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Abstract In order to study the representation theory of Lie algebras and algebraic groups,

Cline, Parshall and Scott put forward the notion of abstract Kazhdan-Lusztig theory for quasi-

hereditary algebras. Assume that a quasi-hereditary algebra B has the vertex set Q0 = {1, . . . , n}

such that HomB(P (i), P (j)) = 0 for i > j. In this paper, it is shown that if the quasi-hereditary

algebra B has a Kazhdan-Lusztig theory relative to a length function l, then its dual extension

algebra A = A(B) has also the Kazhdan-Lusztig theory relative to the length function l.
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1. Introduction

A major unsolved problem in finite group theory centers on determining the characters and

degrees of the irreducible modular representations of finite groups of Lie type in their defining

characteristic. Lusztig took a significant step toward a solution in 1979 by formulating his

celebrated conjecture[1] for the characters of simple modules for semisimple algebraic groups. At

the same time, in the study of the representations of Coxeter groups and Hecke algebras, a similar

conjecture, by Kazhdan and Lusztig, for the composition factor multiplicities of Verma modules

for semisimple complex Lie algebras, has already been settled. By now, Lusztig conjecture has

not been completely proved yet. By using the theory of finite dimensional algebra, Cline, Parshall

and Scott investigated the above problems and put forward the notion of an abstract Kazhdan-

Lusztig theory, which provides conditions on an arbitrary quasi-hereditary algebra which are

necessary and sufficient for the validity of the Lusztig conjecture in a Lie-theoretic context, as

well as new consequences of the conjecture[2−4]. In this paper a property on the Kazhdan-Lusztig

theory of dual extension quasi-hereditary algebras is obtained.

2. Notations and definitions
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We always assume that k is an algebraically closed field, and A is a finite-dimensional associa-

tive k-algebra (basic and connected, with an identity), and modules always mean finitely gener-

ated right A-modules. Let S(i), i ∈ Λ be all simple A-modules, where the index set Λ is a partially

ordered set (abbreviated “poset”) with partial ordering ≤. In general, let Λ = {1, . . . , n}, with

its natural ordering. For each i ∈ Λ, let P (i) be the projective cover, and I(i) the injective en-

velope of S(i). We denote by ∆(i) the maximal factor module of P (i) with composition factors

of the form S(j) where j ≤ i. These modules ∆(i) are called the standard modules, and we set

∆ = {∆(i) | i ∈ Λ}. Similarly, denote by ∇(i) the maximal submodule of I(i) with composition

factors of the form S(j) where j ≤ i. In this way, we obtain the set ∇ = {∇(i) | i ∈ Λ} of

costandard modules. Lastly, we denote by F (∆) the full subcategory of A-module category,

where all modules have a ∆-filtration.

Definition 1[5] The algebra A (or better the pair (A, Λ)) is called quasi-hereditary if

(1) EndA(∆(i)) ∼= k for all i ∈ Λ, and

(2) Every projective module belongs to F (∆).

For a quasi-hereditary algebra (A, Λ), we call Λ the weight set of A. The category of modules

and the set ∆ of standard modules over a quasi-hereditary algebra (A, Λ) become the highest

weight category (defined by Cline, Parshall and Scott[6]) with the weight poset Λ. Conversely,

every highest weight category with a finite weight poset is the category of modules for a certain

quasi-hereditary algebra.

Dual extension algebra was introduced in [7] by Xi. He showed that if B has no oriented cycle

in its quiver, then its dual extension algebra A = A(B) is a BGG-algebra. BGG-algebra is a

special class of quasi-hereditary algebras[8] which have a duality on their module categories which

fixes simple modules. In their study of the representation theory of semisimple complex Lie alge-

bras, Bernstein, Gelfand and Gelfand introduced in [9] the notion of category O, and showed that

O is a highest weight category, over which the standard modules are Verma-modules. Further-

more, every block of category O is equivalent to the category of modules for a finite-dimensional

BGG-algebra. Xi determined in [7] the quivers of representation-finite BGG-algebras, and de-

fined an important class of BGG-algebras, namely, dual extension algebras. Dokin and Reiten

determined independently in [10] the quivers and relations of representation-finite BGG-algebras.

Schur algebras are important examples of BGG-algebras (see [11], p.32 and p.71).

The concept of the dual extension algebra of a quasi-hereditary algebra is as follows.

Let B be a finite-dimensional basic algebra over k, and B given by a quiver QB = (Q0, Q1)

with relations {ρi | i ∈ IB}. For each α from i to j in Q1, let α′ be an arrow from j to i. We

denote by Q′

1 the set of all such α′ with α ∈ Q1. For a path α1 · · ·αm in (Q0, Q1) we denote by

(α1 · · ·αm)′ the path α′

m · · ·α′

1 in (Q0, Q
′

1).

Definition 2[7] Suppose that B is an algebra given by the quiver QB = (Q0, Q1) with relations

{ρi | i ∈ IB}. Let A be the algebra given by the quiver Q̄ = (Q0, Q1

⋃
Q′

1) with relations

{ρi | i ∈ IB}
⋃
{ρ′j | j ∈ IB}

⋃
{αβ′ | α, β ∈ Q1}. We say that A is the dual extension of B,

denoted by A = A(B).
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Example Let B = kQ/〈ρ〉, where Q is of the form
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Deng and Xi studied systematically the quasi-hereditary algebras which are dual extensions

of algebras. They investigated in [12] a special class of quasi-hereditary algebras which are the

dual extensions of algebras without oriented cycle in their quivers, for which they also gave a

reduction to determine the finiteness of F (∆). Xi showed in [13] that gl.dim(A)=2gl.dim(B),

where A = A(B) is the dual extension of an arbitrary finite-dimensional basic k-algebra B

and gl.dim(A) denotes the global dimension of the algebra A. They also discussed in [14] the

Ringel duals of the dual extensions of the algebra B with a tree-type poset, whose quivers are

bipartite. Xi described in [15] the characteristic tilting modules over the dual extension algebras

of the direct monomial algebras, especially, the description of the dual extension algebra of an

arbitrary hereditary algebra is given there and it is proved that such dual extension algebras

have triangular decompositions.

Definition 3[16] Let (A, Λ) be a quasi-hereditary algebra, and l: Λ −→ N any map (called

a length function). Then algebra A is said to have a Kazhdan-Lusztig theory (relative to l)

provided that

(1) Extn
A(∆(i), S(j)) 6= 0 =⇒ n ≡ l(j) + l(i)(mod 2), and

(2) Extn
A(S(j),∇(i)) 6= 0 =⇒ n ≡ l(j) + l(i) (mod 2) for all weights i, j ∈ Λ.

3. Some properties of dual extension algebras

From now on, we always assume that B has no oriented cycle in its quiver, and Q0 =

{1, . . . , n} such that HomB(PB(i), PB(j)) = 0 for i > j.

Lemma 1[7] Let B have no oriented cycle in its quiver. Then the dual extension (A, Λ) of B is

quasi-hereditary, where A = A(B), and the index set Λ = Q0 is a poset with its natural ordering.

Suppose that B′ is an algebra given by the quiver (Q0, Q
′

1) with relations {ρ′i | i ∈ IB}, which

is the dual algebra of B. Let S = kQ0. We have the following properties.

Lemma 2[12,13,18] (1) ∆B(i) = PB(i),∇B(i) = SB(i). There holds

∆B′(i) = SB′(i),∇B′(i) = IB′(i).
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(2) B is a subalgebra of A with the same maximal semisimple subalgebra and B is also

a factor algebra B ∼= A/〈α′ | α ∈ Q1〉 of A; B′ is a subalgebra of A with the same maximal

semisimple subalgebra and B′ is also the factor algebra of A with B′ = A/〈α | α ∈ Q1〉.

(3) As a left B′ and right B module, there holds A ∼= B′
⊗

S B.

(4) B′A is a projective left B′-module, AB is a projective right B-module.

(5) SB′(i)
⊗

B′ A ∼= ∆A(i), PB′(i)
⊗

B′
A ∼= PA(i). There holds

(6) IA(i) = D(A
⊗

B D(IB(i))),∇A(i) = D(A
⊗

B D(SB(i))). There holds

(7) top PA(i) = SA(i) = SB′(i), thus for each projective B′-module P , there holds top P ∼=

top (P
⊗

B′
A).

(8) soc IA(i) = SA(i) = SB(i), thus for each injective B-module I, there holds soc I ∼= soc

D(A
⊗

B D(I)).

4. The main result

Theorem Let B be a quasi-hereditary algebra, and the vertex set Q0 = {1, . . . , n} such that

HomB(P (i), P (j)) = 0 for i > j. Assume that B has a Kazhdan-Lusztig theory relative to a

length function l. Then its dual extension A = A(B) has also a Kazhdan-Lusztig theory relative

to the length function l.

In order to prove the theorem, we require some preparations.

Lemma 3 P
f

−→ M is the projective cover of a B′-module M ⇐⇒ P
⊗

B′
A

f
⊗

1A

−→ M
⊗

B′
A

is the projective cover of a A-module M
⊗

B′
A. Thus ker(f

⊗
1A) =kerf

⊗
B′

A.

Proof (=⇒) By the above Lamma 2, we see that P
⊗

B′
A is a projective A-module. By the

assumption of Lemma 3 there exists a short exact sequence

0 −→ kerf −→ P
f

−→ M −→ 0.

Applying the exact functor −
⊗

B′
A yields a short exact sequence in mod-A

0 −→ kerf
⊗

B′

A −→ P
⊗

B′

A
f

⊗
1

−→ M
⊗

B′

A −→ 0.

Let Q −→ M
⊗

B′ A be the projective cover of a A-module M
⊗

B′ A. By the above Lemma 2,

Q is of the form P̄
⊗

B′ A, then P̄
⊗

B′ A is a direct summand of P
⊗

B′ A. Applying −
⊗

A B′,

we have the fact that P̄ is a direct summand of P . Similarly, applying −
⊗

A B′ to the surjective

homomorphism P̄
⊗

B′ A
f

⊗
1

−→ M
⊗

B′ A −→ 0, we have the fact that P̄ −→ M is a surjective

homomorphism. Since P −→ M is a projective cover, we have P̄ ∼= P , hence Q ∼= P
⊗

B′ A.

(⇐=) Let L
g

−→ M be the projective cover of a B′-module M . By the implication proved

above, we have the fact that L
⊗

B′ A
g

⊗
1A

−→ M
⊗

B′
A is the projective cover of a A-module

M
⊗

B′
A, hence P

⊗
B′ A ∼= L

⊗
B′ A. Applying −

⊗
A B′, we have

P ∼= (P
⊗

B′

A)
⊗

A

B′ ∼= (L
⊗

B′

A)
⊗

A

B′ ∼= L.



150 WU W S

Corollary 1 Let M ∈ mod−B′, and Pi projective B′-modules. Then

0 −→ Ps
fs

−→ Ps−1
fs−1

−→ · · · −→ P1
f1

−→ P0
f0

−→ M −→ 0

is a minimal projective resolution of M if and only if

0 −→ Ps

⊗

B′

A
fs

⊗
1A

−→ Ps−1

⊗

B′

A
fs−1

⊗
1A

−→ · · ·

−→ P1

⊗

B′

A
f1

⊗
1A

−→ P0

⊗

B′

A
f0

⊗
1A

−→ M
⊗

B′

A −→ 0

is a minimal projective resolution of M
⊗

B′ A in mod-A.

Lemma 4 M
f

−→ I is the injective envelope of a module M in mod-B if and only if

D(A
⊗

B

D(M))
D(A

⊗
D(f))

−→ D(A
⊗

B

D(I))

is the injective envelope of D(A
⊗

B D(M)) in mod-A. Thus coker D(A
⊗

D(f)) ∼= D(A
⊗

B

D(coker f)).

Proof Since AB is a projective B-module, we have the fact that A
⊗

B − is an exact functor.

M
f

−→ I is an injective envelope in mod-B if and only if D(I)
D(f)
−→ D(M) is a projective cover in

B-mod; if and only if A
⊗

B D(I)
A

⊗
B

D(f)
−→ A

⊗
B D(M) is a projective cover in A-mod; if and

only if D(A
⊗

B D(M))
D(A

⊗
B

D(f))
−→ D(A

⊗
B D(I)) is the injective envelope of D(A

⊗
B D(M))

in mod-A. 2

Corollary 2 Let M ∈ mod-B, and Ii injective B-modules. Then

0 −→ M
g0

−→ I0 −→ · · · −→ Is−1
gs

−→ Is −→ 0

is a minimal injective resolution of M in mod-B if and only if

0 −→ D(A
⊗

B

D(M))
D(A

⊗
B

D(g0))
−→ D(A

⊗

B

D(I0)) −→ · · ·

−→ D(A
⊗

B

D(Is−1))
D(A

⊗
B

D(gs))
−→ D(A

⊗

B

D(Is)) −→ 0

is a minimal injective resolution of D(A
⊗

B D(M)) in mod-A.

Proof 0 −→ M
g0

−→ I0 −→ · · · −→ Is−1
gs

−→ Is −→ 0 is a minimal injective resolution of M in

mod-B if and only if

0 −→ D(Is)
D(gs)
−→ D(Is−1) −→ · · · −→ D(I0)

D(g0)
−→ D(M) −→ 0

is a minimal projective resolution of D(M) in B−mod; if and only if

0 −→ A
⊗

B

D(Is)
A

⊗
B

D(gs)
−→ A

⊗

B

D(Is−1) −→ · · ·

−→ A
⊗

B

D(I0)
A

⊗
B

D(g0)
−→ A

⊗

B

D(M) −→ 0
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is a minimal projective resolution of A
⊗

B D(M) in A-mod; if and only if

0 −→ D(A
⊗

B

D(M))
D(A

⊗
B

D(g0))
−→ D(A

⊗

B

D(I0)) −→ · · ·

−→ D(A
⊗

B

D(Is−1))
D(A

⊗
B

D(gs))
−→ D(A

⊗

B

D(Is)) −→ 0

is a minimal injective resolution of D(A
⊗

B D(M)) in mod-A. 2

Proof of the Theorem Assume that B has a Kazhdan-Lusztig theory relative to l. By [19,

Theorem 1], B′(= Bop) has a Kazhdan-Lusztig theory relative to l. Let

0 −→ Ps
fs

−→ Ps−1 −→ · · · −→ P1
f1

−→ P0
f0

−→ ∆B′(i) −→ 0

be a minimal projective resolution of B′-module ∆B′(i). By the above Corollary 1

0 −→ Ps

⊗

B′

A
fs

⊗
1A

−→ Ps−1

⊗

B′

A −→ · · ·

−→ P1

⊗

B′

A
f1

⊗
1A

−→ P0

⊗

B′

A
f0

⊗
1A

−→ ∆A(i) −→ 0

is a minimal projective resolution of A-module ∆A(i). Assume that Extn
A(∆A(i), S(j)) 6= 0. By

[19, Proposition 1], we have the fact that SA(j) is a direct summand of top (Pn

⊗
B′ A). By

the above Lemma 2, we have the fact that SB′(j) is a direct summand of top Pn. Again by

[19, Proposition 1], we have Extn
B′(∆B′(i), SB′(j)) 6= 0. Since B′ has a Kazhdan-Lusztig theory

relative to l, we have n ≡ l(i) + l(j)(mod 2).

On the other hand, let

0 −→ ▽B(i)
g0

−→ I0
g1

−→ I1 −→ · · · −→ Is−1
gs

−→ Is −→ 0

be a minimal injective resolution of a B-module ▽B(i). By the above Corollary 2, we have the

fact that

0 −→ D(A
⊗

B

D(▽B(i)))
D(A

⊗
B

D(g0))
−→ D(A

⊗

B

D(I0))
D(A

⊗
B

D(g1))
−→ D(A

⊗

B

D(I1))

−→ · · · −→ D(A
⊗

B

D(Is−1))
D(A

⊗
B

D(gs))
−→ D(A

⊗

B

D(Is)) −→ 0

is a minimal injective resolution of A-module ∇A(i) = D(A
⊗

B D(▽B(i))). Assume that

Extn
A(SA(i),∇A(j)) 6= 0. By [19, Proposition 1], we have the fact that SA(j) is a direct sum-

mand of soc D(A
⊗

B D(In)). By the above Lemma 2, we have the fact that SB(i) is a direct

summand of soc In. Again by [19, Proposition 1], we have Extn
B(SB(i),∇B(j)) 6= 0. Since B has

a Kazhdan-Lusztig theory relative to l, n ≡ l(i) + l(j) (mod 2). 2
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