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1. Introduction

Quantum group or quantum enveloping algebra Uq(g) is a one-parameter deformation of the

universal enveloping algebra U(g) of a semisimple finite dimensional Lie algebra g, introduced

by Drinfeld[1,2], Jimbo[3] and Kulish-Reshetikhin[4] in their study of the quantum Yang-Baxter

equation. The simplest and most important example is the Drinfeld-Jimbo quantum group

Uq(sl(2)), which will be investigated in this paper.

Let k be an algebraically closed field with characteristic 0, and q ∈ k∗ = k\0 be not a

root of unitary. We write H = Uq(sl(2)), which is an associative algebra generated by variables

E, F, K, K−1 with relations KK−1 = K−1K = 1, KEK−1 = q2E, KFK−1 = q−2F , [E, F ] =
K−K−1

q−q−1 . The following relations endow H with a Hopf algebra structure.

∆(K) = K ⊗ K, S(K) = K−1, ε(K) = ε(K−1) = 1;

∆(E) = E ⊗ K + 1 ⊗ E, S(E) = −EK−1, ε(E) = 0;

∆(F ) = F ⊗ 1 + K−1 ⊗ F, S(F ) = −KF, ε(F ) = 0.

Let V be a left H-module and λ ∈ k∗. An element v 6= 0 of V is a highest weight vector of

weight λ if Ev = 0 and if Kv = λv. V is a highest weight module of highest weight λ if it is

generated by a highest weight vector of weight λ. Now it is well known that: (1) Any simple
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finite dimensional H-module is generated by a highest weight vector; (2) Two finite dimensional

H-modules generated by highest weight vectors of the same weight are isomorphic; (3) Any finite

dimensional H-module is semisimple. Let V (n) denote the unique (n + 1)-dimensional simple

H-module generated by a highest weight vector of weight qn. It is known that the tensor product

of two finite dimensional H-modules can be decomposed into the direct sum of simple modules.

By the distributivity of the tensor product with respect to direct sums, it is enough to decompose

V (n) ⊗ V (m) into the sum of simple modules in order to decompose the tensor product of any

two finite dimensional modules into the sum of simple modules. Thanks to quantum Clebsch-

Gordan formula, V (n) ⊗ V (m) is isomorphic to ⊕m
i=0V (n + m − 2i) as left H-module, where n

and m are nonnegative integers with n > m. For the enveloping algebra U(sl(2)) of sl(2), we

have the similar results. The main aim of the present paper is to determine all coefficients in the

decomposition of V (1)⊗n.

We organize this paper as follows. In Section 2, we prove the main theorem concerning the

standard basis of an associative algebra. This is stated in Theorem 2.1 which generalizes the

property of Grothendieck algebra of Uq(sl(2)). The notion of Grothendieck algebra is recalled in

Section 4. It is interesting to us that Theorem 2.1 provides the foundation of the whole paper.

The role of Section 3 is a preparation for determining the coefficients in the decomposition of

V (1)⊗n. Two important combinatorial formulae are obtained in this section. Main results appear

in Section 4. Together with the results in previous sections and the property of Grothendieck

algebra of Uq(sl(2)), we obtain the unified proof of quantum Clebsch-Gordan formula and Clebsch-

Gordan formula, and the explicit formula of the decomposition of V (1)⊗n into the direct sum of

simple modules. In addition, we prove the commutativity of tensor product of two H-modules

without using the braided condition of H .

In this paper, tensor product will be over k. We refer the reader to [5,6] for basic results

about Hopf algebras, and to [7, 8] for basic results about Uq(sl(2)) and U(sl(2)).

2. Standard bases of polynomial algebras

In this section, we prove some basic results. The proofs are very elementary, but the results

are exciting.

Theorem 2.1 Let A be any associative algebra, {e0, e1, . . . , en, . . .} be a set of linearly inde-

pendent elements in A satisfying

e0e0 = e0, ene1 = e1en = en+1 + en−1,

where n ∈ N, e−1 = 0. Then we have

(1) If n > m, then

emen = enem =

m
∑

i=0

en+m−2i .

(2) As algebras k[e1] ∼= k[x], where k[x] is the polynomial algebra over k in one variable x

and k[e1] is the subalgebra of A generated by e1.
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Proof (1) We use induction on both m and n. Firstly, we show that e0en = ene0 = en for

all n ∈ N. It is easy to see that the result holds when n = 0, 1. Now suppose n > 1 and

that ete0 = et for all t 6 n − 1. On the one hand, en−1e1 = en + en−2. On the other hand,

en−1e1 = (en−1e1)e0 = (en + en−2)e0 = ene0 + en−2, so ene0 = en. In a similar way, we have

e0en = en. Thus e0en = ene0 = en for all n ∈ N.

Secondly, suppose m > 0 and that the following holds for all t 6 m − 1,

eten = enet =

t
∑

i=0

en+t−2i.

When n > m, we consider (enem−1)e1. On the one hand, we have

(enem−1)e1 = en(em−1e1) = en(em + em−2) = enem + enem−2

= enem +

m−2
∑

i=0

en+m−2i−2 = enem + en+m−2 + · · · + en−(m−2).

On the other hand, we get

(enem−1)e1 =
(

m−1
∑

i=0

en+m−1−2i

)

e1 = en+m + 2

m−1
∑

i=1

en+m−2i + en−m.

Comparing the above two identities, we have

enem =

m
∑

i=0

en+m−2i.

Similarly, from the equation e1(em−1en) = (e1em−1)en, one obtains

emen =

m
∑

i=0

en+m−2i.

This shows Part (1).

(2) From Part (1), one can show by induction that e0, e1, e
2
1, . . . , e

n
1 , . . . can be written as

linear combinations of e0, e1, . . . , en, . . .. On the other hand, using induction on n, it is easy

to see that e0, e1, . . . , en, . . . can also be written as linear combinations of e0, e1, e
2
1, . . . , e

n
1 , . . . .

Thus e0, e1, e
2
1, . . . , e

n
1 , . . . are linearly independent. It follows that subalgebra k[e1] generated by

e1 is isomorphic to the polynomial algebra k[x]. 2

Definition 2.2 Let {e0, e1, . . . , en, . . .} be a basis of an associative algebra A. It is called a

standard basis of A if it satisfies eiej =
∑

s6i+j ases with as ∈ N.

By Definition 2.2, {1, x, x2, . . . , xn, . . .} is clearly a standard basis for k[x]. In addition, if we

take a basis {e0, e1, . . . , en, . . .} of A as stated in Theorem 2.1, then {e0, e1, . . . , en, . . .} is the

standard basis of A. The following theorem shows that there is a standard basis in k[x] satisfying

Theorem 2.1(1).

Theorem 2.3 Let k[x] be a polynomial algebra over k. Then there is a standard basis
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{e0, e1, . . . , en, . . .} satisfying

emen = enem =
m

∑

i=0

en+m−2i

for all n > m > 0.

Proof By Theorem 2.1, it suffices to find a basis {e0, e1, . . . , en, . . .} satisfying

e0e0 = 1, e1en = ene1 = en+1 + en−1,

for all n ∈ N. Using induction on n, we take e0 = 1, e1 = x, e2 = x2 − 1 = e2
1 − e0. Obviously,

they satisfy e1en = ene1 = en+1 + en−1, for all n 6 1. Suppose that we have obtained et which

is a monic polynomial of e1 of degree t and satisfies e1et−1 = et−1e1 = et + et−2 for all t 6 n− 1.

Then we take en = en−1e1 − en−2. By induction, en is a monic polynomial of e1 of degree

n. Following the construction and Theorem 2.1(2), {e0, e1, . . . , en, . . .} is a basis for k[x]. This

completes the proof. 2

Proposition 2.4 Let k[x] be a polynomial algebra over k. Then
{

∑⌊n

2
⌋

i=0 (−1)i
(

n−i

i

)

xn−2i |n ∈

N

}

is exactly the standard basis constructed in Theorem 2.3, where ⌊n
2 ⌋ is the largest integer

which does not exceed n
2 .

Proof Let {en} be the standard basis in k[x] as constructed in the proof of Theorem 2.3. Then

it is easy to see that

en =

⌊n

2 ⌋
∑

i=0

(−1)iT i
nxn−2i for some T i

n ∈ N.

When n = 2k, k ∈ N, we have

ene1 − en−1 = e2ke1 − e2k−1

=

⌊ 2k

2 ⌋
∑

i=0

(−1)iT i
2kx2k−2i · x −

⌊ 2k−1

2 ⌋
∑

i=0

(−1)iT i
2k−1x

2k−2i−1

=

k
∑

i=0

(−1)iT i
2kx2k−2i+1 +

k−1
∑

i=0

(−1)i+1T i
2k−1x

2k−2i−1

=

k
∑

i=0

(−1)iT i
2kx2k−2i+1 +

(

0 +

k−1
∑

i=0

(−1)i+1T i
2k−1x

2k−2i−1
)

=

k
∑

i=0

(−1)iT i
2kx2k−2i+1 +

k
∑

i=0

(−1)iT i−1
2k−1x

2k−2i+1

=
k

∑

i=0

(−1)i
(

T i
2k + T i−1

2k−1

)

x2k−2i+1

=

⌊n+1

2 ⌋
∑

i=0

(−1)i
(

T i
n + T i−1

n−1

)

xn+1−2i,

where T−1
2k−1 = 0.
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When n = 2k − 1, k ∈ N, a similar argument shows that

ene1 − en−1 =

⌊n+1

2 ⌋
∑

i=0

(−1)i
(

T i
n + T i−1

n−1

)

xn+1−2i,

where T−1
2k−2 = 0 and T k

2k−1 = 0.

Using the fact that en+1 = ene1 − en−1, we have

⌊n+1

2 ⌋
∑

i=0

(−1)iT i
n+1x

n+1−2i =

⌊n+1

2 ⌋
∑

i=0

(−1)i
(

T i
n + T i−1

n−1

)

xn+1−2i.

for all n ∈ N. Comparing the coefficients, we can obtain T i
n+1 = T i

n + T i−1
n−1, where 0 6 i 6

⌊

n+1
2

⌋

, T−1
n−1 = 0, and T

⌊n+1

2 ⌋
n = 0 when n is odd.

We claim that

T i
n =

1

i!

2i−1
∏

s=i

(n − s) =
(n − i)!

i!(n − 2i)!
=

(

n − i

i

)

,

where 0 6 i 6
⌊

n
2

⌋

.

We will prove the above assertion by induction on n. It is obvious that the assertion is true

for n = 0, 1. We suppose m > 1 and that the assertion is true for all i, n ∈ N with 0 6 n 6 m

and 0 6 i 6
⌊

n
2

⌋

. Now we consider all i ∈ N with 0 6 i 6
⌊

m+1
2

⌋

. If i = 0, then T 0
m+1 =

T 0
m + T−1

m−1 = T 0
m =

(

m
0

)

=
(

m+1
0

)

. Now suppose 1 6 i 6
⌊

m+1
2

⌋

. If i >
⌊

m
2

⌋

, then m is odd and

i =
⌊

m+1
2

⌋

= m+1
2 , and consequently T i

m+1 = T i
m + T i−1

m−1 = T i−1
m−1 =

(

m−i

i−1

)

= 1 =
(

m+1−i

i

)

. If

1 6 i 6
⌊

m
2

⌋

, then

T i
m+1 = T i

m + T i−1
m−1 =

(

m − i

i

)

+

(

m − i

i − 1

)

=

(

m + 1 − i

i

)

.

This completes the proof. 2

3. Two combinatorial formulae

Following Theorem 2.1, we obtain two important combinatorial formulae which will be used

in Section 4. Taking {en|n ∈ N} as in Theorem 2.1, one can get the following two equations for

all n ∈ N:

e2n
1 =

n
∑

i=0

Ai
ne2n−2i, for all n > 1, (3.1)

e2n+1
1 =

n
∑

i=0

Bi
ne2n+1−2i, for all n > 0, (3.2)

where Ai
n, Bi

n ∈ N,

Proposition 3.1 Let Ai
n and Bi

n be given as the above, where i, n ∈ N with 0 6 i 6 n. Put

A0
0 = 1 and Ai

n = Bi
n = 0 when i < 0 or i > n. Then we have

(1) The following relations are satisfied

Ai
n = Bi−1

n−1 + Bi
n−1, 0 6 i 6 n,
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Ai
n = Ai−2

n−1 + 2Ai−1
n−1 + Ai

n−1, 0 6 i 6 n − 1,

An
n = An−2

n−1 + An−1
n−1.

(2) The following relations are satisfied

Bi
n = Ai−1

n + Ai
n, 0 6 i 6 n,

Bi
n = Bi−2

n−1 + 2Bi−1
n−1 + Bi

n−1, 0 6 i 6 n.

Proof Let n > 1. Then by Eq.(3.2), we have

e2n
1 = e2n−1

1 e1 =
(

n−1
∑

i=0

Bi
n−1e2n−2i−1

)

e1

=

n−1
∑

i=0

Bi
n−1(e2n−2i + e2n−2i−2)

=
(

n−1
∑

i=0

Bi
n−1e2n−2i + 0

)

+
(

0 +

n−1
∑

i=0

Bi
n−1e2n−2i−2

)

=

n
∑

i=0

Bi
n−1e2n−2i +

n
∑

i=0

Bi−1
n−1e2n−2i

=

n
∑

i=0

(

Bi−1
n−1 + Bi

n−1

)

e2n−2i.

So Ai
n = Bi−1

n−1 + Bi
n−1. If n = 0, then clearly B0

0 = 1 = A−1
0 + A0

0. Now let n > 1. Then by

Eq.(3.1), we have

e2n+1
1 = e2n

1 e1 =
(

n
∑

i=0

Ai
ne2n−2i

)

e1

=

n
∑

i=0

Ai
n(e2n−2i+1 + e2n−2i−1)

=

n
∑

i=0

Ai
ne2n−2i+1 +

n
∑

i=0

Ai−1
n e2n−2i+1

=
n

∑

i=0

(

Ai−1
n + Ai

n

)

e2n−2i+1.

So Bi
n = Ai−1

n + Ai
n.

Thus we have shown the first equation in Part (1) and the first equation in Part (2). Now

the other equations can be obtained by the above two equations. 2

Proposition 3.2 Let Ai
n and Bi

n be given as in Proposition 3.1. Then the following two

equations are satisfied

22n =

n
∑

i=0

(2n − 2i + 1)Ai
n, 22n =

n
∑

i=0

(n − i + 1)Bi
n.
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Proof We use induction on n. By Eq.(3.2), it is easy to check that the second equation holds

for n = 0, 1. Now let n > 1 and suppose

22n =

n
∑

i=0

(n − i + 1)Bi
n.

Then from Part (2) of Proposition 3.1, we have

n+1
∑

i=0

[(n + 1) − i + 1]Bi
n+1 =

n+1
∑

i=0

(n − i + 2)(Bi−2
n + 2Bi−1

n + Bi
n)

=

n+1
∑

i=0

[(n − i) + (2n − 2i + 2) + (n − i + 2)]Bi
n

=
n

∑

i=0

(4n − 4i + 4)Bi
n

= 22
n

∑

i=0

(n − i + 1)Bi
n

= 22 · 22n = 22(n+1).

So the second equation holds.

By the second equation and Part (2) of Proposition 3.1, we have

22n =

n
∑

i=0

(n − i + 1)Bi
n

=

n
∑

i=0

(n − i + 1)(Ai−1
n + Ai

n)

=

n
∑

i=1

(n − i + 1)Ai−1
n +

n
∑

i=0

(n − i + 1)Ai
n

=

n−1
∑

i=0

(n − i)Ai
n +

n−1
∑

i=0

(n − i + 1)Ai
n + An

n

=

n−1
∑

i=0

(2n − 2i + 1)Ai
n + An

n

=

n
∑

i=0

(2n − 2i + 1)Ai
n.

So the first identity holds. 2

Theorem 3.3 For all natural numbers i, n with 0 6 i 6 n, we have

Ai
n =

(

2n

i

)

2n− 2i + 1

2n − i + 1
. (3.3)

Proof For the case of n = 0, it is obvious. Now suppose n > 1. From Eq.(3.1) and Ai
n = Ai−2

n−1+

2Ai−1
n−1 + Ai

n−1 in Part (1) of Proposition 3.1, we can obtain A0
n = A0

n−1 = · · · = A0
1 = A0

0 = 1
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and

A1
n = 2

n−1
∑

j=1

A0
j + A1

1 = 2(n − 1) + 1 = 2n − 1.

Thus the Eq.(3.3) holds for all n ∈ N and i = 0, 1. Suppose that Eq.(3.3) holds for all i, n with

1 6 i 6 n. Now let 2 6 i 6 n + 1. Then

Ai
n+1 = Ai−2

n + 2Ai−1
n + Ai

n

=

(

2n

i − 2

)

2n− 2i + 5

2n − i + 3
+ 2

(

2n

i − 1

)

2n − 2i + 3

2n − i + 2
+

(

2n

i

)

2n − 2i + 1

2n − i + 1

=
(2n + 2)!(2n − 2i + 3)

(2n − i + 2)!i!(2n− i + 3)

=
(2(n + 1))![2(n + 1) − 2i + 1]

[2(n + 1) − i]!i![2(n + 1) − i + 1]

=

(

2(n + 1)

i

)

2(n + 1) − 2i + 1

2(n + 1) − i + 1
.

This completes the proof. 2

By relation Bi
n = Ai−1

n + Ai
n in Proposition 3.1 and Theorem 3.3, we have the following

result.

Corollary 3.4 For all i, n with 0 6 i 6 n, we have

Bi
n =

(

2n + 1

i

)

2n − 2i + 2

2n − i + 2
.

4. Clebsch-Gordan formula

Let (H, m, u, ∆, ǫ) be a bialgebra over a field k. For a finite dimensional left H-module M , let

(M) denote the isomorphic class containing M . Let M(H) denote the set of isomorphic classes of

all finite dimensional left H-modules. Let F(H) = {
∑u

i=1 ni(Mi)|u ∈ N, ni ∈ Z, (Mi) ∈ M(H)}

be the free abelian group on symbols (Mi), and F0(H) be the subgroup of F(H) generated

by all expressions (M2) − (M1) − (M3), where 0 → M1 → M2 → M3 → 0 is a short exact

sequence of finite dimensional left H-modules. We call G(H) = F(H)/F0(H) the Grothendieck

group of H . For each finite dimensional left H-module M , we write [M ] = (M) +F0(H) for the

images in G(H) of (M). Observe that G(H) is a ring with addition [Mi] + [Mj] = [Mi ⊕Mj] and

multiplication [Mi][Mj ] = [Mi⊗Mj]. Then we can get an associative algebra G(H)k by extending

the scalars, which has a basis X = {[X ] |X is a simple finite dimensional left H-module}. We

refer the reader to [9] for more information about Grothendieck group.

Let H be a bialgebra. We write [k] = f0, where k is the trivial left H-module, i.e., h ·1 = ǫ(h)

for all h ∈ H . Suppose there is an injective ϕ : N → X , ϕ(n) = [Xn] = fn. In particular,

ϕ(0) = [k] = [X0] = f0.

Theorem 4.1 Let H be a bialgebra. Assume that any finite dimensional left H-module is

semisimple. Suppose that f0f0 = f0, f1fn = fnf1 = fn+1 + fn−1 for all n > 0, where fn ∈ G(H)
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are given as before and f−1 = 0. Then

Xm ⊗ Xn
∼= Xn ⊗ Xm

∼= ⊕m
i=0Xn+m−2i

for all n > m > 0.

Proof By Theorem 2.1, fmfn = fnfm =
∑m

i=0 fn+m−2i , for all n > m. That is,

[Xm][Xn] = [Xn][Xm] =

m
∑

i=0

[Xn+m−2i],

i.e.,

[Xm ⊗ Xn] = [Xn ⊗ Xm] = [⊕m
i=0Xn+m−2i].

From the fact that every finite dimensional left H-module is semisimple, there exists a positive

integer s and simple modules Xj (j = 1, . . . , s) such that

Xm ⊗ Xn
∼= ⊕s

j=1αjXj , ⊕m
i=0Xn+m−2i

∼= ⊕s
j=1βjXj ,

where αj and βj are non-negative integers. So we have

s
∑

j=1

αj [Xj] =
s

∑

j=1

βj [Xj ].

where [Xj ] (j = 1, . . . , s) are elements in X , which implies that αj = βj (j = 1, . . . , s). Thus

Xm ⊗ Xn
∼= ⊕m

i=0Xn+m−2i.

Similarly, we have Xn ⊗ Xm
∼= ⊕m

i=0Xn+m−2i. 2

In the rest of this section, let H = Uq((2)) or U((2)). From the discussion in the introduction,

there is a unique simple module V (n) of dimension n + 1 for every n ∈ N.

Proposition 4.2 There are H-module isomorphisms

V (0) ⊗ V (0) ∼= V (0), V (1) ⊗ V (n) ∼= V (n) ⊗ V (1) ∼= V (n + 1) ⊕ V (n − 1),

where n > 0 and V (−1) = 0.

Proof We only consider the case H = Uq(sl(2)). Obviously, V (0) ⊗ V (0) ∼= V (0) and V (1) ⊗

V (0) ∼= V (0) ⊗ V (1) ∼= V (1) ∼= V (0 + 1) ⊕ V (0 − 1), where V (−1) = 0. For any n > 1, let

v(n) ∈ V (n) be a highest weight vector of weight qn, and v
(n)
p = 1

[p]!F
pv(n), where p = 0, 1. We

define

vn+1−2p =

p
∑

i=0

(−1)i [1 − p + i]![n − i]!

[1 − p]![n]!
q−i(2−2p+i)v

(n)
i ⊗ v

(1)
p−i.

It is easy to see that v
(n)
i ⊗ v

(1)
p−i is a weight vector of weight qn−2i+1−2(p−i) = qn+1−2p. From

the fact that △(E) = 1 ⊗ E + E ⊗ K, we have

Evn+1−2p =

p
∑

i=0

(−1)i [1 − p + i]![n − i]!

[1 − p]![n]!
q−i(2−2p+i)v

(n)
i ⊗ Ev

(1)
p−i+



200 DONG J C, LI L B and CHEN H X

p
∑

i=0

(−1)i [1 − p + i]![n − i]!

[1 − p]![n]!
q−i(2−2p+i)Ev

(n)
i ⊗ Kv

(1)
p−i

=

p
∑

i=0

(−1)i[2 − p + i]
[1 − p + i]![n − i]!

[1 − p]![n]!
q−i(2−2p+i)v

(n)
i ⊗ v

(1)
p−i−1+

p
∑

i=0

(−1)i[n − i + 1]
[1 − p + i]![n − i]!

[1 − p]![n]!
q−i(2−2p+i)+(1−2p+2i)v

(n)
i−1 ⊗ v

(1)
p−i

=

p
∑

i=0

(−1)i
( [1 − p + i]![n − i + 1]!

[1 − p]![n]!
q−(i−1)(1−2p+i) −

[1 − p + i]![n − i + 1]!

[1 − p]![n]!

q−(i−1)(1−2p+i)
)

×
(

v
(n)
i−1 ⊗ v

(1)
p−i

)

= 0.

So vn+1−2p is the highest weight vector of weight qn+1−2p in V (n)⊗V (1). It follows that there is

a submodule of V (n)⊗V (1) which is isomorphic to V (n+1)⊕V (n−1). In addition, V (n+1)⊕

V (n− 1) and V (n)⊗ V (1) have the same dimension. Thus V (n)⊗ V (1) ∼= V (n + 1) + V (n− 1).

In a similar way, we have V (1) ⊗ V (n) ∼= V (n + 1) + V (n − 1). 2

Let f0 = [k], fn = [V (n)]. By Proposition 4.2, we have f1fn = fnf1 = fn+1 +fn−1. Applying

Theorem 4.1, one can get the Clebsch-Gordan formula and quantum Clebsch-Gordan formula

with unified method. We state the result as follows.

Corollary 4.3 There are H-module isomorphisms

V (m) ⊗ V (n) ∼= V (n) ⊗ V (m) ∼= ⊕m
i=0V (n + m − 2i)

for all n, m > 0.

It is known that any finite dimensional left H-module is semisimple. By Corollary 4.3, for

any finite dimensional H-modules M and N , we have H-module isomorphism

M ⊗ N ∼= N ⊗ M.

Theorem 4.4 For any n ∈ N, we have the following formula

V (1)⊗2n = ⊕n
i=0A

i
nV (2n − 2i),

V (1)⊗(2n+1) = ⊕n
i=0B

i
nV (2n + 1 − 2i),

where Ai
n and Bi

n are the formulae given in Theorem 3.3 and Corollary 3.4, respectively.

Proof Let fn = [V (n)] for all n > 0. Then f0 = [k]. It follows from Proposition 4.2 that

{f0, f1, . . . , fn, . . .} satisfies the conditions stated in Theorem 2.1. From the discussion in Section

3, we have f2n
1 =

∑n

i=0 Ai
nf2n−2i, f

2n+1
1 =

∑n

i=0 Bi
nf2n+1−2i. That is,

[V (1)⊗2n] = [⊕n
i=0A

i
nV (2n − 2i)], [V (1)⊗(2n+1)] = [⊕n

i=0B
i
nV (2n + 1 − 2i)].

Then the theorem can be proven by using the same method as in the proof of Theorem 4.1. 2

By Proposition 2.4, for all n ∈ N, V (n) and V (1)⊗i(i = 0, . . . , n) satisfy the following

relations.
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Corollary 4.5 For all n ∈ N, we have

V (n) ⊕

(

⊕
⌊n

4 ⌋+a

i=1

(

n − 2i + 1

2i − 1

)

V (1)⊗(n−4i+2)

)

∼= ⊕
⌊n

4 ⌋
j=0

(

n − 2j

2j

)

V (1)⊗(n−4j),

where V (1)⊗0 = V (0); if n ≡ 2 or 3 (mod4), then a = 1; otherwise a = 0.

Proof By Proposition 2.4, we have

[V (n)] =

⌊n

2 ⌋
∑

i=0

(−1)i

(

n − i

i

)

[V (1)]n−2i,

where [V (1)]0 = [V (0)]. Transferring the negative items on the right side to the left side and

applying the method in the proof of Theorem 4.1, we obtain the result by considering the cases

of n = 4i, 4i + 1, 4i + 2, 4i + 3, respectively. 2
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