,≤]]

Let n ∈ [[NS,≤]] and m ∈ [[MS,≤]]. Define a map α[n,m] : S −→ A.

α[n,m](s) =
∑

(u,v)∈Xs(n,m)

ψ(n(u),m(v))

for any s ∈ S. It is clear that supp(α[n,m]) ⊆ supp(n) + supp(m), thus α[n,m] ∈ [[AS,≤]].

Define a map f : [[NS,≤]] × [[MS,≤]] −→ [[AS,≤]], where f((n,m)) = α[n,m] for any (n,m) ∈

[[NS,≤]] × [[MS,≤]]. Let n1, n2 ∈ [[NS,≤]], m ∈ [[MS,≤]]. By the preceding discussions, there

exist α[n1,m], α[n2,m], α[n1+n2,m] ∈ [[AS,≤]]. For all s ∈ S,

α[n1+n2,m](s) =
∑

(u,v)∈Xs(n1+n2,m)

ψ((n1 + n2)(u),m(v))

=
∑

(u,v)∈Xs(n1+n2,m)

ψ(n1(u),m(v)) +
∑

(u,v)∈Xs(n1+n2,m)

ψ(n2(u),m(v)).

If (u′, v′) ∈ Xs(n1,m), but (u′, v′)∈̄Xs(n1 + n2,m), then (n1 + n2)(u
′) = 0. So n2(u

′) 6= 0,

thus (u′, v′) ∈ Xs(n2,m) and ψ(n1(u
′),m(v′))+ψ(n2(u

′),m(v′)) = ψ(n1(u
′)+n2(u

′),m(v′)) = 0.

Likewise, if (u′, v′) ∈ Xs(n2,m), but (u′, v′)∈̄Xs(n1 + n2,m), we also have (u′, v′) ∈ Xs(n1,m)

and ψ(n1(u
′),m(v′)) + ψ(n2(u

′),m(v′)) = ψ(n1(u
′) + n2(u

′),m(v′)) = 0. So

α[n1+n2,m](s) =
∑

(u, v)∈Xs(n1+n2,m)

ψ(n1(u),m(v)) +
∑

(u, v)∈Xs(n1+n2,m)

ψ(n2(u),m(v))

=
∑

(u,v)∈Xs(n1, m)

ψ(n1(u),m(v)) +
∑

(u,v)∈Xs(n2,m)

ψ(n2(u),m(v))

= α[n1,m](s) + α[n2,m](s) = (α[n1,m] + α[n2,m])(s).

Thus α[n1+n2,m] = α[n1,m] + α[n2,m], hence f((n1 + n2,m)) = f((n1,m)) + f((n2,m)). By the

same manner, we see that f((n,m1+m2)) = f((n,m1))+f((n,m2)) for all n ∈ [[NS,≤]],m1,m2 ∈

[[MS,≤]].
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For any n ∈ [[NS,≤]], τ ∈ [[BS,≤]],m ∈ [[MS,≤]] and any s ∈ S, we have

f((nτ,m))(s) =α[nτ,m](s)

=
∑

(u′,u)∈Xs(nτ,m)

ψ(nτ(u′),m(u))

=
∑

(u′,u)∈Xs(nτ,m)

ψ(
∑

(v,w)∈Xu′ (n,τ)

(n(v)τ(w),m(u)))

=
∑

(u′,u)∈Xs(nτ,m)

∑

(v,w)∈Xu′(n,τ)

ψ(n(v)τ(w),m(u))

=
∑

(u′,u)∈Xs(nτ,m)

∑

(v,w)∈Xu′ (n,τ)

ψ(n(v)τ(w),m(u))+

∑

(v,w,u)∈X

ψ(n(v)τ(w),m(u))

=
∑

(v,w,u)∈Xs(n,τ,m)

ψ(n(v)τ(w),m(u))

=
∑

(v,w,u)∈Xs(n,τ,m)

ψ(n(v), τ(w)m(u))

=f((n, τm))(s),

where X = {(v, w, u) ∈ Xs(n, τ,m)|nτ(v +w) = 0}. Thus f(nτ,m) = f(n, τm) and hence f is a

bilinear balanced morphism. Then there exists a homomorphism ψS : [[NS,≤]]
⊗

[[BS,≤]][[M
S,≤]] −→

[[AS,≤]] such that the preceding diagram commutes.

Next, we check that ψS is a bimodule homomorphism. For any a ∈ [[AS,≤]], n ∈ [[NS,≤]],m ∈

[[MS,≤]] and any s ∈ S,

ψS(an, m)(s) =α[an, m](s)

=
∑

(u′,u)∈Xs(an,m)

ψ(an(u′),m(u))

=
∑

(u′,u)∈Xs(an,m)

ψ(
∑

(v,w)∈Xu′ (a, n)

(a(v)n(w),m(u)))

=
∑

(v,w,u)∈Xs(a,n,m)

ψ(a(v)n(w),m(u))

=
∑

(v,w,u)∈Xs(a,n,m)

a(v)ψ(n(w),m(u))

=aψS(n,m)(s).

Thus ψS(an,m) = aψS(n,m). This implies that ψS is a left [[AS,≤]]-module homomorphism.

Analogously, it is easy to verify that ψS is a right [[BS,≤]]-module homomorphism. Thus ψS is

a bimodule homomorphism. Likewise, we claim that there exists a bimodule homomorphism:

φS : [[MS,≤]]
⊗

[[AS,≤]][[N
S,≤]] −→ [[BS,≤]]. For any n, n′ ∈ [[NS,≤]],m ∈ [[MS,≤]] and any

s ∈ S, we have

ψS(n,m)n′(s) =α[n,m]n
′(s)
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=
∑

(u′,u)∈Xs(α[n,m],n
′)

α[n,m](u
′)n′(u)

=
∑

(u′,u)∈Xs(α[n,m],n
′)

(

∑

(v,w)∈Xu′ (n,m)

ψ(n(v),m(w))
)

n′(u)

=
∑

(u′,u)∈Xs(α[n,m],n
′)

∑

(v,w)∈Xu′(n,m)

ψ(n(v),m(w))n′(u)+

∑

(v,w,u)∈X

ψ(n(v),m(w))n′(u)

=
∑

(v,w,u)∈Xs(n,m,n′)

ψ(n(v),m(w))n′(u)

=
∑

(v,w,u)∈Xs(n,m,n′)

n(v)φ(m(w), n′(u))

=nφS(m,n′)(s),

where X = {(v, w, u) ∈ Xs(n,mn
′)|α[n,m](v + w) = 0}. Thus ψS(n,m)n′ = nφS(m,n′). Analo-

gously, φS(m,n)m′ = mψS(n,m′) for m,m′ ∈ [[MS,≤]] and n ∈ [[NS,≤]]. Thus

([[AS,≤]], [[BS,≤]], [[MS,≤]], [[NS,≤]], ψS , φS)

is a Morita Context.

Theorem 2.2 Let T S =

(

[[AS,≤]] [[NS,≤]]

[[MS,≤]] [[BS,≤]]

)

denote a ring of the Morita Context

([[AS,≤]], [[BS,≤]], [[MS,≤]], [[NS,≤]], ψS , φS).

Then we have

(

[[AS,≤]] [[NS,≤]]

[[MS,≤]] [[BS,≤]]

)

∼=









(

A N

M B

)S,≤






.

Proof As in the proof of [1, Proposition 4.3], we complete the proof.

Lemma 2.3[3] Let (S,≤) be a strictly ordered monoid which satisfies condition (S0). Then

f ∈ U([[AS,≤]]) if and only if f(0) ∈ U(R).

Lemma 2.4[5] Let R be a reduced commutative ring, (S,≤) a cancellative torsion-free monoid.

Then φ2 = φ ∈ [[RS,≤]] if and only if there exists an e2 = e ∈ R such that φ = Ce.

Theorem 2.5 If A and B are (s, 2)-rings, then T S is a (s, 2)-ring.

Proof Since A is a (s, 2)-ring, there exist u, v ∈ U(R) such that a = u+ v for any a ∈ A. Thus

for all f ∈ [[AS,≤]], s ∈ S, we have f(s) = us + vs where us, vs ∈ U(R). Let f1 : S −→ A be

given by f1(s) = us, and f2 : S −→ A be given by f2(s) = vs. Clearly, f = f1 + f2. Since

f(0) = u0 + v0, where u0, v0 ∈ U(R). By Lemma 2.3, we have f1, f2 ∈ U([[AS,≤]]). This implies

that [[AS,≤]] = U([[AS,≤]]) + U([[AS,≤]]). Hence [[AS,≤]] is a (s, 2)- ring. Likewise, we claim

that [[BS,≤]] is also a (s, 2)-ring. Thus by [3,Theorem1], T S =

(

[[AS,≤]] [[NS,≤]]

[[MS,≤]] [[BS,≤]]

)

is a
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(s, 2)-ring.

Lemma 2.6 A ring R satisfies unit1-stable range if and only if [[RS,≤]] satisfies unitl-stable

range.

Proof Assume that R satisfies unit1-stable range. Let f [[RS,≤]] + g[[RS,≤]] = [[RS,≤]] where

f, g ∈ [[RS,≤]], there exist τ, ω ∈ [[RS,≤]] such that fτ + gω = e∗. So
∑

(u,v)∈X0(f,τ) f(u)τ(v) +
∑

(s,t)∈X0(g,ω) g(s)ω(t) = 1. Since (S,≤) satisfies condition (S0), u+v = 0 if and only if u = v = 0,

and s + t = 0 if and only if s = t = 0. So f(0)τ(0) + g(0)ω(0) = 1, thus f(0)R + g(0)R = R.

Since R satisfies unit1-stable rang, there exists a u ∈ U(R) such that f(0)+ g(0)u ∈ U(R). Thus

f + gCu ∈ U([[RS,≤]]) where Cu ∈ U([[RS,≤]]). This implies that [[RS,≤]] satisfies unit1-stable

range.

Conversely, if [[RS,≤]] statisfies unit1-stable range. Let aR+ bR = R for some a, b ∈ R, there

exist s, t ∈ R such that as+bt = 1. Then CaCs+CbCt = e∗, so Ca[[RS,≤]]+Cb[[R
S,≤]] = [[RS,≤]].

Since [[RS,≤]] satisfies unit1-stable range, there exists f ∈ U([[RS,≤]]) such that Ca + Cbf ∈

U([[RS,≤]]). Thus (Ca + Cbf)(0) = a+ bf(0) ∈ U(R). Therefore R satisfies unit1-stable range.

Theorem 2.7 If A and B both satisfy unit 1-stable range. Then T S satisfies unit 1-stable

range.

Proof Suppose that A and B both satisfy unit 1-stable range. Then by [3, Theorem 5], T

satisfies unit 1-stable range. In view of Theorem 2.2 and Lemma 2.6, the result follows.

Lemma 2.8 Let R be a reduced commutative ring, (S,≤) a cancellative torsion-free monoid.

Then R is a GM -ring if and only if [[RS,≤]] is a GM -ring.

Proof Suppose that R is a GM− ring. Let f, g ∈ [[RS,≤]]. Then f(0), g(0) ∈ R. There exist

e2 = e, f2 = f ∈ R and u ∈ U(R) such that f(0) − eu, g(0) − fu−1 ∈ U(R). As a result of

(f − CeCu)(0), (g − CfCu−1)(0) ∈ U(R) and Cu−1 = C−1
u , f − CeCu, g − CfC

−1
u ∈ U([[RS,≤]])

and C2
e = Ce, C

2
f = Cf , Cu ∈ U([[RS,≤]]). Thus [[RS,≤]] is a GM -ring.

Conversely, assume that [[RS,≤]] is a GM -ring. Let a, b ∈ R. Then Ca, Cb ∈ [[RS,≤]].

Since [[RS,≤]] is a GM -ring, there exist e2 = e, f2 = f in [[RS,≤]] and τ in U([[RS,≤]]) such

that Ca − eτ, Cb − fτ−1 ∈ U(([[RS,≤]]). Since f2 = f and e2 = e, we have f(0)f(0) = f(0) and

e(0)e(0) = e(0). Thus, (Ca−eτ)(0) = a−e(0)τ(0) ∈ U(R) and (Cb−fτ
−1)(0) = b−f(0)τ−1(0) ∈

U(R). This implies that R is a GM -ring.

Theorem 2.9 Let A,B be reduced commutative rings, (S,≤) a cancellative torsion-free monoid.

If A,B are GM -rings, then T S is a GM-ring.

Proof Since A and B are GM -ring, by [3, Theorem 8], T is a GM -ring. Thus the result follows

by Theorem 2.2 and Lemma 2.8.

Lemma 2.10 A ring R has stable range one if and only if [[RS,≤]] has stable range one.
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Proof Assume that [[RS,≤]] has stable range one. Let a, b ∈ R such that as+ bt = 1 for some

s, t ∈ R, then we have CaCs + CbCt ∈ [[RS,≤]]. Since (CaCs + CbCt)(0) = as + bt = 1, and

CaCs+CbCt)(s) = 0 for each s 6= 0. Thus CaCs+CbCt = e∗. Since [[RS,≤]] has stable range one,

there exists f ∈ [[RS,≤]] such that Ca + Cbf ∈ U([[RS,≤]]). Thus (Ca + Cbf)(0) = a+ bf(0) ∈

U(R), this imples that R has stable range one.

Conversely, suppose that R has stable range one. Let f, τ, g, ω ∈ [[RS,≤]] such that fτ+gω =

e∗. Then (fτ + gω)(0) = fτ(0) + gω(0) = f(0)τ(0) + g(0)ω(0) = 1. Since R has stable range

one, there exists x ∈ R such that f(0) + g(0)x ∈ U(R). Thus (f + gCx)(0) ∈ U(R), this imples

that f + gCx ∈ U([[RS,≤]]). Therefore, [[RS,≤]] has stable range one.

Theorem 2.11 T S has stable range one if and only if A,B have stable range one.

Proof Suppose T S has stable range one. Set e =

(

e∗ 0

0 0

)

. Then [[AS,≤]] ∼= eT Se has stable

range one. By Theorem 2.10, A has stable range one. Analogously, B has stable range one.

Conversely, we assume that A and B both have stable range one. Then by [6, Theorem 1],

T has stable range one. Thus we complete the proof by Theorem 2.2 and Lemma 2.10.
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