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1. Introduction

In this paper, we will study the existence and the uniqueness of the global generalized solution

and the global classical solution and the blow-up of the solution to the following initial boundary

value problem for the nonlinear wave equation

utt − uxx + auxxxx − buxxtt = g(ux)x, x ∈ (0, l), t ∈ (0, T ), (1.1)

ux(0, t) = ux(l, t) = 0, uxxx(0, t) = uxxx(l, t) = 0, t ∈ (0, T ), (1.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ [0, l], (1.3)

where u(x, t) denotes the unknown function, a > 0, b > 0 are two constants, g(s) is the given

nonlinear function, u0(x) and u1(x) are given initial value functions and satisfy the boundary

condition (1.2). The subscripts t and x indicate the partial derivative with respect to t and x.

There are several examples of physical problems, which can be formulated as equation (1.1).

In the study of a weakly nonlinear analysis of elasto-plastic-microstructure models for a

longitudinal motion of an elasto-plastic bar, the following nonlinear partial differential equation

utt + uxxxx = a(u2
x)x (1.4)

is given[1], where a 6= 0 is constant.
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In [2, 3], for the study of strain solitary waves in nonlinear rods, a longitudinal wave equation

reads

utt − [a0 + na1(ux)n−1]uxx − a2uxxtt = 0, (1.5)

here a0, a2 are constants, a1 is an arbitrary real number, n is a natural number.

The papers [4, 5] studied the dynamics of dense lattices, and gave the equation

utt − uxx + auxxxx − buxxtt = (u2
x)x. (1.6)

Obviously, equations (1.4)–(1.6) are the special cases of equation (1.1).

For the equation (1.4), the author in [6] studied the existence and non-existence of global

solutions for the initial boundary value problem.

In [7], the authors proved the existence and uniqueness of classical global solution and blow-up

of non-global solution to the initial boundary value problem for the equation (1.5).

However, we have not seen any discussion on the initial boundary value problem for equation

(1.6).

As for equation (1.1), as the generalized case of equation (1.6), there have not been any results.

The aim of the present paper is to prove that under certain conditions, the problem (1.1)–(1.3)

has a unique global generalized and classical solutions, and to give sufficient conditions of the

nonexistence of global solutions to the problem (1.1)–(1.3). Moreover, as application of our

abstract theorem, we shall prove that the problem (1.2), (1.3) and (1.6) do not possess global

generalized and classical solutions under certain conditions.

The general method is to establish a differential inequality of energy of solution in order to

get the blowup result of a solution of a nonlinear evolution equation[8−11]. To prove the blow-up

of solution by the “concavity method”, we will construct a differential inequality (3.3) and by

the aid of the inequality we shall complete the related proof.

This paper is organized as follows: In Section 2, we prove the existence and uniqueness

of global generalized and classical solutions of the problem (1.1)–(1.3). The nonexistence of

global solutions to the problem (1.1)–(1.3) is discussed in Section 3. In Section 4, we prove the

nonexistence of global solutions to the problem (1.2), (1.3) and (1.6).

2. Global solution of the problem (1.1)–(1.3)

For the problem (1.1)–(1.3), we have the following Theorems 2.1 and 2.2.

Theorem 2.1 Suppose that g ∈ C2(R) and there is a constant γ such that g′(s) ≥ γ for any

s ∈ R, u0(x) ∈ H4[0, 1], u1(x) ∈ H3[0, 1] and u0(x), u1(x) satisfy the boundary conditions (1.2).

Then the problem (1.1)–(1.3) has a unique generalized global solution

u(x, t) ∈ C([0, T ]; H4(0, l)) ∩ C1([0, T ]; H3(0, l)) ∩ C2([0, T ]; H2(0, l)).

Theorem 2.2 Suppose that the conditions of Theorem 2.1 hold. If g ∈ C3(R) and g′′(0) = 0,

u0(x) ∈ H6[0, 1], u1(x) ∈ H5[0, 1]. Then the problem (1.1)–(1.3) has a unique global classical

solution

u(x, t) ∈ C([0, T ]; C4[0, l]) ∩ C1([0, T ]; C3[0, l]) ∩ C2([0, T ]; C2[0, l]).
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The above two Theorems can be proved in the same method as used in [12].

3. Nonexistence of global solutions of the problem (1.1)–(1.3)

To discuss the blow-up of the solution, we need the following lemma:

Lemma 3.1 (Jensen inequality) Let g(x) be defined on (a, b), g(x) ∈ [a1, b1], where a, b, a1, b1 ≤

∞, f(s) is a continuous and convex function on (a1, b1), q(x) ∈ L1[a, b], and q(x) ≥ 0. Then it

follows that

f
(

∫ b

a
g(x)q(x)dx
∫ b

a
q(x)dx

)

≤

∫ b

a
f(g(x))q(x)dx
∫ b

a
q(x)dx

when the right side is finite.

Theorem 3.2 Suppose that the following conditions hold.

(1) g(s) is a convex function, g(0) = 0, g(s) ≥ δsq, where δ > 0 is a real number and q > 1

is an even number.

(2) π
2l

∫ l

0
u0(x) cos πx

l
dx = α ≥ {π2l2+aπ4

l4
( l

π
)q+1δ−1}

1

q−1 , π
2l

∫ l

0
u1(x) cos πx

l
dx = β > 0.

Then the solution u(x, t) of the problem (1.1)–(1.3) blows up in finite time T0, i.e.,

lim
t→T

−

0

sup
x∈(0,l)

|u(·, t)| → +∞.

Proof Let

ϕ(t) =
π

2l

∫ l

0

u(x, t) cos
πx

l
dx.

Multiplying both sides of equation (1.1) by π
2l

cos πx
l

and integrating by parts, we obtain

(1 +
bπ2

l2
)ϕ̈ + (

π2

l2
+

aπ4

l4
)ϕ =

π

2l

∫ l

0

g(ux)x cos
πx

l
dx, (3.1)

where and in the sequel “ · ” denotes the derivative with respect to t.

Since f(s) is even and convex, we have by using integration by parts and the Jensen inequality

that

π

2l

∫ l

0

g(ux)x cos
πx

l
dx =

π2

2l2

∫ l

0

g(ux) sin
πx

l
dx

≥
π

l
g(−

π2

2l2

∫ l

0

u(x, t) cos
πx

l
dx)

≥ δ(
π

l
)q+1ϕ(t)q , t > 0. (3.2)

Substituting (3.2) into (3.1), we have

(1 +
bπ2

l2
)ϕ̈(t) + (

π2

l2
+

aπ4

l4
)ϕ(t) ≥ δ(

π

l
)q+1ϕ(t)q, t > 0 (3.3)

with ϕ(0) = α > 0 and ϕ̇(0) = β > 0.

Since ϕ(0) = α > 0, ϕ̇(0) = β > 0, from the continuity of ϕ(t) it follows that there is a right

neighborhood (0, ρ) of the point t, in which ϕ̇(t) > 0, hence ϕ(t) > ϕ(0) > 0.

Now, we prove ϕ̇(t) > 0 for any t > 0. Suppose that this result is false. Then there is t0 > 0,

such that when 0 < t < t0, ϕ̇(t) > 0, but ϕ̇(t0) = 0, then ϕ(t) is monotonically increasing on
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[0, t0), i.e. ϕ(t) ≥ α, t ∈ [0, t0]. It follows from (3.3) that on (0, t0]

ϕ̈(t) ≥
l2π2 + aπ4

l2(l2 + bπ2)
ϕ(t)

[ l4

l2π2 + aπ4
δ(

π

l
)q+1(ϕ(t))q−1 − 1

]

≥
l2π2 + aπ4

l2(l2 + bπ2)
α
[ l4

l2π2 + aπ4
δ(

π

l
)q+1αq−1 − 1

]

≥ 0.

Therefore, ϕ̇(t) is monotonically increasing on [0, t0]. This is a contradiction with ϕ̇(t0) = 0.

This shows that ϕ̇(t) > 0 and ϕ(t) > ϕ(0) for any t > 0. Multiplying both sides of (3.3) by 2ϕ̇(t)

and integrating the product on [0, t], we see

(ϕ̇(t))2 ≥ β2 −
l2π2 + aπ4

l2(l2 + bπ2)

(

ϕ(t)2 − α2
)

+
l2

l2 + bπ2

2δ

q + 1
(
π

l
)q+1

(

ϕ(t)q+1 − αq+1
)

= J(ϕ(t)). (3.4)

Obviously J(α) = β2 > 0, and

J ′(ϕ(t)) = 2δ
l2

l2 + bπ2
(
π

l
)q+1ϕ(t)q − 2

l2π2 + aπ4

l2(l2 + bπ2)
ϕ(t)

> 2
l2π2 + aπ4

l2(l2 + bπ2)
α
( δl4

l2π2 + aπ4
(
π

l
)q+1αq−1 − 1

)

≥ 0.

It is easy to know that J(ϕ(t)) > J(ϕ(0)) = J(α) > 0, t > 0.

Extracting the square root of both sides of (3.4) we obtain

ϕ̇(t) ≥
[ l2

l2 + bπ2

2δ

q + 1
(
π

l
)q+1(ϕ(t)q+1 − αq+1) −

l2π2 + aπ4

l2(l2 + bπ2)
(ϕ(t)2 − α2) + β2

]
1

2

, t > 0

which implies that the interval [0, T1) of the existence of ϕ(t) is finite, i.e.,

T1 ≤

∫ +∞

α

[ l2

l2 + bπ2

2δ

q + 1
(
π

l
)q+1(sq+1 − αq+1) −

l2π2 + aπ4

l2(l2 + bπ2)
(s2 − α2) + β2

]−
1

2

ds < +∞

and ϕ(t) develops a singularity in finite time T0 ≤ T1. Obviously, because of ϕ(t) > 0, there is

the fact that

ϕ(t) ≤ sup
x∈(0, l)

|u(·, t)|,

therefore it follows that

sup
x∈(0, l)

|u(·, t)| → +∞

as t → T−

0 . Theorem 3.2 is proved. 2

4. The problem (1.2), (1.3) and (1.6)

In this section we apply the above conclusion to the problem (1.2), (1.3) and (1.6).

By the contraction mapping principle [15] we can prove that the problem (1.2), (1.3) and

(1.6) have a unique local generalized solution and a unique local classical solution. By the aid

of Theorem 3.2, we have the following theorem:

Theorem 4.1 Suppose that u(x, t) is the generalized solution of the problem (1.2), (1.3) and



168 WANG Y P

(1.6), and the following assumptions hold:

π

2l

∫ l

0

u0(x) cos
πx

l
dx = α ≥

π2l2 + aπ4

l4
(
l

π
)3,

π

2l

∫ l

0

u1(x) cos
πx

l
dx = β > 0.

Then the solution u(x, t) of the problem (1.2), (1.3) and (1.6) blows up in finite time T0, i.e.

lim
t→T

−

0

sup
x∈(0, l)

|u(·, t)| → +∞.

Proof It is easy to know that the integral

T2 =

∫ +∞

α

[ l2

l2 + bπ2

2

3
(
π

l
)3(s3 − α3) −

l2π2 + aπ4

l2(l2 + bπ2)
(s2 − α2) + β2

]−
1

2

ds < +∞.

Making use of Theorem 3.2, we know that there exists an finite time T0 < T2 such that

lim
t→T

−

0

sup
x∈(0, l)

|u(·, t)| → +∞.
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