k-Torsionfree Modules with Respect to Cotilting Modules

ZHAO Zhi Bing, DU Xian Neng (School of Mathematics and Computational Science, Anhui University, Anhui 230039, China) (E-mail: zbzhao066930@163.com)

Abstract Let Λ and Γ be left and right Noetherian rings and $_{\Lambda}\omega_{\Gamma}$ a cotilting bimodule. A necessary and sufficient condition for a finitely generated Λ -module to be ω -k-torsionfree is given and the extension closure of T_{ω}^{i} is discussed. As applications, we give some results of $_{\Lambda}\omega_{\Gamma}$ related to $l.\mathrm{id}(\omega) \leq k$.

Keywords cotilting bimodules; ω -k-torsionfree modules.

Document code A MR(2000) Subject Classification 16E05; 16E10; 16E30 Chinese Library Classification O153.3

1. Introduction

Throughout this paper Λ is a left Noetherian ring and Γ is a right Noetherian ring. Denote by mod Λ (resp. mod $\Lambda^{(op)}$) the category of finitely generated left (resp. right) Λ -modules.

Cotilting (bi)modules and homologically finite subcategories are very important research objects in representation theory of algebras, which play very important roles in studying the dual of $\text{mod}\Lambda$ and in determining the existence of almost split sequences in subcategories of $\text{mod}\Lambda$. The definition of cotilting (bi)modules on Noether algebra was given in [1] by Huang. And later he proved that the definition coincides with that given by Auslander in the case of Artin algebras.

In [1], Huang proved that: ' $^{\perp}\omega$ is functorically finite in mod Λ if $_{\Lambda}\omega_{\Gamma}$ is a cotilting bimodule', and gave equivalent conditions for finitely generated modules to be ω -torsionless or ω -reflexive. In fact, the notion of ω -k-torsionfree modules is a generalization of the notions of ω -torsionless modules and ω -reflexive modules, and we refer to [1] for the details. As the main result of this paper, we will generalize the results in [1] and give an equivalent condition that a finitely Λ -module is ω -k-torsionfree. Furthermore, as applications, the cotilting bimodule $_{\Lambda}\omega_{\Gamma}$ with $l.id(\omega) \leq k$ will be revisited and the extension closure of $T_{\omega}^{k}(\Lambda)$ will be considered.

2. Definitions and notations

In this section, we will recall some basic definitions and notations which will be used later.

Definition 2.1 Assume that $\mathfrak{C} \supset \mathfrak{D}$ are subcategories of mod Λ and $C \in \mathfrak{C}$, $D \in \text{add}\mathfrak{D}$,

Received date: 2006-12-07; Accepted date: 2007-10-30

ZHAO~Z~B~and~DU~X~N

where add \mathfrak{D} is the category of mod Λ consisting of all Λ -modules isomorphic to summand of finite sum of modules in \mathfrak{D} . The morphism $D \to C$ is said to be a right \mathfrak{D} -approximation of C if $\operatorname{Hom}_{\Lambda}(X,D) \to \operatorname{Hom}_{\Lambda}(X,C)$ is epimorphic for all $X \in \operatorname{add}\mathfrak{D}$. The subcategory \mathfrak{D} is said to be contravariantly finite in \mathfrak{C} if every C in \mathfrak{C} has a right \mathfrak{D} -approximation. Dually, the morphism $C \to D$ is said to be a left \mathfrak{D} -approximation of C if $\operatorname{Hom}_{\Lambda}(D,X) \to \operatorname{Hom}_{\Lambda}(C,X)$ is epimorphic for all $X \in \operatorname{add}\mathfrak{D}$. The subcategory \mathfrak{D} is said to be covariantly finite in \mathfrak{C} if every C in \mathfrak{C} has a left \mathfrak{D} -approximation. The subcategory \mathfrak{D} is said to be functorially finite in \mathfrak{C} if it is both contravariantly finite and covariantly finite in \mathfrak{C} . The notion of contravariantly finite subcategories, covariantly finite subcategories and functorially finite subcategories are referred to as homologically finite subcategories.

For a left Λ -module(resp. right Λ -module) A, use $l.id_{\Lambda}(A)$ (resp. $r.id_{\Lambda}(A)$) to denote left (resp. right) injective dimension of A.

Definition 2.2 Let $\omega \in \text{mod}\Lambda$. We call ω a selforthogonal module if $\text{Ext}_{\Lambda}^{i}(\omega,\omega) = 0$ for any $i \geq 1$. A selforthogonal module ω is called a cotilting module if $l.\text{id}_{\Lambda}(\omega) < \infty$ and the natural map $\Lambda \to \text{End}(\omega_{\text{End}(\Lambda\omega)})$ is an isomorphism. Similarly, we can define the notion of cotilting module in $\text{mod}\Gamma^{(op)}$. A (Λ, Γ) -bimodule $_{\Lambda}\omega_{\Gamma}$ is called a cotilting bimodule if $_{\Lambda}\omega$ and ω_{Γ} are cotilting modules and the natural maps $\Gamma^{(op)} \to \text{End}(_{\Lambda}\omega)$ and $\Lambda \to \text{End}(\omega_{\Gamma})$ are isomorphisms.

For any $A \in \text{mod}\Lambda$ (resp. $\text{mod}\Gamma^{(op)}$), we use $\text{add}_{\Lambda}A$ (resp. $\text{add}A_{\Gamma}$) to denote the full subcategory of $\text{mod}\Lambda$ (resp. $\text{mod}\Gamma^{(op)}$) consisting of all modules isomorphic to direct summands of finite direct sums of copies of ${}_{\Lambda}A$ (resp. A_{Γ}). Suppose that ${}_{\Lambda}\omega_{\Gamma}$ is a (Λ, Γ) -bimodule, we put $(-)^{\omega} = \text{Hom}(-, \omega)$. Let $\sigma_A : A \to A^{\omega\omega}$ via $\sigma_A(x)(f) = f(x)$ for any $x \in A$ and $f \in A^{\omega}$ be the canonical evaluation homomorphism. If σ_A is a monomorphism, then A is called an ω -torsionless module. If σ_A is an isomorphism, then A is called an ω -reflexive module.

Definition 2.3 Let $A \in \text{mod}\Lambda$ and $P_1 \to P_0 \xrightarrow{f} A \to 0$ be a projective resolution in mod Λ . Then we have the following exact sequence:

$$0 \to A^{\omega} \to P_0^{\omega} \xrightarrow{f^{\omega}} P_1^{\omega} \to \operatorname{Coker} f^{\omega} \to 0.$$

Set $\operatorname{Coker} f^{\omega} = Tr_{\omega} A$. A is called ω -k-torsionfree if $\operatorname{Ext}_{\Gamma}^{i}(Tr_{\omega} A, \omega) = 0$ for any $1 \leq i \leq k$. Denote by $T_{\omega}^{k}(\Lambda)$ the full subcategory of $\operatorname{mod} \Lambda$ consisting of all ω -k-torsionfree modules.

Remark If Λ is a two sided Noetherian ring and $\Lambda \omega_{\Gamma} =_{\Lambda} \Lambda_{\Lambda}$, then the notion of Definition 2.3 is just k-torsionfree modules, and we use $T^k(\Lambda)$ to denote the full subcategory of mod Λ consisting of all k-torsionfree modules. The rationality of the Definition 2.3 is proved in [3].

Let $\omega \in \operatorname{mod}\Lambda$ be a selforthogonal module and $X \in \operatorname{mod}\Lambda$. X is said to be left orthogonal with ω if $\operatorname{Ext}_{\Lambda}^{i}(X,\omega) = 0$ for any $i \geq 1$. We use $^{\perp}\omega$ to denote the subcategory of $\operatorname{mod}\Lambda$ consisting of the modules which are left orthogonal with ω .

3. The main results

In the following, we assume that ω is a (Λ, Γ) -cotilting bimodule.

Lemma 3.1 (Lemma 2.1 in [4]) Let $A \in \text{mod}\Lambda$. Then we have the following exact sequence:

$$0 \to \operatorname{Ext}^1_{\Gamma}(Tr_{\omega}A, \omega) \to A \xrightarrow{\sigma_A} A^{\omega\omega} \to \operatorname{Ext}^2_{\Gamma}(Tr_{\omega}A, \omega) \to 0.$$

By Definition 2.3, we have

Corollary 3.2 Let $A \in \text{mod}\Lambda$. Then A is an ω -torsionless module if and only if A is an ω -1-torsionfree module, and A is an ω -reflexive module if and only if A is an ω -2-torsionfree module.

Remark For any $A \in {}^{\perp} \omega$ (where $A \in \operatorname{mod} \Lambda$), by the proof of Theorem 6.1 in [5], $A^{\omega} \in \operatorname{mod} \Gamma^{(op)}$ and $A^{\omega} \in {}^{\perp} \omega$. Let $P_1 \stackrel{f}{\longrightarrow} P_0 \to A \to 0$ be a projective resolution of A in $\operatorname{mod} \Lambda$. Then we have the following exact sequence:

$$0 \to A^{\omega} \to P_0^{\omega} \xrightarrow{f^{\omega}} P_1^{\omega} \to Tr_{\omega}A \to 0$$

such that for any $i \geq 1$, $\operatorname{Ext}^i_{\Gamma}(Tr_{\omega}A, \omega) \cong \operatorname{Ext}^{i+2}_{\Gamma}(A^{\omega}, \omega) = 0$. By Definition 2.3, A is an ω -k-torsionfree module for any $k \geq 1$.

Suppose that \mathfrak{D} is a subcategory of mod Λ . It is straightforward from Definition 2.1 to verify that if one of the right \mathfrak{D} -approximations of a module in mod Λ is epimorphic, then all of the right \mathfrak{D} -approximations of this module are epimorphic. Dually, if one of the left \mathfrak{D} -approximations of a module in mod Λ is monomorphic, then all of the left \mathfrak{D} -approximations of this module are monomorphic.

Lemma 3.3 (Theorem 1 in [1]) $\perp \omega$ is functorially finite in mod Λ .

In [1], Huang classified the modules in mod Λ by using the properties of monomorphic left $^{\perp}\omega$ -approximation and got the following result:

Theorem 3.4 Let $C \in \text{mod}\Lambda$. Then

- (1) C is ω -torsionless if and only if there is an exact sequence $0 \to C \xrightarrow{f} X$ such that $f: C \to X$ is a left $^{\perp}\omega$ -approximation of C (i.e., C has a monomorphic left $^{\perp}\omega$ -approximation).
- (2) C is ω -reflexive if and only if there is an exact sequence $0 \to C \xrightarrow{f_1} X_1 \xrightarrow{f_2} X_2$ such that $f_1: C \to X_1$ and $\operatorname{Im} f_2 \to X_2$ are left $^{\perp}\omega$ -approximation of C and $\operatorname{Im} f_2$, respectively.

We know that the notion of ω -k-torsionfree modules is generalizations of ω -torsionless modules and ω -reflexive modules. In fact, we can generalize the theorem above to the case for ω -k-torsionfree modules. The following is the main result of this paper.

Theorem 3.5 Let $C \in \text{mod}\Lambda$. Then C is an ω -k-torsionfree module if and only if there is an exact sequence

$$0 \to C \xrightarrow{f_1} X_1 \xrightarrow{f_2} X_2 \to \cdots \xrightarrow{f_k} X_k$$

such that $\operatorname{Im} f_i \to X_i$ is a left $\bot \omega$ -approximation of $\operatorname{Im} f_i$ for each $1 \le i \le k$.

Proof Proceed by induction on k. It is not difficult to verify the case for k = 1, 2 by Corollary 3.2 and Theorem 3.4. Now suppose $k \ge 3$.

(\Rightarrow) Suppose that C is an ω -k-torsionfree module. Then it is ω -torsionless and ω -reflexive clearly. By Corollary 3.2 and Theorem 3.4, there is an exact sequence $0 \to C \xrightarrow{f_1} X_1 \to N \to 0$

such that $f_1: 0 \to C \to X_1$ is a monomorphic left ${}^{\perp}\omega$ -approximation of C. We have an exact sequence $0 \to N^{\omega} \to X_1^{\omega} \xrightarrow{f_1^{\omega}} C^{\omega} \to 0$ by Definition 2.1.

By the remark above, $X_1^{\omega} \in \text{mod}\Gamma^{(op)}$ and $X_1^{\omega} \in {}^{\perp}\omega$ if $X_1 \in {}^{\perp}\omega$. So we have $\text{Ext}_{\Gamma}^i(N^{\omega}, \omega) \cong \text{Ext}_{\Gamma}^{i+1}(C^{\omega}, \omega)$ for any $i \geq 1$. Since C is an ω -k-torsionfree module, $\text{Ext}_{\Gamma}^i(Tr_{\omega}C, \omega) = 0$ for any $1 \leq i \leq k$ and hence $Ext_{\Gamma}^i(C^{\omega}, \omega) \cong \text{Ext}_{\Gamma}^{i+2}(Tr_{\omega}C, \omega) = 0$ for any $1 \leq i \leq k-2$, which results in

$$\operatorname{Ext}_{\Gamma}^{i+2}(Tr_{\omega}N,\omega) \cong \operatorname{Ext}_{\Gamma}^{i}(N^{\omega},\omega) \cong \operatorname{Ext}_{\Gamma}^{i+1}(Tr_{\omega}C,\omega) = 0, \ \forall 1 \leq i \leq k-3.$$

Now consider the following commutative diagram with exact rows:

$$0 \longrightarrow C \xrightarrow{f} X_1 \longrightarrow N \longrightarrow 0$$

$$\sigma_C \downarrow \qquad \sigma_{X_1} \downarrow \qquad \sigma_N \downarrow$$

$$0 \longrightarrow C^{\omega\omega} \longrightarrow X_1^{\omega\omega} \longrightarrow N^{\omega\omega} \longrightarrow 0$$

where σ_C, σ_{X_1} are isomorphism. Obviously, σ_N is an isomorphism. By Lemma 3.1, we have

$$\operatorname{Ext}_{\Gamma}^{1}(Tr_{\omega}N,\omega) = 0 = \operatorname{Ext}_{\Gamma}^{2}(Tr_{\omega}N,\omega).$$

So $\operatorname{Ext}_{\Gamma}^{i}(Tr_{\omega}N,\omega)=0$ for any $1\leq i\leq k-1$ and hence N is an ω -(k-1)-torsionfree module.

 (\Leftarrow) Suppose that there is an exact sequence

$$0 \to C \xrightarrow{f_1} X_1 \xrightarrow{f_2} X_2 \to \cdots \xrightarrow{f_k} X_k$$

such that $\operatorname{Im} f_i \to X_i$ is a left $^{\perp}\omega$ -approximation of $\operatorname{Im} f_i$ for each i. Put $N = \operatorname{Im} f_2$. Then we have the following exact sequence:

$$0 \to C \xrightarrow{f_1} X_1 \xrightarrow{f_2} N \to 0,$$

where N is an ω -(k-1)-torsionfree module. Thus N is ω -torsionless and $\operatorname{Ext}_{\Gamma}^{i}(N^{\omega},\omega) \cong \operatorname{Ext}_{\Gamma}^{i+2}(Tr_{\omega}N,\omega) = 0$ for any $1 \leq i \leq k-3$.

Now consider the following commutative diagram with exact rows:

$$0 \longrightarrow C \longrightarrow X_1 \xrightarrow{f_2} N \longrightarrow 0$$

$$\sigma_C \downarrow \qquad \sigma_{X_1} \downarrow \qquad \sigma_N \downarrow$$

$$0 \longrightarrow C^{\omega\omega} \longrightarrow X_1^{\omega\omega} \xrightarrow{f_2^{\omega\omega}} N^{\omega\omega}$$

Since σ_N and σ_{X_1} are isomorphism, which implies that σ_C is an isomorphism and $f_2^{\omega\omega}$ is epimorphic, we have C is an ω -torsionless module and $\operatorname{Ext}^1_{\Gamma}(C^{\omega},\omega)=0$. We have the exact sequence $0\to N^{\omega}\to X_1^{\omega}\to C^{\omega}\to 0$ by the definition of approximation. And we have $\operatorname{Ext}^i_{\Gamma}(C^{\omega},\omega)\cong\operatorname{Ext}^{i-1}_{\Gamma}(N^{\omega},\omega)=0$ for any $2\le i\le k-2$. Hence $\operatorname{Ext}^i_{\Gamma}(C^{\omega},\omega)=0$ for any $1\le i\le k-2$.

Let $P_1 \to P_0 \to C \to 0$ be a projective resolution of C in mod Λ . We have the exact sequence

$$0 \to C^{\omega} \to P_0^{\omega} \to P_1^{\omega} \to Tr_{\omega}C \to 0$$

where P_0 , P_1 are projective left Λ -modules. So $\operatorname{Ext}^i_{\Gamma}(Tr_{\omega}C,\omega) \cong \operatorname{Ext}^{i-2}_{\Gamma}(C^{\omega},\omega) = 0$ for any $3 \leq i \leq k$. Note that C is also ω -torsionless and ω -reflexive, and C is an ω -k-torsionfree module.

In the following, we will deal with the extension closure of $T_{\omega}^k(\Lambda)$ when ${}_{\Lambda}\omega_{\Gamma}$ is a cotilting bimodule.

Definition 3.6 A full subcategory χ of mod Λ is said to be extension closed if the middle term B of any short exact sequence $0 \to A \to B \to C \to 0$ is in χ provided that A and C are in χ . For extension closure of $T^i_{\omega}(\Lambda)$, we have:

Theorem 3.7 If $_{\Lambda}\omega_{\Gamma}$ is a cotilting bimodule, then $T_{\omega}^{i}(\Lambda)$ is extension closed for any $i \geq 1$.

Proof For i = 1, let $0 \to A \to B \to C \to 0$ be a short exact sequence with $A, C \in T^1_{\omega}(\Lambda)$. We claim that $B \in T^1_{\omega}(\Lambda)$.

In fact, $A, C \in T^1_\omega(\Lambda)$ if and only if there are exact sequences $0 \to A \xrightarrow{f_A} X_A$, $0 \to C \xrightarrow{f_C} X_C$ such that $f_A : A \to X_A$, $f_C : C \to X_C$ are monomorphic left $^\perp\omega$ -approximation of A and C by Theorem 3.4, respectively. Hence we have the following commutative diagram:

where $X_A, X_C \in {}^{\perp}\omega$, $X_A \bigoplus X_C \in {}^{\perp}\omega$. Put $\operatorname{Hom}(-, D) = (-)^D$ for any $D \in \operatorname{add}^{\perp}\omega$. Consider the following exact commutative diagram:

By 'Snake Lemma', $\operatorname{Coker} f_B^D = 0$. Hence $0 \to B \xrightarrow{f_B} X_A \bigoplus X_C$ is a monomorphic left ${}^{\perp}\omega$ -approximation of B. By Theorem 3.4, B is a ω -torsionless module, i.e., $B \in T_{\omega}^1(\Lambda)$.

For i = 2, similarly, by Theorem 3.4, there exist exact sequences

$$0 \to A \xrightarrow{f_1 A} X_{1A} \xrightarrow{f_{2A}} X_{2A},$$
$$0 \to C \xrightarrow{f_1 C} X_{1C} \xrightarrow{f_{2C}} X_{2C}$$

such that $f_{1A}: A \to X_{1A}$ and $\operatorname{Im} f_{2A} \to X_{2A}$ are left ${}^{\perp}\omega$ -approximation of A and $\operatorname{Im} f_{2A}$, respectively. At the same time, $f_{1C}: C \to X_{1C}$ and $\operatorname{Im} f_{2C} \to X_{2C}$ are left ${}^{\perp}\omega$ -approximation of C and $\operatorname{Im} f_{2C}$, respectively.

Similarly to the proof of the case i=1, we get $0\to B\xrightarrow{f_{1B}} X_{1A}\bigoplus X_{1C}$ is a left $\bot\omega$ -

approximation of B. Consider the following exact commutative diagram:

$$0 \longrightarrow \operatorname{Im} f_{1A} \longrightarrow \operatorname{Im} f_{1A} \bigoplus \operatorname{Im} f_{1C} \longrightarrow \operatorname{Im} f_{1C} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow X_{2A} \longrightarrow X_{2A} \bigoplus X_{2C} \longrightarrow X_{2C} \longrightarrow 0$$

By the process of proof of the case for i=1, $\operatorname{Im} f_{1A} \bigoplus \operatorname{Im} f_{1C} \xrightarrow{f_{2B}} X_{2A} \bigoplus X_{2C}$ is a left ${}^{\perp}\omega$ -approximation of $\operatorname{Im} f_{1A} \bigoplus \operatorname{Im} f_{1C}$.

Therefore, we have an exact sequence:

$$0 \to B \xrightarrow{f_{1B}} X_{1A} \bigoplus X_{1C} \xrightarrow{f_{2B}} X_{2A} \bigoplus X_{2C}$$

such that $f_{1B}: B \to X_{1A} \bigoplus X_{1C}$, $\operatorname{Im} f_{1A} \bigoplus \operatorname{Im} f_{1C} \cong (\operatorname{Im} f_{2B}) \to X_{2A} \bigoplus X_{2C}$ are left $^{\perp}\omega$ -approximation of B and $\operatorname{Im} f_{2B}$, respectively. It follows from Theorem 3.4 that B is an ω -reflexive module, i.e., $B \in T^2_{\omega}(\Lambda)$.

Our conclusion follows from repeating the process of the above proof and Theorem 3.5. In the following, we discuss the case for $l.id(\omega) \leq k$.

Definition 3.8 Let $A \in \text{mod}\Lambda$ and k be a positive integer. We call A an ω -k-syzygy module if there is an exact sequence $0 \to A \to X_0 \to X_1 \to \cdots \xrightarrow{f_{k-1}} X_{k-1}$ with all $X_i \in \text{add}_{\Lambda}\omega$ for any $0 \le i \le k-1$. Where $\text{add}_{\Lambda}\omega$ denotes the full subcategory of $\text{mod}\Lambda$ consisting of all modules isomorphic to the direct summands of finite direct sums of copies of $_{\Lambda}\omega$. Furthermore, we call $\text{Coker} f_{k-1}$ an ω -k-cosyzygy module. We use $\Omega^k(\Lambda)$ and $\Omega^{-k}(\Lambda)$ to denote the full subcategory of $\text{mod}\Lambda$ consisting of all ω -k-syzygy modules and ω -k-cosyzygy modules, respectively.

Remark If Λ is a two sided noetherian ring and $\Lambda \omega_{\Gamma} =_{\Lambda} \Lambda_{\Lambda}$, then Definition 3.8 is just k-zysygy modules. We use $\Omega^k(\Lambda)$ to denote the full subcategory of mod Λ consisting of all k-syzygy modules. In [3], Huang proved that every ω -k-torsionfree module is an ω -k-syzygy module, i.e., $T_{\omega}^k(\Lambda) \subseteq \Omega_{\omega}^k(\Lambda)$. When $T_{\omega}^k(\Lambda) = \Omega_{\omega}^k(\Lambda)$? We will give a sufficient condition for this question.

Lemma 3.9 If $l.id(\omega) \leq k$, then $^{\perp}\omega = \Omega^k_{\omega}(\Lambda)$.

Proof Suppose that $C \in \Omega_{\omega}^k$. By Definition 3.8, there is an exact sequence

$$0 \to C \to X_0 \to X_1 \to \cdots \xrightarrow{f_{k-1}} X_{k-1} \to \operatorname{Coker} f_{k-1} \to 0$$

with all $X_i \in \operatorname{add}_{\Lambda}\omega$. Since $l.\operatorname{id}(\omega) \leq k$, $\operatorname{Ext}_{\Lambda}^i(C,\omega) \cong \operatorname{Ext}_{\Lambda}^{i+k}(\operatorname{Coker} f_{k-1},\omega) = 0$ for any $i \geq 1$ and hence $C \in {}^{\perp}\omega$.

On the other hand, let $C \in^{\perp} \omega$ and

$$\cdots \to P_t \to \cdots \to P_1 \to P_0 \to C^\omega \to 0$$

be a projective resolution of C^{ω} in $\operatorname{mod}\Gamma^{(op)}$. By Theorem 6.1 in [5], $\operatorname{Ext}_{\Gamma}^{i}(C^{\omega},\omega)=0$ for any

 $i \geq 1$. And $C \cong C^{\omega\omega}$ (i.e., C is an ω -reflexive module) by aforementioned remark. Hence we have the following exact sequence:

$$0 \to C \cong C^{\omega\omega} \to P_0^{\omega} \to P_1^{\omega} \to \cdots \to P_t^{\omega} \to \cdots$$

where all $P_i^{\omega} \in \operatorname{add}_{\Lambda} \omega$. Hence $C \in \Omega_{\omega}^k$.

The following corollary is an immediate consequence of Lemmas 3.3 and 3.9.

Corollary 3.10 If $_{\Lambda}\omega_{\Gamma}$ is a cotilting bimodule and $l.id(\omega) \leq k$, then $\Omega_{\omega}^{k}(\Lambda)$ is functorially finite in mod Λ .

Corollary 3.11 If $_{\Lambda}\omega_{\Gamma}$ is a cotilting bimodule and $l.id(\omega) \leq k$, then $T_{\omega}^{k}(\Lambda) = \Omega_{\omega}^{k}(\Lambda)$.

Proof First, the author proved that $T_{\omega}^k \subseteq \Omega_{\omega}^k(\Lambda)$ in [3]. On the other hand, we have ${}^{\perp}\omega = \Omega_{\omega}^k(\Lambda)$ by Lemma 3.9. For any $C \in \Omega_{\omega}^k(\Lambda)$, there is an exact sequence $0 \to C \to C \to 0 \to \cdots \to 0$ which satisfies the condition in Theorem 3.5. Hence $C \in T_{\omega}^k(\Lambda)$.

Let $_{\Lambda}\omega_{\Gamma} = _{\Lambda}\Lambda_{\Lambda}$. We have:

Corollary 3.12 If $_{\Lambda}\Lambda_{\Lambda}$ is a cotilting bimodule and $l.id(\Lambda) \leq k$, then $T^k(\Lambda) = \Omega^k(\Lambda)$.

For extension closure of $T_{\omega}^{k}(\Lambda)$, we have

Theorem 3.13 If ${}^{\perp}\omega = \Omega^k_{\omega}(\Lambda)$, then $T^k_{\omega}(\Lambda)$ is extension closed.

Proof Suppose that $0 \to A \xrightarrow{f} B \to C \to 0$ is a short exact sequence in mod Λ with $A, C \in T_{\omega}^{k}(\Lambda)$. We claim that $B \in T_{\omega}^{k}(\Lambda)$. Consider the following commutative diagram with first two rows splitting:

where all P_i and G_i are projective. Then we get the following exact commutative diagram:

ZHAO~Z~B~and~DU~X~N

which leads to the following exact sequence:

$$0 \to C^{\omega} \to B^{\omega} \xrightarrow{f^{\omega}} A^{\omega} \to Z \to Y \to X \to 0.$$

Because $C \in T_{\omega}^k(\Lambda)$, $C \in \Omega^k(\Lambda)$ and $C \in \omega$ by assumption. We have $\operatorname{Ext}_{\Lambda}^1(C,\omega) = 0$ and f^{ω} is epimorphic. So there is an exact sequence $0 \to Z \to Y \to X \to 0$. Since $A, C \in T_{\omega}^k$, $\operatorname{Ext}_{\Gamma}^i(X,\omega) = 0 = \operatorname{Ext}_{\Gamma}^i(Z,\omega)$ for any $1 \le i \le k$. So we have $\operatorname{Ext}_{\Gamma}^i(Y,\omega) = 0$ for any $1 \le i \le k$. By the long exact sequence theorem, we have B is an ω -k-torsionfree module.

The following conclusion is immediate from Lemma 3.9 and Theorem 3.13.

Corollary 3.14 (Corollary 4.1 in [6]) If $_{\Lambda}\omega_{\Gamma}$ is a cotilting bimodule and $l.id(\omega) \leq k$, then $T_{\omega}^{k}(\Lambda)$ is extension closed.

References

- HUANG Zhaoyong. Selforthogonal modules with finite injective dimension [J]. Sci. China Ser. A, 2000, 43(11): 1174–1181.
- [2] AUSLANDER M, SMALøS O. Preprojective modules over Artin algebras [J]. J. Algebra, 1980, 66(1): 61–122.
- [3] HUANG Zhaoyong. ω -k-torsionfree modules and ω -left approximation dimension [J]. Sci. China Ser. A, 2001, 44(2): 184–192.
- [4] HUANG Zhaoyong, TANG Gaohua. Self-orthogonal modules over coherent rings [J]. J. Pure Appl. Algebra, 2001, 161(1-2): 167–176.
- [5] MIYASHITA Y. Tilting modules of finite projective dimension [J]. Math. Z., 1986, 193(1): 113-146.
- [6] HUANG Zhaoyong. Extension closure of relative syzygy modules [J]. Sci. China Ser. A, 2003, 46(5): 611–620.