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Abstract L
p approximation problems in system identification with RBF neural networks are

investigated. It is proved that by superpositions of some functions of one variable in L
p

loc
(R), one

can approximate continuous functionals defined on a compact subset of L
p(K) and continuous

operators from a compact subset of L
p1(K1) to a compact subset of L

p2(K2). These results show

that if its activation function is in L
p

loc
(R) and is not an even polynomial, then this RBF neural

networks can approximate the above systems with any accuracy.
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1. Introduction

One of the most important theoretical questions for radial basis function (RBF) neural net-

works is their approximation capabilities: Under what conditions on the activation function and

the structure of neural networks (the quantity of hidden neurons and the choice of weights), can

the neural networks approximate to any accuracy a function or a continuous operator? There

have been many papers related to this topic, Pinkus[6], Chen[1−3,9], Leshno[4], Mhaskar[5] and

Jiang[10,11], among many others.

In this paper, we apply the method used in [9], [10]. Combining with one of our latest results,

we make a progress in system approximation by RBF neural networks. Our main results improve

the existing result in [10], which needs an extra requirement g(·) ∈ S′(Rn).

The rest of the paper is organized as follows. Section 2 presents a few important lemmas.

Some of the lemmas in Section 2 have been proved[1,7,9−11]. Our main results and their proofs

are given in Section 3.

2. Lemmas

Lemma 2.1
[10] V is a compact set in Lp(K) if and only if

1) V is a closed set in Lp(K);
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2) There exists a constant A > 0, such that ‖f‖Lp(K) ≤ A for all f ∈ V ;

3) If h → 0, ‖fh − f‖Lp(K) converges to 0 uniformly for all f ∈ V ,

where fh(x) = 1
m(B(x,h))

∫

B(x,h)∩K
f(t)dt, B(x, h) is a spheroid with center at x and radius h,

and m(B(x, h)) is the volume of B(x, h).

Lemma 2.2
[10] Suppose V is a compact set in Lp(K), Vh = {fh : f ∈ V }. Then Vh is a compact

set of C(K) for fixed h > 0.

Lemma 2.3
[10] Suppose that V is a compact set in Lp(K), F is a continuous functional on V ,

and g(t) ∈ C(R1
+) is not an even polynomial. Then for any ε > 0, there exist N , M ∈ N, ci ∈ R

1,

n, λi ∈ R
1
+, θi ∈ R

M (i = 1, 2, . . . , N) and x1, . . . , xM ∈ K (K is a compact set in R
n), such that

|F (u) −
∑N

i=1 cig(λi‖u
M
1

n

+ θi‖)| < ε for all u ∈ V , where uM
1

n

= (u 1

n
(x1), . . . , u 1

n
(xM ))′, ′ means

transposition of a vector in Euclidean space, u 1

n
(x) = 1

m(B(x, 1

n
))

∫

B(x, 1

n
)∩K

u(t)dt.

Lemma 2.4
[13] Suppose σ(x) ∈ L

p
loc(R

n). Then {
∑N

i=1 ciσ(λix + θi)} is dense in Lp(K) if and

only if σ is not a polynomial in Rn, where 1 ≤ p < ∞, K is a compact set in R
n, N ∈ N, ci,

λi ∈ R
1, x, θi ∈ R

n.

Lemma 2.5
[13] Suppose that g : R

1
+ → R

1 and g(‖x‖Rn) ∈ L
p
loc(R

n). Then {
∑N

i=1 cig(λi‖x − yi‖Rn)}

is dense in Lp(K) if and only if g is not an even polynomial in R1, where 1 ≤ p < ∞, K is a

compact set R
n, i = 1, 2, . . . , N , N ∈ N, ci ∈ R

1, λi ∈ R
1
+, x, yi ∈ R

n.

3. Main result and proof

Theorem 3.1 Suppose that K and V are compact sets in R
n and Lp(K), respectively, and

σ(x) ∈ L
p
loc(R

n) is not a polynomial (1 ≤ p < ∞). Then for any ε > 0, there exist N ∈ N,

λi ∈ R
1, bi ∈ R

n which are independent of f , and constants ci(f) (i = 1, 2, . . . , N) depending on

f , such that
∥

∥

∥
f(x) −

N
∑

i=1

ci(f)σ(λix − bi)
∥

∥

∥

Lp(K)
< ε

holds for all f ∈ V . Especially all ci(f) are continuous functionals on V .

Proof For any f ∈ V and any ε > 0, there exists h0 > 0, such that

‖fh(x) − f(x)‖Lp(K) <
ε

4
(1)

holds when 0 < h < h0 by Lemma 2.1. Let Φ(x) = ce−‖x‖ with c being a constant satisfying
∫

Rn Φ(x)dx = 1. We define Φδ(x) = δ−nΦ(δ−1x) (δ ∈ R
1\0). Obviously, we have

∫

Rn Φδ(x)dx =

1 for any given δ. Define fh ⋆ Φδ(x) by

fh ⋆ Φδ(x) =

∫

K

fh(t)Φδ(x − t)dt.

For any given h satisfying 0 < h < h0, according to Lemma 2.2 and Minkowski inequality, there

exists δ0, such that

‖fh ⋆ Φδ(x) − fh(x)‖Lp(K) <
ε

4
(2)
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holds for all fh ∈ Vh when 0 < δ < δ0. Next, we write fh ⋆ Φδ(x) into Riemann sum
∑M

j=1 fh(tj)Φδ(x− tj)m(∆tj), where
⋃M

j=1 ∆tj is a finite segmentation of K, tj ∈ ∆tj . Then we

have

∫

K

fh(t)Φδ(x − t)dt −

M
∑

j=1

fh(tj)Φδ(x − tj)m(∆tj)

=

M
∑

j=1

∫

∆tj

(fh(t) − fh(tj))Φδ(x − t)dt +

M
∑

j=1

fh(tj)

∫

∆tj

(Φδ(x − t) − Φδ(x − tj)) dt

= I1 + I2. (3)

It follows from Minkowski inequality that

‖I1‖Lp(K) =
(

∫

K

∣

∣

∣

M
∑

j=1

∫

∆tj

(fh(t) − fh(tj))Φδ(x − t)dt
∣

∣

∣

p

dx
)

1

p

≤
(

∫

K

M
∑

j=1

∫

∆tj

|(fh(t) − fh(tj))|
p|Φδ(x − t)|pdtdx

)
1

p

. (4)

Since Φδ is a continuous function, there exists Q > 0, such that
∫

K

∫

K
|Φδ(x − t)|pdxdt < Q.

Note that fh ∈ Vh and that Vh is a compact set in C(K) by Lemma 2.2. According to Arzeta-

Ascoli Theorem on compact set, there exists η1 > 0, such that |fh(t) − fh(tj)| < ε
8Q

when

maxj=1,...,M{diam(∆tj)} < η1. Then we can obtain

‖I1‖Lp(K) <
ε

8
. (5)

Similarly, we have

‖I2‖Lp(K) <
ε

8
. (6)

It follows from equations (1), (2), (3), (5) and (6) that

∥

∥

∥
f(x) −

M
∑

j=1

fh(tj)m(∆tj)Φδ(x − tj)
∥

∥

∥

Lp(K)
<

3ε

4
. (7)

According to Lemma 2.4, for fixed j (1 ≤ j ≤ M), there exist Nj ∈ N, cij , λij ∈ R
1, θij ∈ R

n

(i = 1, 2, . . . , N), such that

∥

∥

∥
Φδ(x − tj) −

Nj
∑

i=1

cijσ(λijx + θij)
∥

∥

∥

Lp(K)
<

ε

4L
, (8)

where L = supf∈V

∑M

j=1 |fh(tj)|m(∆tj). Theorem 3.1 follows readily from equations (7) and

(8). 2

Theorem 3.2 Suppose that K and V are compact set in R
n and Lp(K), respectively, g(·) :

R
1
+ → R

1, and g(‖x‖) ∈ L
p
loc(R

n) is not an even polynomial (1 ≤ p < ∞). Then for any ε > 0,

there exist N ∈ N, λi ∈ R
1
+, bi ∈ R

n, i = 1, 2, . . . , N , which are independent of f , and constants
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ci(f) depending on f , such that

∥

∥

∥
f(x) −

N
∑

i=1

ci(f)g(λi‖x − bi‖)
∥

∥

∥

Lp(K)
< ε

holds for all f ∈ V . Especially all ci(f) are continuous functionals on V .

Proof Similar to the proof of Theorem 3.1, we have equation (7) holds for any ε > 0 and any

f ∈ V . It follows from Lemma 2.5 that for any fixed j (1 ≤ j ≤ M), there exist Nj ∈ N, cij ∈ R
1,

λij ∈ R
1
+, yij ∈ R

n, i = 1, 2, . . . , N , such that

∥

∥

∥
Φδ(x − tj) −

Nj
∑

i=1

cijg(λij‖x − yi‖Rn)
∥

∥

∥

Lp(K)
<

ε

4L
, (9)

where L = supf∈V

∑M

j=1 |fh(tj)|m(∆tj). Equations (7) and (9) lead to Theorem 3.2. 2

Theorem 3.3 Suppose that g1(·) ∈ C(R1
+), g2 : R

1
+ → R

1, and g2(‖x‖) ∈ L
p
loc(R

d2), g1, g2 are

not even polynomials, K1, K2 and V are compact sets in R
d1 , R

d2 and Lp1(K1), respectively,

and T : V → Lp2(K2) is a continuous operator (1 ≤ p1, p2 < ∞). Then, for any ε > 0, there

exist N , Ni, Mi ∈ N, ni, ηi, λik ∈ R
1
+, bi ∈ R

d2 , cik ∈ R
1, θik ∈ R

Mi , xij ∈ K2 (i = 1, . . . , N ,

k = 1, . . . , Ni, j = 1, . . . , Mi), such that

∥

∥

∥
T (u)(y) −

N
∑

i=1

Ni
∑

k=1

cikg1(λik‖x
Mi − θik‖)g2(ηi‖y − bi‖)

∥

∥

∥

Lp2(K2)
< ε

holds for all u ∈ V , where xMi = (u 1

ni

(xi1), . . . , u 1

ni

(xiMi
))′, uh(x) = 1

m(B(x,h))

∫

B(x,h)∩K2

u(t)dt,
′ means transposition of a vector in Euclidean space.

Proof Since T is a continuous operator, T (V ) = {T (u) : u ∈ V } is a compact set in Lp2(K2).

According to Theorem 3.2, we see that for any ε > 0, there exist N ∈ N, ηi ∈ R
1
+, bi ∈ R

d2 which

are independent of T (u), and σi(T (u)) depending on T (u), i = 1, 2, . . . , N , such that

∥

∥

∥
T (u)(y) −

N
∑

i=1

σi(T (u))g2(ηi‖y − bi‖)
∥

∥

∥

Lp2(K2)
<

ε

2
(10)

holds for all u ∈ V . We observe that σi(T (u)) is a continuous functional on T (V ). It follows from

the assumption and Lemma 2.3 that there exist Mi, Ni ∈ N, cik ∈ R
1, ni, λik ∈ R

1
+, θik ∈ R

Mi

and xij ∈ K2 (k = 1, . . . , Ni, j = 1, . . . , Mi), such that

∣

∣

∣
σi(T (u)) −

Ni
∑

k=1

cikg1(λik‖x
Mi − θik‖)

∣

∣

∣
<

ε

2L
(11)

holds for any i, where xMi = (u 1

ni

(xi1), . . . , u 1

ni

(xiMi
))′, L =

∑N
i=1 ‖g2(ηi‖y − bi‖)‖Lp2(K2).

Theorem 3.3 follows from equations (10) and (11). 2

References

[1] CHEN Tianping, CHEN Hong. Approximation capability to functions of several variables, nonlinear func-

tionals, and operators by radial basis function neural networks [J]. IEEE Trans. Neural Networks, 1995, 6(4):



128 NAN D and LONG J L

904–910.

[2] CHEN Tianping, CHEN Hong. Universal approximation to nonlinear operators by neural networks with

arbitrary activation functions and its application to dynamical systems [J]. IEEE Trans. Neural Networks,

1995, 6(4): 911–917.

[3] CHEN Tianping. Approximation problems in system identification with neural networks [J]. Sci. China Ser.
A, 1994, 37(4): 414–421.

[4] LESHNO M, LIN Y V, PINKUS A. et al. Multilayer feedforward networks with a non-polynomial activation

function can approximate any function [J]. Neural Networks, 1993, 6: 861–867.

[5] MHASKAR H N, MICCHELLI C A. Approximation by superposition of sigmoidal and radial basis functions

[J]. Adv. in Appl. Math., 1992, 13(3): 350–373.
[6] PINKUS A. TDI-subspace of C(Rd) and some density problems from neural networks [J]. J. Approx. Theory,

1996, 85(3): 269–287.
[7] RUDIN W. Functional Analysis [M]. McGraw-Hill, New York, 1973.

[8] WU Wei, FENG Guorui, LI Xin. Training multilayer perceptrons via minimization of sum of ridge functions

[J]. Adv. Comput. Math., 2002, 17(4): 331–347.
[9] CHEN Tianping. Approximate problem in system identification with neural networks [J]. Sci. China Ser. A,

1994, 24(1): 1–7. (in Chinese)
[10] JIANG Chuanhai. Approximation problems in neural networks [J]. Chinese Ann. Math. Ser. A, 1998, 19(3):

295–300. (in Chinese)

[11] JIANG Chuanhai, GUO Hongbin. Approximation by neural networks in Lp(Rn) and system identification

[J]. Chinese Ann. Math. Ser. A, 2000, 21(4): 417–422. (in Chinese)

[12] CHEN Minde, DENG Donggao, LONG Ruilin. Real Analysis [M]. Beijing: Higher Eudcation Press, 1993.
(in Chinese)

[13] NAN Dong, WU Wei, LONG Jinling. et al. Lp Approximation Capability of Radial Basis Functions [J]. Acta

Math. Sinica, 2008, 24(9): 1533–1540.


