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Abstract In this paper, we prove that (LX , δ) is T0, T1, T2, regular (T3), normal (T4) and

completely regular spaces if and only if (R(L)X , ω(δ)) is T0, T1, T2, regular (T3), normal (T4) and

completely regular spaces, respectively, and (LX , δ) is N-compact if and only if (R(L)X , ω(δ)) is

N-compact.
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1. Introduction

The induced fuzzy topological space plays an important role in fuzzy topological spaces. For a

topological space (X, T ), the all of L-valued lower semicontinuous mappings form LF -topology

on LX , (LX , ωL(T )) is called the induced fuzzy topological space[2] of the topological space

(X, T ). The notion of induced fuzzy topological spaces was extended to the case of R(L)-fuzzy

topological spaces[4] by using the R(l)-valued lower semicontinuous mappings. In this way, to

every L-fuzzy topological space (LX , δ) one can assign a unique induced R(L)-fuzzy topological

space (R(L)X , ω(δ)). As Lowen[6] proposed that a property P in fuzzy topology is called “a

good extension” of a property P ′ in general topology if (X, T ) has P ′ if and only if (LX , ωL(T ))

has P . For induced R(L)-fuzzy topological space, an interesting question is what properties of

(R(L)X , ω(δ)) is “a good extension”. In this paper, we discuss the separation and N -compactness

of induced R(L)-fuzzy topological spaces.

Throughout this paper L denotes a fuzzy lattice, a completely distributive lattice with an

order-reversing involution, and M(L) denotes the set of all molecule in L. We refer to [2, 3, 4]

for some notions and symbols.

2. The separation of induced R(L)-fuzzy topological space

Let R be real line. Define a mapping λ : R → L satisfying λ(s) ≥ λ(t) when s ≤ t for each
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s, t ∈ R. We denote all of such mapping by Σ, and for each λ ∈ Σ, t ∈ R let

λ(t+) = ∨{λ(s)|s > t}, λ(t−) = ∧{λ(s)|s < t}.

For each λ, µ ∈ Σ, define λ ∼ µ if and only if λ(t+) = µ(t+) and λ(t−) = µ(t−) for every

t ∈ R. Obviously, ∼ is an equivalence relation. Let R(L) = Σ/ ∼. For every λ ∈ R(L), t ∈ R

define

Lt([λ]) = λ(t−)′, Rt([λ]) = λ(t+).

An induced R(L)-fuzzy topological space of (LX , δ) is a pair (R(L)X , ω(δ)), where ω(δ) =

{µ ∈ R(L)X | σt(µ) ∈ δ, t ∈ R}, σt(µ) = Rt ◦ µ = µ(t+), ωt(µ) = Lt ◦ µ = µ(t−).

Define a mapping ∗ : LX → R(L)X by letting γ∗(x)(t+) = γ(x) for each γ ∈ LX , x ∈ X, t ∈

R. Moreover, for each t ∈ R, α ∈ L, let

λα,t(s+) =

{

α, s < t,

0, s ≥ t.

Theorem 2.1 Let λ ∈ R(L). Then λ is a molecule of R(L) if and only if there exists a molecule

α ∈ L and t ∈ R such that λ = λα,t.

Proof Let α ∈ M(L), t ∈ R, and µ, ν ∈ R(L). Suppose that λα,t ≤ µ ∨ ν, we have α =

λα,t(t−) ≤ µ(t−) ∨ ν(t−) by the definition of λα,t. Since α is a molecule, we have α ≤ µ(t−) or

α ≤ ν(t−). Without loss of generality we assume α ≤ µ(t−). Note that µ is decreasing, we have

λα,t(s−) ≤ µ(s−) for any s ∈ R. In the same way we can prove λα,t(s+) ≤ µ(s+) for any s ∈ R.

Therefore λα,t ≤ µ, which implies λα,t is a molecule of R(L).

Conversely, assume that λ is a molecule of R(L). Without loss of generality, we assume that

λ is left continuous and λ 6= 0. If there exist t1, t2 ∈ R with t1 < t2 and α, β ∈ L − {0, 1} with

α > β such that λ(t1) = α and λ(t2) = β, we shall show that it is impossible.

(1) If there exists a discontinuous point t0 ∈ [t1, t2), then λ(t0) = λ(t0−) > λ(t0+). Let

µ(t) =

{

λ(t), t ≤ t0,

0, t > t0

and

ν(t) =

{

λ(t0+), t ≤ t0,

λ(t), t > t0.

Obviously, λ = µ ∨ ν and λ 6= µ, λ 6= ν, which contradicts with the fact that λ is a molecule of

R(L).

(2) If λ is continuous at each point t with t ∈ [t1, t2), then λ(t2−) = λ(t2) = β < α = λ(t1+).

Thus for any γ ∈ (β, α), there exists t3 ∈ (t1, t2) such that λ(t3) = r. Let

µ(t) =

{

λ(t), t ≤ t3,

0, t > t3

and

ν(t) =

{

γ, t ≤ t3,

λ(t), t > t3.
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Then we have λ = µ ∨ ν and λ 6= µ, λ 6= ν, which is a contradiction. This implies that there

exist α ∈ L and t ∈ R such that λ = λα,t. It is easy to show that α is a molecule in L when λα,t

is molecule in R(L).

Lemma 2.2 (1) Let µ ∈ R(L)X and α ∈ M(L). Then τα(ωt(µ)) = τλα,t
(µ). Where τr(A) =

{x | A(x) ≥ r}.

(2) Let (LX , δ) be a L-fts, A ∈ LX , α ∈ M(L) and t ∈ R. Then ια′(A) = ιλ′

α,t
(A∗). Where

ια(A) = {x | A(x) 6≤ α}.

Proof (1) For any y ∈ τα(ωt(µ)), we have ωt(µ)(y) = µ(y)(t−) ≥ α = λα,t(t−). Thus µ(y) ≥

λα,t , which implies y ∈ τλα,t
(µ).

Conversely, for any y ∈ τλα,t
(µ), we have µ(y) ≥ λα,t. Then µ(y)(t−) ≥ λα,t(t−) = α, which

implies y ∈ τα(ωt(µ)).

(2) The proof is analogous to (1). 2

Lemma 2.3[2] Let (LX , ωL(T )) be the induced fuzzy topological space of (X, T ). Then

A ∈ ωL(T ) if and only if ξp(A) = {x ∈ X | A(x) ≤ p} ∈ T ′ for each prime element p ∈ L.

Lemma 2.4 Let (LX , ωL(T )) be an induced fuzzy topological space of (X, T ). Then (R(L)X , ω(ωL(T )))

is also an induced fuzzy topological space of (X, T ).

Proof Assume that µ′ ∈ ω(ωL(T )). Then ωt(µ) ∈ ωL(T )′ for any t ∈ R. By Lemma 2.3,

τα(ωt(µ)) = τλα,t
(µ) ∈ T ′ for each λα,t ∈ M(R(L)X). Thus µ ∈ ωR(L)(T )′, i.e, µ′ ∈ ωR(L)(T ).

Conversely, suppose that µ′ ∈ ωR(L)(T ). By Lemma 2.3, τα(ωt(µ)) = τλα,t
(µ) ∈ T ′ for each

α ∈ M(L). Thus ωt(µ) ∈ ωL(T )′, that is, µ ∈ ω(ωL(T ))′.

Lemma 2.5 Let ((R(L)X , ω(δ)) be an induced fuzzy topological space of (X, T ). Then (LX , δ)

is also an induced fuzzy topological space of (X, T ).

Proof Assume that µ ∈ δ. Then µ∗ ∈ ω(δ) = ωR(L)(T ). By Lemmas 2.2 and 2.3, we have

ια′(µ) = ιλ′

α,t
(µ∗) for each t ∈ R and α ∈ M(L), and ιλ′

α,t
(µ∗) = {x ∈ X | µ′(x) 6≤ λ′

α,t} ∈ T ,

that is, ια′ (µ) ∈ T . Thus δ ⊆ ωL(T ).

Conversely, suppose that µ ∈ ωL(T ). Then µ∗ ∈ ω(ωL(T )) = ωR(L)(T ) = ω(δ). Thus

δ ⊇ ωL(T ) for each t ∈ R.

Summarizing Lemmas 2.4 and 2.5 we have

Theorem 2.6 Let (LX , δ) be an L-fts. Then (LX , δ) is an induced fuzzy topological space of

(X, T ) if and only if (R(L)X , ω(δ)) is an induced fuzzy topological space of (X, T ).

Next, we consider the separation of (LX , δ) and (R(L)X , ω(δ)), and refer to [2] for some

relative notions and results.

Theorem 2.7 Let (LX , δ) be an L-fts. Then (LX , δ) is a Hausdorff space if and only if

(R(L)X , ω(δ)) is a Hausdorff space.
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Proof Assume (LX , δ) is a Hausdorff space. For each xλα,t
, yλβ,s

∈ M(R(L)X) with x 6= y,

we have xα, yβ ∈ M(LX). Since (LX , δ) is a Hausdorff space, there exist P ∈ η−(xα) and

Q ∈ η−(yβ) such that P ∨ Q = 1. By the definition ∗ and Theorem 2.1, we have λα,t 6≤

P ∗(x), λβ,s 6≤ Q∗(y) and P ∗(x) ∨ Q∗(x) = 1 for each x ∈ X . Therefore, (R(L)X , ω(δ) is a

Hausdorff space.

Conversely, suppose that (R(L)X , ω(δ)) is a Hausdorff space. For each xα, yβ ∈ M(LX)

with x 6= y, we have xλα,t
, yλβ,t

∈ M(R(L)X) for each t ∈ R. Since (R(L)X , ω(δ)) is a

Hausdorff space, there exist P ∈ η−(xλα,t
) and Q ∈ η−(yλβ,t

) such that P ∨ Q = 1, that is,

λα,t 6≤ P (x), λβ,t 6≤ Q(y) and P (x) ∨ Q(x) = 1 for each x ∈ X . Thus there exist r ≤ t, such

that α = λα,t(r−) 6≤ P (x)(r−) = ωr(P )(x) and β = λβ,t(r−) 6≤ Q(y)(r−) = ωr(Q)(y), which

implies ωr(P ) ∈ η−(xα), ωr(Q) ∈ η−(yβ) and ωr(P ) ∨ ωr(Q) = ωr(P ∨ Q) = 1. Hence (LX , δ)

is a Hausdorff space.

Theorem 2.8 Let (LX , δ) be an L-fts. Then

(1) (LX , δ) is a T0-space if and only if (R(L)X , ω(δ)) is a T0-space.

(2) (LX , δ) is a T1-space if and only if (R(L)X , ω(δ)) is a T1-space.

Theorem 2.9 Let (LX , δ) be an L-fts. Then

(1) (LX , δ) is a regular (T3-) space if and only if (R(L)X , ω(δ)) is a regular (T3-) space.

(2) (LX , δ) is a normal (T4-) space if and only if (R(L)X , ω(δ)) is a normal (T4-) space.

Proof (1) Assume that (LX , δ) is a regular space. For any xλα,t
∈ M(R(L)X), µ is a quasi-

general closed set of (R(L)X , ω(δ)) and x 6∈ suppµ, there exists s ∈ R such that ωs(µ) is a

quasi-general closed set of (LX , δ) and suppµ = suppωs(µ). Obviously, xα ∈ M(LX), ωs(µ) ∈ δ′.

Since (LX , δ) is a regular space, there exist P ∈ η−(xα) and Q ∈ η−(ωs(µ)) such that P ∨Q = 1.

Thus α 6≤ P (x), ωs(µ)(y) = µ(y)(s−) 6≤ Q(y) for any y ∈ suppωs(µ), which implies λα,t 6≤ P ∗(x)

and µ(y) 6≤ Q∗(y). By Theorem 2.1[4], we have P ∗ ∈ η−(xλα,t
), Q∗ ∈ η−(µ) and P ∗ ∨ Q∗ = 1.

Therefore, (R(L)X , ω(δ)) is a regular space.

Conversely, Assume that (R(L)X , ω(δ)) is a regular space. For any xα ∈ M(LX), µ is a

quasi-general closed set of (LX , δ) and x 6∈ suppµ, we have xλα,t
∈ M(R(L)∗) for any t ∈ R,

µ∗ is a quasi-general closed set of (R(L)X , ω(δ)) and suppµ = suppµ∗. Since (R(L)X , ω(δ)) is

a regular space, there exist P ∈ η−(xλα,t
) and Q ∈ η−(µ∗) such that P ∨ Q = 1, which implies

λα,t 6≤ P (x), µ∗(y) 6≤ Q(y) for any y ∈ suppµ∗. Thus α = λα,t(s−) 6≤ P (x)(s−) = ωs(P )(x)

for some s ≤ t, and µ(y) = µ∗(y)(s−) 6≤ Q(y)(s−) = ωs(Q)(y) for any y ∈ suppµ. By Theorem

2.1[4], we have ωs(P ) ∈ η−(xα), ωs(Q) ∈ η−(µ) and ωs(P )∨ ωs(Q) = ωs(P ∨Q) = 1. Therefore,

(LX , δ) is a regular space.

(2) The proof is similar to (1).

For a mapping f : X → Y , we use f̄ : LX → LY to denote the L-valued Zadeh function

induced by f , and use f̃ : R(L)X → R(L)Y to denote the R(L)-valued Zadeh function induced

by f .

Lemma 2.10[4] Let (LX , δ) be an L-fts and f : X → Y be a mapping. Then σt(f̃
−1(µ)) =
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f̄−1(σt(µ)) for each µ ∈ R(L)Y and t ∈ R.

Here, I denotes the unit interval [0, 1], ε denotes usual topology on I, (LI , ωL(ε)) and

(R(L)I , ωR(L)(ε)) are both induced fuzzy topological spaces of (I, ε). For a mapping f : X →

[0, 1], we use f̄1 : LX → L[0,1] to denote the L-valued Zadeh function induced by f , and use

f̄2 : R(L)X → R(L)[0,1] to denote the R(L)-valued Zadeh function induced by f .

Lemma 2.11 Let (LX , δ) be an L-fts and f : X → [0, 1] be a mapping. Then f̄1 is continuous

if and only if f̄2 is continuous.

Proof Assume that f̄1 is continuous. For each µ ∈ ωR(L)(ε), since ω(ωL(ε)) = ωR(L)(ε) (Lemma

2.4), we have σt(µ) ∈ ωL(ε) for each t ∈ R. By Lemma 2.10 and f̄1 is continuous, we have

σt(f̄
−1
2 (µ)) = f̄−1

1 (σt(µ)) ∈ δ, i.e, f̄−1
2 (µ) ∈ ω(δ). Thus f̄2 is continuous.

Conversely, assume that f̄2 is continuous. Let µ ∈ ωL(ε), then µ∗ ∈ω(ωL(ε)) = ωR(L)(ε) (Lemma

2.4). By Lemma 2.10, we have σt(f̄
−1
2 (µ∗)) = f̄−1

1 (σt(µ
∗)) = f̄−1

1 (µ) for each t ∈ R, thus

f̄−1
1 (µ) = σt(f̄

−1
2 (µ∗)) ∈ δ. Therefore, f̄1 is continuous.

Theorem 2.12 Let (LX , δ) be an L-fts. Then (LX , δ) is a completely regular topological space

if and only if (R(L)X , ω(δ)) is a completely regular topological space.

Proof Assume that (LX , δ) is a completely regular topological space. For each nonzero quasi-

general closed set A ∈ R(L)X and LF point xλ ∈ R(L)X with x 6∈ suppA, there exists t ∈ R such

that ωt(A) ∈ LX is a nonzero quasi-general closed set, ωt(xλ) ∈ LX and suppωt(A) = suppA.

Since (LX , δ) is a completely regular topological space, there exists a continuous L-valued Zadeh

function f̄1 : LX → L[0,1] induced by f , such that ωt(xλ) ≤ f̄−1(01), ωt(A) ≤ f̄−1(11). For

R(L)-valued Zadeh function f̄2 : R(L)X → R(L)[0,1] induced by f , obviously xλ ≤ f̄2
−1

(01),

A ≤ f̄2
−1

(11). By Lemma 2.10, f̄2 is continuous, thus (R(L)X , ω(δ)) is a completely regular

topological space.

Conversely, for each nonzero quasi-general closed set A ∈ LX and LF point xλ ∈ LX with x 6∈

suppA. Obviously, A∗ and x∗

λ are nonzero quasi-general closed set and LF point of (R(L)X , ω(δ))

respectively, and suppA = suppA∗. Since (R(L)X , ω(δ)) is a completely regular topological

space, there exists a continuous R(L)-valued Zadeh function f̄2 : R(L)X → R(L)[0,1] such that

x∗

λ ≤ f̄−1(01), A∗ ≤ f̄−1(11). By the definition f̄1 and Lemma 2.10, we have f̄1 is continuous

and xλ ≤ f̄−1(01), A ≤ f̄−1(11). Thus (LX , δ) is a completely regular topological space.

3. The N-compactness of induced R(L)-fuzzy topological space

The notion of N -compactness was first introduced by Wang[7], Zhao[8] and Peng[9] general-

lized the notion to general L-fts. For each a ∈ L, using β(a) denotes the greatest minimal set of

a, using β∗(a) denotes the standard minimal set of a, that is β∗(a) = β(a) ∩ M(L) = ∪{π(x) |

x ∈ β(a)}, where π(x) = {y ∈ M(L) | y ≤ x}.

Lemma 3.1 Let α, β ∈ M(L) and s, t ∈ R. Then λα,t ∈ β∗(λβ,s) if and only if α ∈ β∗(β) and

t ≤ s.
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Proof Let λα,t ∈ β∗(λβ,s). Then λα,t ≤ λβ,s and t ≤ s. For each r ≤ min{s, t}, we have

α = λα,t(r−) ≤ λβ,s(r−) = β. Thus α ∈ β∗(β)

Conversely, let α ∈ β∗(β) and t ≤ s, then λα,t ≤ λβ,s. Since λα,t is molecule of R(L), thus

λα,t ∈ β∗(λβ,s).

Theorem 3.2 Let (LX , δ) be an L-fts and A ∈ LX . Then A is an N -compact set if only if A∗

is an N -compact set.

Proof Suppose that A is an N -compact set. Let Ψ is λα,t-remote neighborhood family of A∗.

Then we have xλα,t
6≤ ∧Ψ for each xλα,t

∈ A∗, which implies that λα,t 6≤ ∧Ψ(x) = ∧{ϕ(x) |

ϕ ∈ Ψ}. Hence there exists s with s < t such that α = λα,t(s−) 6≤ ∧{ϕ(x)(s−) | ϕ ∈ Ψ}, i.e.,

xα 6≤ ∧{ωs(ϕ) | ϕ ∈ Ψ}. Let Φ = {ωs(ϕ) | ϕ ∈ Ψ}. Then Φ is an α-remote neighborhood

family of A. Since A is an N -compact set, there exist a finite subfamily Φ0 ⊆ Φ and β ∈ β∗(α)

such that xβ 6≤ ∧Φ0, i.e., Φ0 is β− remote neighborhood family of A. Let Ψ0 = {ϕ | ωs(ϕ) ∈

Φ0}. Then Ψ0 is a finite subfamily of Ψ and xβ 6≤ {ωs(ϕ) | ϕ ∈ Ψ0}, which implies that

β 6≤ {ωs(ϕ)(x) | ϕ ∈ Ψ0} = ∧{ϕ(x)(s−) ∈ Ψ0}. Taking r ∈ (s, t), we have λβ,r 6≤ ∧Ψ0(x), which

is equivalent to xλβ,r
6≤ ∧Ψ0. Thus Ψ0 is λβ,r-remote neighborhood family of A∗. By Lemma

3.1, λβ,r ∈ β∗(λα,t), which implies that Ψ0 is a λ−

β,t remote neighborhood family of A∗. Thus A∗

is an N -compact set.

Conversely, suppose A∗ ∈ R(L)X is an N -compact set. Let Φ be an α-remote neighborhood

family of A, where α ∈ M(L). Then for each xα ∈ A, we have xα 6≤ ∧Φ, and α 6≤ ∧Φ(x) =

∧{φ(x) | φ ∈ Φ} = ∧{φ∗(x)(t−) | φ ∈ Φ} for each t ∈ R. Hence λα,t 6≤ ∧{φ∗(x) | φ ∈ Φ} and

xλα,t
6≤ ∧{φ∗ | φ ∈ Φ}, where λα,t is a molecule of R(L) by Theorem 2.1. Let Φ∗ = {φ∗ | φ ∈ Φ}.

Then Φ∗ is an λα,t-remote neighborhood family of A∗. Since A∗ is an N -compact set, there exist

λβ,r ∈ β∗(λα,t) and a finite subfamily Φ∗

0 of Φ∗ such that Φ∗

0 is an λβ,r-remote neighborhood

family of A∗, which implies that xλβ,r
6≤ ∧Φ∗

0 for each molecule xλβ,r
∈ A∗. Let Φ0 = {φ | φ∗ ∈

Φ∗

0}. Then Φ0 is a finite subfamily of Φ. Thus, for each s ∈ R with s < r, we have

β = λβ,r(s−) 6≤ ∧{φ∗(x)(s−) | φ ∈ Φ0} = ∧{φ(x) | φ ∈ Φ0},

which implies xβ 6≤ {φ | φ ∈ Φ0}. By Lemma 3.1 we have β ∈ β∗(α). Hence Φ0 is an α− remote

neighborhood family of A. Therefore, A is an N -compact set.

Corollary 3.3 (LX , δ) is N -compact if and only if (R(L)X , ω(δ)) is N -compact.

Corollary 3.4 If (LX , δ) is an induced fuzzy topological space of (X, T ), then (R(L)X , ω(δ))

is N -compact if and only if (X, T ) is compact.
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