Journal of Mathematical Research & FEzposition
Mar., 2009, Vol. 29, No. 2, pp. 213-218
DOI:10.3770/j.issn:1000-341X.2009.02.003
Http://jmre.dlut.edu.cn

An Inequality of Bohr Type on Hardy-Sobolev Classes
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Abstract Let 8 > 0 and Sg := {z € C: [Imz| < B} be a strip in the complex plane. For
an integer r > 0, let HZ, 5 denote those real-valued functions f on R, which are analytic in Sg
and satisfy the restriction |f(")(2)| < 1, z € Sg. For o > 0, denote by B, the class of functions
f which have spectra in (=270, 270). And let B be the class of functions f which have no
spectrum in (—27o, 2wo). We prove an inequality of Bohr type

- oo (_1)k:(7“+1)
VAo kZ:o (2k + 1) sinh((2k + 1)2008) ’

I £lloe < feHLsNB;,

where A € (0,1), A and A’ are the complete elliptic integrals of the first kind for the moduli A
and X = /1 — A2, respectively, and \ satisfies

A3 1

A’ o’

The constant in the above inequality is exact.
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1. Introduction

First we give the definition of the spectrum of a function.

Definition 1.1 We denote by ©(R) the totality of functions f € C>(R) such that

sup |27 D f(z)] < o0
T€R

for every non-negative integers o and . Such functions are called rapidly decreasing (at c0).

Definition 1.2/ For any f € ©(R), define its Fourier transform f by

+o0
f(e) = / f(x)e"da.

— 00

The smallest closed set outside which f(€) vanishes is called the spectrum of f(z).
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For o > 0, denote by B, the class of functions f which have spectra in (—27o, 2wo). And let
B be the class of functions f which have no spectrum in (—270,270). As usual, Lo, (R) denotes
the space of real-valued functions f on R with the usual norm || f||oc = sup,cp | f(2)| < cc.

We now give the classes of functions studied here. Let 8 > 0 and Sg:={z € C: |Imz| < 8}
be a strip in the complex plane. For an integer » > 0, let H, 5 be the Hardy-Sobolev class
of real-valued functions f on R, which are analytic in the strip Sz and satisfy the condition
|f)(2)| <1, z € Ss. Denote by ﬁgoﬁ (I those 27-periodic functions in H, 4

Let f be a real function of the real variable x with a bounded derivative. Suppose that
f € BE. The inequality

1flloe < (40) 7M1 oo (1.1)

was given by Bohrl® for almost periodic f(x) with a proof based on the theory of analytic
functions. The constant (40)~! in (1.1) is the best possible. Iteration of (1.1) gives the inequality

1£lloe < 07" ¢l £ oo (1.2)

with ¢, = 4~™. With methods from the theory of real functions, Favard® found that the best

possible value of ¢,, is
k(nJrl)

400
Ez:: 2k+1"+1'

Hormander!®! obtained the following generalization of the inequality of Bohr type: if f(x) is real

and
—M1 S f(n)(l') S Mg, (13)

then
—o S (M, M) < f(z) < o " uS™ (My, M), (1.4)

where ,ugn) and ,ug") denote the best possible constants and are defined by

— ™ (M, M) = min o (; My, Ma), - a” (My, My) = maxch (a5 My, M),

where
My + M,
(n+1)!

Mo — M,

B (23 My, My) = m) — Bpyi(x — m)h

{EnJrl (x +

and the functions B,,(z) have the period 1 and coincide with the Bernoulli polynomials B,,(z)
in the interval (0,1).

In this paper, we get an inequality of Bohr type for the class of functions HZ, 5

We introduce the function @) , s which will be proved to be the extremal function of the
inequality of Bohr type for some A € (0,1), and give the explicit presentation of its uniform
norm ||®y r gl co-

Let A and A’ be the complete elliptic integrals of the first kind for the moduli A € (0, 1) and
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N = /1 — A2, respectively. Put

q))\)07ﬁ(z) . \/7:A Z

k=0

Pr2j-1,8(2) := [zw P 2j-2,6(1)dp, J=12.... (1.5)

NG

P 2j,6(2) 3:/0 Dy 25-1,8(1)du,

Then from [6], we have

sin((2k + 1>Zz§\5 2)

sinh((2k + 1)ZA%)’

) i . < gin 2k+1)4Aﬁ —7r/2)
aral) = WA/ Z (2k + 1)7 sinh((2k + 1)ZA0)
F=0,1,.... (1.6)
2o = (227 Ti o
ArBlloe = \/—A A — (2k + 1) sinh((2k + 1) 5%’

When X satisfies 4A3/(wA") = 1/n for some fixed n € N, we know that @ ,. 5(z) = @/ .(2) 71,

We are now ready to state the main result.

Theorem 1.3 Let o >0 andr =0,1,2,.... Then
o (_1)k(r+1)

VAAo" k; (2k + 1)" sinh((2k + 1)203)’

Hf”oo < ”q))\mﬁ”oo = f € Hgo.ﬂ N Bj‘, (1'7)

where X\ € (0,1) satisfying
AAB/ (7)) =1/0. (1.8)
The constant in the inequality (1.7) is best possible, which means that
e (_1)k(r+1)
su oo = [|Pr,r8llec = s .
feH;,me# [ £lloe = 119,751 Y AoT kzzo (2k + 1)7 sinh((2k + 1)200)

Remark 1.4 From [7, 8], we know that

oo = 19, oo = 3 o (1.9
sup 0o — oo = —— , i
FeHT, ,NTt ’ VAART P (2k + 1)" sinh((2k + 1)2n0)

where 7, := span{l,cost,sint,...,cos((n — 1)t),sin((n — 1)t)} is the space of trigonometric

polynomials with order n — 1, and f € 7,> means that

27
F(t) sin(kt)dt = 0,
0271' k:O,l,...,n—l.

f(¢) cos(kt)dt = 0,
0

Thus, Theorem 1.3 is the generalization of this result.

2. Proof of main result

First we give some auxiliary results.
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Lemma 2.1 For any o > 0, there exists a A, € (0,1) such that
4N, 3/ (7)) = 1/a, (2.1)

where A, and Al are the complete elliptic integrals of the first kind for the moduli A\, € (0,1)
and N = /1 — A2, respectively.

Proof Since A — 7 and A’ — 400 as A — 07, 408, 0+ as A — 0. On the other hand,

A
when A — 17, A — 400 and A" — 7, ie., when A — 17, f}f — 400. So from the fact that

4AB/(wA) continuously depends on A, it follows that for any o > 0, there exists a A, € (0,1)
such that (2.1) holds. Lemma 2.1 is proved. O

We now consider continuous functions ¢ on R with the properties

+oo
@) 20, Spletn) <1, p(0) =1, (22)

An example of such a function is ¢(x) = (7x)~? sin?(7z). So we can take a fixed function ¢ on
R having the properties (2.2). If ¢ is a bounded function on R, we set

+oo
gn(@) = p(hx +n)g(z +nh™"), (2:3)

— 00

where h > 0. It is evident that the series converges on R and that g, (z) has the period h~1.

Lemma 2.2 If -1 < g(z) <1 for all z € R, then —1 < gj,(z) < 1 and g5 (x) tends to g(z) as
h — 07, uniformly on every bounded set of R.

From [5], we know that a function f has no spectrum in (—27o, 270) means explicitly that
fj;o f(@)¢(x) de = 0if (z) € U and ¢ (€) vanishes outside a compact set in (—270, 270 ), where
U is the class of all infinitely differentiable functions on R which vanish at infinity together with
all their derivatives more rapidly than any inverse power of x.

It also follows from [5] that there exists a function ¢ on R having the properties (2.2) and the
properties that ¢ € ¥ and $(€) shall vanish outside a bounded set of R. Denote by M a number
such that ¢(¢) = 0 for [¢| > M. The Fourier transform of hp(hz)e= "% is ¢((¢ + kh)/h) =
¢(Eh~' + k). It vanishes outside an interval contained in (—27o, 270) if |kh| < 270 — Mh.

Lemma 2.30) g),(z) has no spectrum in (— (270 — Mh), (270 — MHh)) if g(z) has no spectrum

in (=270, 27w0).

Lemma 2.4 Let 0 > 0 and r = 0,1,2,.... Then for any f € HZ, 5N B}, there exists a
F e H;ré such that

F'(z) = f(z), z€ Sg,
and

[Flloc < [[®x,,r+1,8llo; (2.4)

where A\, € (0, 1) satisfying equality (2.1).

Proof Let 0 > 0andr =0,1,2,.... Forany f € HZ 5 N B2, define the periodic approximating
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function (2.3) of f(") by f,(f) on R. Since f € HY, 45, by Lemma 2.2, we have —1 < f,gr)(x) <1
for all x € R and f,(f) tends to f(") as h — 0%, uniformly on every bounded set of R. Since
f € B, f) has no spectrum in (—2wo,270). So from Lemma 2.3, it follows that fhr)(x) has
no spectrum in (— (270 — Mh), (2ro — Mh)), where the function ¢ on R has the properties (2.2)
and the properties that ¢ € ¥ and ¢(§) = 0 for |£| > M, and h is so small that 270 — Mh > 0.
Then there exists a periodic function f, on R with zero mean value satisfying the r-th derivative
of fr(x)is f,gr)( ) and fp tends to f as h — 0%, uniformly on every bounded set of R. So there
exists a periodic integral of fj, on R, denoted by F},(x fo frn(t) dt + co, such that

F};,(:E):fh(x)7 LL’ER,
and

[ Fnlloo < [1®x, r+1,8l00s

where ¢g € R and A\, € (0,1) satisfying (2.1). Denote by F = [, f(t)dt + co the integral
of f(z) on R. Then F'(z) = f(z), = € R and Fj(z) tends to F( ) as h — 0", uniformly on
every bounded set of R. So from the fact that ||F|lec < [|F' — Fhlloo + || Fhlloo, we know that
1Flloc < |®a, r+1.8llco, as h — 0. Now it follows from the uniqueness theorem of analytic
functions that there exists a F' € ngé such that F'(z) = f(z), z € Sg and (2.4) holds. Lemma
2.4 is proved. O

Lemma 2.5[6Corollary3.15] ot . — 0 1,2.... If f € HY, 5 and the inequality [/fllec <
1P rsllco holds for some X\ € (0,1), then for all 1 <1 <r+1,

4Aﬁ ( 1)k(r 14+1)
Dy, < oW = T ) l '
||f H — H )\,T,ﬁH \/XA(TFA/ Z 2]{3 + 1)7« lSth((2k 4 1)7TA/)

(2.5)

where \, satisfies (2.1).

o

Lemma 2.6 Let 0 > 0. Then ®,, TgEHooﬁﬂB

Proof Let o > 0 and A, satisfy (2.1). It is obvious that @5, .3 € HZ, 5. We only need to prove
that ®x, r g € Bt . In fact, it follows from the condition: )\, satisfies (2.1) that

+oo
| o ns@iitais =0
if ¢(x) € ¥ and ¥ (€) vanishes outside a compact set in (—270,270). So @y, .5 € BL. O
We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3 Let 0 > 0 and r = 0,1,2,.... Then from Lemma 2.4, it follows that
for any f € HY 5N Bz, there exists an F € HT+1 such that

F'(z) = f(2), z€ Sp,
and

[Flloc < [®x,.r41,8ll00;
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which together with Lemma 2.5 gives

sup flloe < sup [[F oo = IR, 11,llo0s
fGHgo,BﬁBCJ; FEH;j,/la

ie.

sup [ fllee <[P, 1,800
feEHT, ,NBE

where A\, € (0,1) satisfying (2.1). And from Lemma 2.6, we know that ®x, .5 € Hl 5N B for
Ao satisfying (2.1). So

® TN (=D)kCHD
ey Ml = 1220 mslloe = 2= kZ:O (2k + 1)7 sinh((2k + 1)205)
Theorem 1.3 is proved. O
References

[1] YOSIDA K. Functional Analysis [M]. Berlin: Springer-Verlag, 1999.

[2] FANG Gensun, LI Xuehua. Optimal quadrature problem on classes defined by kernels satisfying certain
oscillation properties [J]. Numer. Math., 2006, 105(1): 133-158.

(3] BOHR H. Ein allgemeiner Satz tiber die Integration eines trigonometrischen Polynoms [J]. Prace. Matem.
-Fiz., 1935, 43: 273-288.

[4] FAVARD J. Application de la formule sommatoire d’Euler a la démonstration de quelques propriétés extrémales
des intégrales des fonctions périodiques et presque-périodiques [J]. Mat. Tidsskr., 1936, B: 81-94.

[5] HORMANDER L. A new proof and a generalization of an inequality of Bohr [J]. Math. Scand., 1954, 2:
33-45.

[6] OSIPENKO K YU. Optimal Recovery of Analytic Functions [M]. New York: Nova Science Publishers, 2001.

[7] OSIPENKO K YU. Exact n-widths of Hardy-Sobolev classes [J]. Constr. Approx., 1997, 13(1): 17-27.

[8] FANG Gensun, LI Xuehua. Comparison theorems of Kolmogorov type and exact values of m-widths on
Hardy-Sobolev classes [J]. Math. Comp., 2006, 75(253): 241-258.



