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Abstract In the present paper, some basic properties of MP filters of R0 algebra M are

investigated. It is proved that (FMP (M),⊂,′ , ∧̄, ∨̄, {1}, M) is a bounded distributive lattice by

introducing the negation operator ′, the meet operator ∧̄, the join operator ∨̄ and the implication

operator =⇒ on the set FMP (M) of all MP filters of M . Moreover, some conditions under which

(FMP (M),⊂,′ , ∨̄, =⇒, {1}, M) is an R0 algebra are given. And the relationship between prime

elements of FMP (M) and prime filters of M is studied. Finally, some equivalent characterizations

of prime elements of FMP (M) are obtained.
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1. Introduction

As is well known, the algebra of logic system as its algebraic semantic is an important research

branch in mathematical logics. In the past several years, it has attracted more and more attention

and it also has acquired significant development, as pointed out in [5]. Furthermore, different

logic algebras such as MV -algebra proposed by Chang in [2], FI-algebra proposed by Wu in [3],

Lattice implication algebra introduced by Xu in [4] and BL-algebra invented by Hájek in [5] play

the same role in non-classical logics just as Boolean algebra in classical logic.

For trying to provide a logic foundation for fuzzy reasoning and to reduce the gap between

fuzzy reasoning and artificial intelligence, Wang proposed a new formal deductive system L∗ for

fuzzy propositional calculus in 1997. The corresponding R0 algebra was introduced subsequently

by Wang for the purpose of providing an algebraic proof of the completeness theorem of L∗. In

the recent years, the research on R0 algebras and the formal deductive system L∗ have attracted

more and more attention [9, 10, 11, 15]. A series of papers investigating the properties of MP

filters of R0 algebras have been published[12−14]. Unfortunately, in these papers the MP filters

are examined individually but not collectively.

In the present paper, the set consisting of all MP filters of an R0 algebra is taken into

account. The operations on this set are introduced, and some basic properties are investigated.

Moreover, some new results which are fundamental to study the structure and properties of an

R0 algebra are obtained.
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2. Prelimiaries

Definition 1[1] Let M be an algebra of type (¬,∨,→). If (M,≤, 0, 1) is a bounded distributive

lattice with a partial order ≤ (0 and 1 are the least element and the greatest element of M with

respect to ≤, respectively), ∨ is the supremum operator, and ¬ is an order-reserving involution,

then M is called an R0 algebra if for all a, b, c ∈ M the following conditions are satisfied:

(M1) ¬a → ¬b = b → a,

(M2) 1 → a = a, a → a = 1,

(M3) b → c ≤ (a → b) → (a → c),

(M4) a → (b → c) = b → (a → c),

(M5) a → b ∧ c = (a → b) ∧ (a → c), a → b ∨ c = (a → b) ∨ (a → c),

(M6) (a → b) ∨ ((a → b) → ¬a ∨ b) = 1.

Example 1[1] Define on [0,1] one unary operator ¬ and two binary operators ∨ and → as

follows:

¬a = 1 − a, a ∨ b = max{a, b}, a → b =

{

1 , a ≤ b,

(1 − a) ∨ b , a > b.

Then ([0,1], ¬, ∨, →) becomes an R0 algebra and is called the R0-interval.

Proposition 1[1] Let M be an R0 algebra, and a, b, c ∈ M . Then the following properties hold.

(P1) a → b = 1 if and only if a ≤ b.

(P2) a ≤ b → c if and only if b ≤ a → c.

(P3) a ∨ b → c = (a → c) ∧ (b → c), a ∧ b → c = (a → c) ∨ (b → c).

(P4) a ∨ b ≤ ((a → b) → b) ∧ ((b → a) → a).

(P5) (a → b) ∨ (b → a) = 1.

Proposition 2[1] Let M be an R0 algebra, and define on M a new binary operator ⊗ as follows:

a ⊗ b = ¬(a → ¬b), a, b ∈ M. (1)

Then

(P6) (M,⊗, 1) is a commutative semi-group with unit element 1.

(P7) If b ≤ c, then a ⊗ b ≤ a ⊗ c.

(P8) ⊗ and → form an adjoint pair, i.e., a ⊗ b ≤ c if and only if a ≤ b → c.

(P9) ¬a ⊗ a = 0, a ⊗ b → c = a → (b → c).

(P10) an = a2, where an = a ⊗ · · · ⊗ a
︸ ︷︷ ︸

n-times

for n ≥ 2.

(P11) a ⊗ (b ∨ c) = (a ⊗ b) ∨ (a ⊗ c), (a ∨ b)n = an ∨ bn.

(P12) a ⊗ (a → b) ≤ b.

3. Filter lattices on R0 algebras

Definition 2[1] Let M be an R0 algebra. A subset F of M is called an MP filter if 1 ∈ F , and

F is closed under the operation MP, i.e., a ∈ F and a → b ∈ F imply b ∈ F . Moreover, F is said

to be proper if F 6= M .
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Clearly, {1} and M are MP filters. In what follows, we use M and FMP (M) to denote an

R0 algebra and the set consisting of all MP filters of M respectively unless otherwise explicitly

specified.

It should be noted that MP filters are usually different from lattice filters, i.e., every MP

filter of M is a lattice filter for M , but the converse is not true in general. In fact, in the R0-

interval, [12 , 1] is a lattice filter, but not an MP filter, because 1
2 , 1

2 → 0 = (1− 1
2 )∨0 = 1

2 ∈ [12 , 1],

however, 0 /∈ [12 , 1].

Proposition 3[1] A nonempty subset F of M is an MP filter of M if and only if

(i) F is an upper set, i.e., a ∈ F and a ≤ b imply b ∈ F .

(ii) F is closed under the operation ⊗, i.e., a ∈ F and b ∈ F imply a ⊗ b ∈ F .

Definition 3[1] Suppose that A ⊂ M . Then the intersection of all MP filters containing A is

the smallest MP filter that contains A, and it is called the generated MP filter by A. Formally,

it is denoted by [A), and

[A) = {x ∈ M | a1 ⊗ a2 ⊗ · · · ⊗ an ≤ x, for some a1, a2, . . . , an ∈ A and n ∈ N}.

In particular, if A = {a} with a ∈ M . Let us use [a) to denote the MP filter generated by

{a}, and call [a) a principal MP filter. Clearly,

[a) = {x ∈ M |an ≤ x, n ∈ N} = {x ∈ M |a2 ≤ x, n ∈ N}.

Proposition 4 Suppose that F1, F2 ⊂ M . Then we have the following:

(i) If F1 ⊂ F2, then [F1) ⊂ [F2).

(ii) If x ≤ y, then [y) ⊂ [x).

(iii) If F1 ∈ FMP (M), a ∈ M , then [a) ⊂ F1 if and only if a ∈ F1.

(iv) If F1, F2 ∈ FMP (M), then F1 ∩ F2 ∈ FMP (M).

(v) If F1, F2 ∈ FMP (M), then [F1 ∪ F2) = {x ∈ M |a⊗ b ≤ x, for some a ∈ F1 and b ∈ F2}.

Proof The proofs for (i)–(iv) are trivial. Hence we restrict ourselves to the proof of (v). Let

A = {x ∈ M |a⊗ b ≤ x, for some a ∈ F1 and b ∈ F2}. Then A is an MP filter. In fact, it follows

from 1 ∈ F1 and 1 ∈ F2 that 1 ∈ A. Assume that x, x → y ∈ A. Then there exist a1, a2 ∈ F1

and b1, b2 ∈ F2 such that a1 ⊗ b1 ≤ x, a2 ⊗ b2 ≤ x → y. It follows from the commutativity and

associativity of the operator ⊗ and (P12) that (a1 ⊗ b1) ⊗ (a2 ⊗ b2) = (a1 ⊗ a2) ⊗ (b1 ⊗ b2) ≤

x ⊗ (x → y) ≤ y. Since a1 ⊗ a2 ∈ F1 and b1 ⊗ b2 ∈ F2, we have y ∈ A. Therefore, A is an MP

filter. Now we must show that A is the smallest MP filter containing F1 and F2. Assume that F

is any MP filter containing F1 and F2, and x ∈ A. Then there exist a ∈ F1 ⊂ F and b ∈ F2 ⊂ F

such that a⊗ b ≤ x. Hence it follows from closeness of F under the operator ⊗ that x ∈ F . This

shows that A ⊂ F . Therefore, [F1 ∪ F2) = {x ∈ M |a ⊗ b ≤ x, for some a ∈ F1 and b ∈ F2}.

Theorem 1 Let us define on FMP (M) two binary operators ∧̄ and ∨̄ as follows:

F1∧̄F2 = F1 ∩ F2, F1∨̄F2 = [F1 ∪ F2), F1, F2 ∈ FMP (M). (2)

Then (FMP (M),⊂, ∧̄, ∨̄, {1}, M) is a bounded distributive lattice.
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Proof From Proposition 4 and (2) we see that (FMP (M),⊂, ∧̄, ∨̄, {1}, M) is a bounded lattice

with respect to the order of set inclusion. To prove that (FMP (M),⊂, ∧̄, ∨̄, {1}, M) is distribu-

tive, we shall first show that F1 ∩ [F2 ∪ F3) = [F1 ∩ (F2 ∪ F3)) holds in FMP (M). In fact, since

F1 ∩ (F2 ∪ F3) ⊂ F1 ∩ [F2 ∪ F3), we have [F1 ∩ (F2 ∪ F3)) ⊂ [F1 ∩ [F2 ∪ F3)) = F1 ∩ [F2 ∪ F3).

Let x be any element of F1 ∩ [F2 ∪ F3). Then x ∈ F1 and x ∈ [F2 ∪ F3), hence there ex-

ist a ∈ F2 and b ∈ F3 such that a ⊗ b ≤ x. It follows from F1 ∩ F2 and F1 ∩ F3 are

upper sets that a ∨ x ∈ F1 ∩ F2 and b ∨ x ∈ F1 ∩ F3. Moreover, since (a ∨ x) ⊗ (b ∨ x) =

(a⊗ b)∨ (x⊗ b)∨ ((a∨x)⊗x) ≤ x, we deduce that x ∈ [(F1 ∩ F2) ∪ (F1 ∩ F3)) = [F1∩ (F2∪F3)).

This shows that F1∩ [F2 ∪ F3) ⊂ [F1 ∩ (F2 ∪ F3)). Then F1∩ [F2 ∪ F3) = [F1∩(F2∪F3)). Hence

F1∧̄(F2∨̄F3) = F1 ∩ [F2 ∪ F3) = [F1 ∩ (F2 ∪ F3)) = [(F1 ∩ F2) ∪ (F1 ∩ F3)) = (F1∧̄F2)∨̄(F1∧̄F3).

Therefore Theorem 1 is true.

Lemma 1 Suppose that x, y ∈ M . Then [x)∨̄[y) = [x ⊗ y) and [x)∧̄[y) = [x ∨ y).

Proof By Proposition 4, it follows that [x) ⊂ [x ⊗ y), [y) ⊂ [x ⊗ y), and so [x)∨̄[y) ⊂ [x ⊗ y).

Let z ∈ [x ⊗ y). Then (x ⊗ y)2 = x2 ⊗ y2 ≤ z. From x2 ∈ [x), y2 ∈ [y) and [x)∨̄[y) = [[x) ∪ [y)),

we have z ∈ [x)∨̄[y), and it follows that [x ⊗ y) ⊂ [x)∨̄[y). Hence [x)∨̄[y) = [x ⊗ y). Next we

are to prove that [x)∧̄[y) = [x ∨ y) holds. [x ∨ y) ⊂ [x)∧̄[y) obviously holds. Now assume that

z ∈ [x)∧̄[y). Then z ∈ [x), z ∈ [y), i.e., x2 ≤ z, y2 ≤ z. Hence x2 ∨ y2 = (x ∨ y)2 ≤ z, and so

z ∈ [x ∨ y). Thus [x)∧̄[y) = [x ∨ y).

Proposition 5 Define on FMP (M) an implication operator =⇒ as follows:

F1 =⇒ F2 = {x ∈ M | F1∧̄[x) ⊂ F2}, F1, F2 ∈ FMP (M). (3)

Then

(i) F1 =⇒ F2 ∈ FMP (M).

(ii) F ∈ FMP (M), F ⊂ F1 =⇒ F2 if and only if F ∧̄F1 ⊂ F2.

Proof (i) It is clear from (3) that 1 ∈ F1 =⇒ F2. Suppose that x, x → y ∈ F1 =⇒ F2. Then

F1∧̄[x) ⊂ F2 and F1∧̄[x → y) ⊂ F2. Hence it follows from Theorem 1 and Lemma 1 that

(F1∧̄[x))∨̄(F1∧̄[x → y)) = F1∧̄([x)∨̄[x → y)) = F1∧̄[x ⊗ (x → y)) ⊂ F2, and so we have

F1∧̄[y) ⊂ F1∧̄[x ⊗ (x → y)) ⊂ F2 from (P12) and Proposition 4(ii). Thus y ∈ F1 =⇒ F2. This

shows that F1 =⇒ F2 is an MP filter.

(ii) Suppose F ⊂ F1 =⇒ F2, and x ∈ F . Then it follows from (3) that F1∩{x} ⊂ F1∧̄[x) ⊂ F2

holds. Hence, F ∧̄F1 = F ∩ F1 = F1 ∩ (∪x∈F {x}) = ∪x∈F (F1 ∩ {x}) ⊂ F2. Conversely, assume

that F ∧̄F1 ⊂ F2. Then for any x ∈ F , we have [x) ⊂ F , and it follows that F1∧̄[x) ⊂ F1∧̄F ⊂ F2.

Hence x ∈ F1 =⇒ F2, and so F ⊂ F1 =⇒ F2.

From Proposition 5, it is easy to deduce the following Corollaries 1 and 2.

Corollary 1 (FMP (M),⊂, ∧̄, ∨̄, =⇒, {1}, M) is a Heyting algebra.

Corollary 2 Suppose that F, F1, F2, F3 ∈ FMP (M). Then the following properties hold.

(i) F1 =⇒ F2 = M if and only if F1 ⊂ F2.
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(ii) F1 =⇒ (F2 =⇒ F3) = F1∧̄F2 =⇒ F3 = F2 =⇒ (F1 =⇒ F3).

(iii) M =⇒ F = F, F =⇒ F = M .

(iv) F2 =⇒ F3 ⊂ (F1 =⇒ F2) =⇒ (F1 =⇒ F3).

(v) F1 =⇒ F2∧̄F3 = (F1 =⇒ F2)∧̄(F1 =⇒ F3), F1 =⇒ F2∨̄F3 = (F1 =⇒ F2)∨̄(F1 =⇒ F3).

(vi) F1∧̄(F1 =⇒ F2) = F1∧̄F2, F2∧̄(F1 =⇒ F2) = F2.

(vii) F1∨̄F2 ⊂ ((F1 =⇒ F2) =⇒ F2)∧̄((F2 =⇒ F1) =⇒ F1).

Definition 4 Suppose that F ∈ FMP (M). Let

F ′ = F =⇒ {1} = {x ∈ M
∣
∣ F ∧̄[x) = {1}}, F ∈ FMP (M). (4)

Then F ′ is called the negation of F .

It is clear that F ′ ∈ FMP (M) and F ′′

1 = F ′

1 =⇒ {1} ∈ FMP (M). In particular, if F1 = [a)

with a ∈ M , then [a)′ = {x ∈ M
∣
∣ [a)∧̄[x) = {1}} = {x ∈ M

∣
∣ a ∨ x = 1}.

Proposition 6 Suppose that F, F1, F2 ∈ FMP (M). Then it is easy to prove the following:

(i) F ∧̄F ′ = F ∩ F ′ = {1}, (F1∨̄F2)
′ = F ′

1∧̄F ′

2.

(ii) If F1 ⊂ F2, then F ′

2 ⊂ F ′

1.

(iii) F ⊂ F ′′, F ′ = F ′′′.

(iv) {1}′ = M, M ′ = {1}.

(v) F1 =⇒ F2 ⊂ F ′

2 =⇒ F ′

1.

Remark 1 From the Proposition above we see that the operator ′ is order-reserving, but may

be not an involution in FMP (M), i.e., F is not equal to F ′′ in general in FMP (M). For example,

consider M = {0, 1
3 , 2

3 , 1} with the usual order ≤. Let us define on M one unary operator ¬ and

two binary operators ∨ and → on M as follows:

¬a = 1 − a, a ∨ b = max{a, b}, a → b =

{

1 , a ≤ b,

(1 − a) ∨ b , a > b.
(5)

Then it is easy to verify that (M,≤,¬,∨,→) is an R0 algebra and F = { 2
3 , 1} is an MP filter of

M , however F ′′ = M . Hence F 6= F ′′.

Proposition 7 The operator ′ defined by (4) on FMP (M) is an order-reserving involution if

and only if for every F ∈ FMP (M), F ∨̄F ′ = M holds.

Proof Suppose that the operator ′ is an order-reserving involution. Then De Morgan’s laws

hold in FMP (M) , i.e., for all F1, F2 ∈ FMP (M), (F1∨̄F2)
′ = F ′

1∧̄F ′

2 and (F1∧̄F2)
′ = F ′

1∨̄F ′

2

hold. Hence we deduce that F ∨̄F ′ = F ′′∨̄F ′ = (F ′∧̄F )′ = {1}
′

= M . Conversely, assume

that for every F ∈ FMP (M), F ∨̄F ′ = M . Since FMP (M) is distributive, we have that F ′′ =

F ′′∧̄(F ∨̄F ′) = (F ′′∧̄F )∨̄(F ′′∧̄F ′) = F ′′∧̄F , i.e., F ′′ ⊂ F . By virtue of Proposition 6(iii), we

have F = F ′′. Hence the operator ′ is an order-reserving involution.

Theorem 2 (FMP (M), ⊂, ′, ∨̄, =⇒, {1}, M) is an R0 algebra if and only if for every F ∈

FMP (M), F ∨̄F ′ = M holds.
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Proof Suppose that (FMP (M),⊂,′ , ∨̄, =⇒, {1}, M) is an R0 algebra. Then the operator ′ is an

order-reserving involution on FMP (M). Hence it follows from Proposition 7 that F ∨̄F ′ = M .

Conversely, suppose that for every F ∈ FMP (M), F ∨̄F ′ = M holds. Then by Proposition 7, we

have that the operator ′ is an order-reserving involution, and it follows from Proposition 6(vi)

that F ′

2 =⇒ F ′

1 ⊂ F ′

1 =⇒ F ′

2 = F1 =⇒ F2. Therefore F1 =⇒ F2 = F ′

2 =⇒ F ′

1, that is, (M1) in

Definition 1 holds. And it can be proved that (M2)–(M5) also hold from Corollary 2. Now we

are to prove that (M6) holds. It follows from Corollary 2(ii), (v) and (vi) that

(F1 =⇒ F2)∨̄((F1 =⇒ F2) =⇒ F ′

1∨̄F2)

= (F1 =⇒ F2)∨̄(((F1 =⇒ F2) =⇒ F ′

1)∨̄((F1 =⇒ F2) =⇒ F2))

⊃ (F1 =⇒ F2)∨̄((F1 =⇒ F2) =⇒ F ′

1)

= (F1 =⇒ F2)∨̄(F1∧̄(F1 =⇒ F2) =⇒ {1})

= (F1 =⇒ F2)∨̄(F1∧̄F2)
′ = (F1 =⇒ F2)∨̄F ′

1∨̄F ′

2

⊃ F2∨̄F ′

2 = M.

Thus (M6) is true. This proves that (FMP (M),⊂,′ , ∨̄, =⇒, {1}, M) is an R0 algebra.

Theorem 3 (FMP (M),⊂,′ , ∨̄, =⇒, {1}, M) is an R0 algebra if and only if the mapping ′ :

FMP (M) → FMP (M) is surjective (F
′

= F =⇒ {1} = {x ∈ M
∣
∣ F ∧̄[x) = {1}}, F ∈ FMP (M)).

Proof The necessity is trivial. Now let us prove the sufficiency. Since the mapping ′ is surjective,

for any F ∈ FMP (M), there exists F1 ∈ FMP (M) such that F ∨̄F ′ = F ′

1. By Proposition 6(i)

and (v), it follows that F ′′

1 = (F ∨̄F ′)′ = F ′∧̄F ′′ = {1}, and so we have F ′

1 = F ′′′

1 = {1}′ = M ,

i.e., F ∨̄F ′ = M . Hence from Theorem 2 we see that (FMP (M),⊂,′ , ∨̄, =⇒, {1}, M) is an R0

algebra.

Theorem 4 If every MP filter of M is principal and, for every x ∈ M , ¬x ∨ x = 1, then

(FMP (M),⊂,′ , ∧̄, ∨̄, =⇒, {1}, M) is a Boolean algebra.

Proof It follows from Theorem 1 that (FMP (M),⊂,′ , ∧̄, ∨̄, =⇒, {1}, M) is a bounded distribu-

tive lattice. To prove that (FMP (M),⊂,′ , ∧̄, ∨̄, =⇒, {1}, M) is a Boolean algebra, it is only neces-

sary to prove that for every F ∈ FMP (M), the complement of F exists in FMP (M). In fact, since

F is principal, there exists a ∈ M such that F = [a). Therefore, F ′ = [a)′ = {x ∈ M | a∨x = 1}.

By the condition ¬a ∨ a = 1, we have ¬a ∈ F ′. Hence 0 = ¬a ⊗ a ∈ F ∨̄F ′, then F ∨̄F ′ = M ,

and F ∧̄F ′ = {1} from Proposition 6(i). So we see that F ′ is just the complement of F . Thus,

(FMP (M),⊂,′ , ∧̄, ∨̄, =⇒, {1}, M) is a Boolean algebra.

4. Prime elements of FMP (M)

Definition 5[8] Let (L,≤, 0, 1) be a bounded lattice. For any a ∈ L and a 6= 1, a is meet-

irreducible if x ∧ y = a implies x = a or y = a. a is called a prime element of L if x ∧ y ≤ a

implies x ≤ a or y ≤ a.

Proposition 8[8] Let (L,≤, 0, 1) be a distributive lattice and a ∈ L. a is meet-irreducible if
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and only if a is prime element of L.

Definition 6[1] A proper MP filter F of M is called to be prime if for all x, y ∈ M , x∨y ∈ F im-

plies x ∈ F or y ∈ F . The set consisting of all prime filters of M will be denoted by PFMP (M).

Proposition 9[1] Suppose that F ∈ FMP (M). F is prime if and only if for any x, y ∈ M , either

x → y ∈ F or y → x ∈ F .

Proposition 10 Suppose that F is a prime filter of M . Then

(i) If F1 is a proper MP filter such that F ⊂ F1, then F1 is also prime.

(ii) If {Fi}i∈I is a family of MP filters containing F , that is, F ⊂ ∩i∈IFi, then {Fi}i∈I is a

chain.

Proof (i) follows from Proposition 9 and the condition F ⊂ F1.

(ii) Suppose that F1 and F2 are two any MP filters containing F . If one of F1 and F2 is M ,

then it is clear that F1 and F2 are comparable. Now assume that neither F1 nor F2 is equal to

M . Then by F1∧̄F2 = F1 ∩ F2 6= M and F ⊂ F1∧̄F2 and (i), it follows that F1∧̄F2 is a prime

filter. Let F1 6⊂ F2 and F2 6⊂ F1. Then there exist x ∈ F1, y ∈ F2 such that x 6∈ F2 and y 6∈ F1.

Thus x, y 6∈ F1∧̄F2. Since F1∧̄F2 is prime, we have x∨ y 6∈ F1∧̄F2, and it follows that x∨ y 6∈ F1

or x ∨ y 6∈ F2 which contradicts the fact that F1 and F2 are upper sets. Hence (ii) is verified.

Theorem 5 Suppose that F ⊂ M . Then F is a prime element of (FMP (M),⊂, {1}, M) if and

only if F is a prime filter of M .

Proof Suppose that F is a prime element of (FMP (M),⊂, {1}, M). If x∨y ∈ F , then [x∨y) ⊂ F .

Hence (F ∨̄[x))∧̄(F ∨̄[y)) = F ∨̄([x)∧̄[y)) = F ∨̄[x ∨ y) = F . Since F is a prime element of

(FMP (M),⊂), we have F ∨̄[x) = F or F ∨̄[y) = F , and so x ∈ F or y ∈ F . We have F is a prime

filter of M . Conversely, assume that F is a prime filter of M . If F1∧̄F2 = F, F1, F2 ∈ FMP (M),

then it follows from Propositiom 10(ii) that F1 ⊂ F2 or F2 ⊂ F1, and then F = F1 or F = F2

follows. Thus F is a prime element of (FMP (M),⊂).

Theorem 6 Suppose that F ∈ FMP (M). Then the following conditions are equivalent to each

other:

(i) F is a prime element of (FMP (M),⊂, {1}, M).

(ii) If x, y ∈ M and x ∨ y = 1, then x ∈ F or y ∈ F .

(iii) M − F is an directed set, i.e., if a, b ∈ M − F , then there exists c ∈ M − F such that

a, b ≤ c.

(iv) For any Fi ∈ FMP (M) (i ∈ I, and I is an index set), either Fi =⇒ F = F or Fi ⊂ F .

Proof (i)=⇒(ii) Suppose that F is a prime element of (FMP (M),⊂, {1}, M). It follows from

Theorem 5 that F is a prime filter of M . Hence if x ∨ y = 1, then x ∨ y ∈ F . So we have x ∈ F

or y ∈ F .

(ii)=⇒(iii) Assume that M − F is not directed. Then there exist x, y ∈ M − F such that

x ∨ y 6∈ M − F , i.e., x ∨ y ∈ F . Since F is an upper set, by (P4) (x → y) → y ∈ F and
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(y → x) → x ∈ F . By (P5) and (ii), we have x → y ∈ F or y → x ∈ F . Hence y ∈ F or x ∈ F ,

a contradiction. Thus, M − F is directed.

(iii)=⇒(iv) Suppose on the contrary that Fi 6⊂ F . Then there exists y ∈ Fi such that y 6∈ F ,

i.e., y ∈ M − F . Let x ∈ Fi → F . If x 6∈ F , then x ∈ M − F . Since M−F is directed, we deduce

that x∨y ∈ M − F . Since the filter is an upper set, by (4) we have x∨y ∈ Fi∧̄[x) ⊂ F and then

x∨y ∈ F follows, a contradiction. Therefore, x ∈ F , i.e., Fi =⇒ F ⊂ F . By Fi∧̄F = Fi ∩F ⊂ F

and Proposition 5(ii), it follows that F ⊂ Fi =⇒ F . Thus Fi =⇒ F = F .

(iv)=⇒(i) Suppose that F1∧̄F2 = F , and F, F1, F2 ∈ FMP (M). Then F ⊂ F1 and F ⊂ F2.

It follows from Proposition 5(ii) that F1 ⊂ F2 =⇒ F . By the hypothesis, we have F2 =⇒ F = F

or F2 ⊂ F . Then either F1 ⊂ F or F2 ⊂ F , therefore, F1 = F or F2 = F . Thus, F is a prime

element of (FMP (M),⊂, {1}, M).

Corollary 3 Suppose that F is a prime element of (FMP (M),⊂, {1}, M), and x, y ∈ M . If

[x)∧̄[y) ⊂ F , then x ∈ F or y ∈ F .
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