An Inequality of Bohr Type on Hardy-Sobolev Classes

LI Xue Hua
(College of Science, China Agricultural University, Beijing 100083, China)

(E-mail: lixh@cau.edu.cn)

Abstract

Let $\beta>0$ and $S_{\beta}:=\{z \in \mathbb{C}:|\operatorname{Im} z|<\beta\}$ be a strip in the complex plane. For an integer $r \geq 0$, let $H_{\infty, \beta}^{r}$ denote those real-valued functions f on \mathbb{R}, which are analytic in S_{β} and satisfy the restriction $\left|f^{(r)}(z)\right| \leq 1, z \in S_{\beta}$. For $\sigma>0$, denote by B_{σ} the class of functions f which have spectra in $(-2 \pi \sigma, 2 \pi \sigma)$. And let B_{σ}^{\perp} be the class of functions f which have no spectrum in $(-2 \pi \sigma, 2 \pi \sigma)$. We prove an inequality of Bohr type

$$
\|f\|_{\infty} \leq \frac{\pi}{\sqrt{\lambda} \Lambda \sigma^{r}} \sum_{k=0}^{\infty} \frac{(-1)^{k(r+1)}}{(2 k+1)^{r} \sinh ((2 k+1) 2 \sigma \beta)}, \quad f \in H_{\infty, \beta}^{r} \cap B_{\sigma}^{\perp}
$$

where $\lambda \in(0,1), \Lambda$ and Λ^{\prime} are the complete elliptic integrals of the first kind for the moduli λ and $\lambda^{\prime}=\sqrt{1-\lambda^{2}}$, respectively, and λ satisfies

$$
\frac{4 \Lambda \beta}{\pi \Lambda^{\prime}}=\frac{1}{\sigma}
$$

The constant in the above inequality is exact.
Keywords Hardy-Sobolev classes; the spectrum of a function; an inequality of Bohr type.
Document code A
MR(2000) Subject Classification 65E05; 30E10
Chinese Library Classification O174.5

1. Introduction

First we give the definition of the spectrum of a function.
Definition 1.1 ${ }^{[1]}$ We denote by $\Theta(\mathbb{R})$ the totality of functions $f \in C^{\infty}(\mathbb{R})$ such that

$$
\sup _{x \in \mathbb{R}}\left|x^{\gamma} D^{\alpha} f(x)\right|<\infty
$$

for every non-negative integers α and γ. Such functions are called rapidly decreasing (at ∞).
Definition 1.2 ${ }^{[1]}$ For any $f \in \Theta(\mathbb{R})$, define its Fourier transform \hat{f} by

$$
\hat{f}(\xi)=\int_{-\infty}^{+\infty} f(x) e^{-i x \xi} \mathrm{~d} x
$$

The smallest closed set outside which $\hat{f}(\xi)$ vanishes is called the spectrum of $f(x)$.
Received date: 2007-03-12; Accepted date: 2007-05-26
Foundation item: the National Natural Science Special-Purpose Foundation of China (No. 10826079); the National Natural Science Foundation of China (No. 10671019); the Initial Research Fund of China Agricultural University (No. 2006061).

For $\sigma>0$, denote by B_{σ} the class of functions f which have spectra in $(-2 \pi \sigma, 2 \pi \sigma)$. And let B_{σ}^{\perp} be the class of functions f which have no spectrum in $(-2 \pi \sigma, 2 \pi \sigma)$. As usual, $L_{\infty}(\mathbb{R})$ denotes the space of real-valued functions f on \mathbb{R} with the usual norm $\|f\|_{\infty}:=\sup _{x \in \mathbb{R}}|f(x)|<\infty$.

We now give the classes of functions studied here. Let $\beta>0$ and $S_{\beta}:=\{z \in \mathbb{C}:|\operatorname{Im} z|<\beta\}$ be a strip in the complex plane. For an integer $r \geq 0$, let $H_{\infty, \beta}^{r}$ be the Hardy-Sobolev class of real-valued functions f on \mathbb{R}, which are analytic in the strip S_{β} and satisfy the condition $\left|f^{(r)}(z)\right| \leq 1, z \in S_{\beta}$. Denote by $\widetilde{H}_{\infty, \beta}^{r}{ }^{[2]}$ those 2π-periodic functions in $H_{\infty, \beta}^{r}$.

Let f be a real function of the real variable x with a bounded derivative. Suppose that $f \in B_{\sigma}^{\perp}$. The inequality

$$
\begin{equation*}
\|f\|_{\infty} \leq(4 \sigma)^{-1}\left\|f^{\prime}\right\|_{\infty} \tag{1.1}
\end{equation*}
$$

was given by Bohr ${ }^{[3]}$ for almost periodic $f(x)$ with a proof based on the theory of analytic functions. The constant $(4 \sigma)^{-1}$ in (1.1) is the best possible. Iteration of (1.1) gives the inequality

$$
\begin{equation*}
\|f\|_{\infty} \leq \sigma^{-n} t_{n}\left\|f^{(n)}\right\|_{\infty} \tag{1.2}
\end{equation*}
$$

with $t_{n}=4^{-n}$. With methods from the theory of real functions, Favard ${ }^{[4]}$ found that the best possible value of t_{n} is

$$
t_{n}=(2 \pi)^{-n} \cdot \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k(n+1)}}{(2 k+1)^{n+1}}
$$

Hörmander ${ }^{[5]}$ obtained the following generalization of the inequality of Bohr type: if $f(x)$ is real and

$$
\begin{equation*}
-M_{1} \leq f^{(n)}(x) \leq M_{2} \tag{1.3}
\end{equation*}
$$

then

$$
\begin{equation*}
-\sigma^{-n} \mu_{1}^{(n)}\left(M_{1}, M_{2}\right) \leq f(x) \leq \sigma^{-n} \mu_{2}^{(n)}\left(M_{1}, M_{2}\right) \tag{1.4}
\end{equation*}
$$

where $\mu_{1}^{(n)}$ and $\mu_{2}^{(n)}$ denote the best possible constants and are defined by

$$
-\mu_{1}^{(n)}\left(M_{1}, M_{2}\right)=\min _{x} h_{n}\left(x ; M_{1}, M_{2}\right), \quad \mu_{2}^{(n)}\left(M_{1}, M_{2}\right)=\max _{x} h_{n}\left(x ; M_{1}, M_{2}\right)
$$

where

$$
h_{n}\left(x ; M_{1}, M_{2}\right)=\frac{M_{1}+M_{2}}{(n+1)!}\left\{\bar{B}_{n+1}\left(x+\frac{M_{2}}{2\left(M_{1}+M_{2}\right)}\right)-\bar{B}_{n+1}\left(x-\frac{M_{2}}{2\left(M_{1}+M_{2}\right)}\right)\right\}
$$

and the functions $\bar{B}_{n}(x)$ have the period 1 and coincide with the Bernoulli polynomials $B_{n}(x)$ in the interval $(0,1)$.

In this paper, we get an inequality of Bohr type for the class of functions $H_{\infty, \beta}^{r}$.
We introduce the function $\Phi_{\lambda, r, \beta}$ which will be proved to be the extremal function of the inequality of Bohr type for some $\lambda \in(0,1)$, and give the explicit presentation of its uniform $\operatorname{norm}\left\|\Phi_{\lambda, r, \beta}\right\|_{\infty}$.

Let Λ and Λ^{\prime} be the complete elliptic integrals of the first kind for the moduli $\lambda \in(0,1)$ and
$\lambda^{\prime}=\sqrt{1-\lambda^{2}}$, respectively. Put

$$
\begin{align*}
& \Phi_{\lambda, 0, \beta}(z):=\frac{\pi}{\sqrt{\lambda} \Lambda} \sum_{k=0}^{\infty} \frac{\sin \left((2 k+1) \frac{\pi \Lambda^{\prime}}{4 \Lambda \beta} z\right)}{\sinh \left((2 k+1) \frac{\pi \Lambda^{\prime}}{2 \Lambda}\right)}, \\
& \Phi_{\lambda, 2 j-1, \beta}(z):=\int_{\frac{2 \Lambda \beta}{\Lambda^{\prime}}}^{z} \Phi_{\lambda, 2 j-2, \beta}(\mu) \mathrm{d} \mu, \quad j=1,2, \ldots \tag{1.5}\\
& \Phi_{\lambda, 2 j, \beta}(z):=\int_{0}^{z} \Phi_{\lambda, 2 j-1, \beta}(\mu) \mathrm{d} \mu
\end{align*}
$$

Then from [6], we have

$$
\begin{align*}
& \Phi_{\lambda, r, \beta}(z)=\frac{\pi}{\sqrt{\lambda} \Lambda}\left(\frac{4 \Lambda \beta}{\pi \Lambda^{\prime}}\right)^{r} \sum_{k=0}^{\infty} \frac{\sin \left((2 k+1) \frac{\pi \Lambda^{\prime}}{4 \Lambda \beta} z-\pi r / 2\right)}{(2 k+1)^{r} \sinh \left((2 k+1) \frac{\pi \Lambda^{\prime}}{2 \Lambda}\right)} \tag{1.6}\\
& \left\|\Phi_{\lambda, r, \beta}\right\|_{\infty}=\frac{\pi}{\sqrt{\lambda} \Lambda}\left(\frac{4 \Lambda \beta}{\pi \Lambda^{\prime}}\right)^{r} \sum_{k=0}^{\infty} \frac{(-1)^{k(r+1)}}{(2 k+1)^{r} \sinh \left((2 k+1) \frac{\pi \Lambda^{\prime}}{2 \Lambda}\right)}
\end{align*}
$$

When λ satisfies $4 \Lambda \beta /\left(\pi \Lambda^{\prime}\right)=1 / n$ for some fixed $n \in \mathbb{N}$, we know that $\Phi_{\lambda, r, \beta}(z)=\Phi_{n, r}^{\beta}(z)^{[7]}$.
We are now ready to state the main result.
Theorem 1.3 Let $\sigma>0$ and $r=0,1,2, \ldots$ Then

$$
\begin{equation*}
\|f\|_{\infty} \leq\left\|\Phi_{\lambda, r, \beta}\right\|_{\infty}=\frac{\pi}{\sqrt{\lambda} \Lambda \sigma^{r}} \sum_{k=0}^{\infty} \frac{(-1)^{k(r+1)}}{(2 k+1)^{r} \sinh ((2 k+1) 2 \sigma \beta)}, \quad f \in H_{\infty, \beta}^{r} \cap B_{\sigma}^{\perp} \tag{1.7}
\end{equation*}
$$

where $\lambda \in(0,1)$ satisfying

$$
\begin{equation*}
4 \Lambda \beta /\left(\pi \Lambda^{\prime}\right)=1 / \sigma \tag{1.8}
\end{equation*}
$$

The constant in the inequality (1.7) is best possible, which means that

$$
\sup _{f \in H_{\infty, \beta}^{r} \cap B_{\sigma}^{\perp}}\|f\|_{\infty}=\left\|\Phi_{\lambda, r, \beta}\right\|_{\infty}=\frac{\pi}{\sqrt{\lambda} \Lambda \sigma^{r}} \sum_{k=0}^{\infty} \frac{(-1)^{k(r+1)}}{(2 k+1)^{r} \sinh ((2 k+1) 2 \sigma \beta)}
$$

Remark 1.4 From [7, 8], we know that

$$
\begin{equation*}
\sup _{f \in \tilde{H}_{\infty, \beta}^{r} \cap \mathcal{T}_{n}^{\perp}}\|f\|_{\infty}=\left\|\Phi_{n, r}^{\beta}\right\|_{\infty}=\frac{\pi}{\sqrt{\lambda} \Lambda n^{r}} \sum_{k=0}^{\infty} \frac{(-1)^{k(r+1)}}{(2 k+1)^{r} \sinh ((2 k+1) 2 n \beta)} \tag{1.9}
\end{equation*}
$$

where $\mathcal{T}_{n}:=\operatorname{span}\{1, \cos t, \sin t, \ldots, \cos ((n-1) t), \sin ((n-1) t)\}$ is the space of trigonometric polynomials with order $n-1$, and $f \in \mathcal{T}_{n}^{\perp}$ means that

$$
\begin{aligned}
& \int_{0}^{2 \pi} f(t) \sin (k t) \mathrm{d} t=0 \\
& \int_{0}^{2 \pi} f(t) \cos (k t) \mathrm{d} t=0
\end{aligned}
$$

Thus, Theorem 1.3 is the generalization of this result.

2. Proof of main result

First we give some auxiliary results.

Lemma 2.1 For any $\sigma>0$, there exists a $\lambda_{\sigma} \in(0,1)$ such that

$$
\begin{equation*}
4 \Lambda_{\sigma} \beta /\left(\pi \Lambda_{\sigma}^{\prime}\right)=1 / \sigma, \tag{2.1}
\end{equation*}
$$

where Λ_{σ} and $\Lambda_{\sigma}^{\prime}$ are the complete elliptic integrals of the first kind for the moduli $\lambda_{\sigma} \in(0,1)$ and $\lambda_{\sigma}^{\prime}=\sqrt{1-\lambda_{\sigma}^{2}}$, respectively.

Proof Since $\Lambda \rightarrow \frac{\pi}{2}$ and $\Lambda^{\prime} \rightarrow+\infty$ as $\lambda \rightarrow 0^{+}, \frac{4 \Lambda \beta}{\pi \Lambda^{\prime}} \rightarrow 0^{+}$as $\lambda \rightarrow 0^{+}$. On the other hand, when $\lambda \rightarrow 1^{-}, \Lambda \rightarrow+\infty$ and $\Lambda^{\prime} \rightarrow \frac{\pi}{2}$, i.e., when $\lambda \rightarrow 1^{-}, \frac{4 \Lambda \beta}{\pi \Lambda^{\prime}} \rightarrow+\infty$. So from the fact that $4 \Lambda \beta /\left(\pi \Lambda^{\prime}\right)$ continuously depends on λ, it follows that for any $\sigma>0$, there exists a $\lambda_{\sigma} \in(0,1)$ such that (2.1) holds. Lemma 2.1 is proved.

We now consider continuous functions φ on \mathbb{R} with the properties

$$
\begin{equation*}
\varphi(x) \geq 0, \quad \sum_{-\infty}^{+\infty} \varphi(x+n) \leq 1, \quad \varphi(0)=1 \tag{2.2}
\end{equation*}
$$

An example of such a function is $\varphi(x)=(\pi x)^{-2} \sin ^{2}(\pi x)$. So we can take a fixed function φ on \mathbb{R} having the properties (2.2). If g is a bounded function on \mathbb{R}, we set

$$
\begin{equation*}
g_{h}(x)=\sum_{-\infty}^{+\infty} \varphi(h x+n) g\left(x+n h^{-1}\right) \tag{2.3}
\end{equation*}
$$

where $h>0$. It is evident that the series converges on \mathbb{R} and that $g_{h}(x)$ has the period h^{-1}.
Lemma 2.2 ${ }^{[5]}$ If $-1 \leq g(x) \leq 1$ for all $x \in \mathbb{R}$, then $-1 \leq g_{h}(x) \leq 1$ and $g_{h}(x)$ tends to $g(x)$ as $h \longrightarrow 0^{+}$, uniformly on every bounded set of \mathbb{R}.

From [5], we know that a function f has no spectrum in $(-2 \pi \sigma, 2 \pi \sigma)$ means explicitly that $\int_{-\infty}^{+\infty} f(x) \psi(x) d x=0$ if $\psi(x) \in \Psi$ and $\hat{\psi}(\xi)$ vanishes outside a compact set in $(-2 \pi \sigma, 2 \pi \sigma)$, where Ψ is the class of all infinitely differentiable functions on \mathbb{R} which vanish at infinity together with all their derivatives more rapidly than any inverse power of x.

It also follows from [5] that there exists a function φ on \mathbb{R} having the properties (2.2) and the properties that $\varphi \in \Psi$ and $\hat{\varphi}(\xi)$ shall vanish outside a bounded set of \mathbb{R}. Denote by M a number such that $\hat{\varphi}(\xi)=0$ for $|\xi| \geq M$. The Fourier transform of $h \varphi(h x) e^{-i k h x}$ is $\hat{\varphi}((\xi+k h) / h)=$ $\hat{\varphi}\left(\xi h^{-1}+k\right)$. It vanishes outside an interval contained in $(-2 \pi \sigma, 2 \pi \sigma)$ if $|k h|<2 \pi \sigma-M h$.

Lemma 2.3 ${ }^{[5]} g_{h}(x)$ has no spectrum in $(-(2 \pi \sigma-M h),(2 \pi \sigma-M h))$ if $g(x)$ has no spectrum in $(-2 \pi \sigma, 2 \pi \sigma)$.

Lemma 2.4 Let $\sigma>0$ and $r=0,1,2, \ldots$. Then for any $f \in H_{\infty, \beta}^{r} \cap B_{\sigma}^{\perp}$, there exists a $F \in H_{\infty, \beta}^{r+1}$ such that

$$
F^{\prime}(z)=f(z), \quad z \in S_{\beta}
$$

and

$$
\begin{equation*}
\|F\|_{\infty} \leq\left\|\Phi_{\lambda_{\sigma}, r+1, \beta}\right\|_{\infty} \tag{2.4}
\end{equation*}
$$

where $\lambda_{\sigma} \in(0,1)$ satisfying equality (2.1).
Proof Let $\sigma>0$ and $r=0,1,2, \ldots$ For any $f \in H_{\infty, \beta}^{r} \cap B_{\sigma}^{\perp}$, define the periodic approximating
function (2.3) of $f^{(r)}$ by $f_{h}^{(r)}$ on \mathbb{R}. Since $f \in H_{\infty, \beta}^{r}$, by Lemma 2.2 , we have $-1 \leq f_{h}^{(r)}(x) \leq 1$ for all $x \in \mathbb{R}$ and $f_{h}^{(r)}$ tends to $f^{(r)}$ as $h \longrightarrow 0^{+}$, uniformly on every bounded set of \mathbb{R}. Since $f \in B_{\sigma}^{\perp}, f^{(r)}$ has no spectrum in $(-2 \pi \sigma, 2 \pi \sigma)$. So from Lemma 2.3, it follows that $f_{h}^{(r)}(x)$ has no spectrum in $(-(2 \pi \sigma-M h),(2 \pi \sigma-M h))$, where the function φ on \mathbb{R} has the properties (2.2) and the properties that $\varphi \in \Psi$ and $\hat{\varphi}(\xi)=0$ for $|\xi| \geq M$, and h is so small that $2 \pi \sigma-M h>0$. Then there exists a periodic function f_{h} on \mathbb{R} with zero mean value satisfying the r-th derivative of $f_{h}(x)$ is $f_{h}^{(r)}(x)$ and f_{h} tends to f as $h \longrightarrow 0^{+}$, uniformly on every bounded set of \mathbb{R}. So there exists a periodic integral of f_{h} on \mathbb{R}, denoted by $F_{h}(x):=\int_{0}^{x} f_{h}(t) d t+c_{0}$, such that

$$
F_{h}^{\prime}(x)=f_{h}(x), \quad x \in \mathbb{R}
$$

and

$$
\left\|F_{h}\right\|_{\infty} \leq\left\|\Phi_{\lambda_{\sigma}, r+1, \beta}\right\|_{\infty}
$$

where $c_{0} \in \mathbb{R}$ and $\lambda_{\sigma} \in(0,1)$ satisfying (2.1). Denote by $F(x):=\int_{0}^{x} f(t) d t+c_{0}$ the integral of $f(x)$ on \mathbb{R}. Then $F^{\prime}(x)=f(x), x \in \mathbb{R}$ and $F_{h}(x)$ tends to $F(x)$ as $h \longrightarrow 0^{+}$, uniformly on every bounded set of \mathbb{R}. So from the fact that $\|F\|_{\infty} \leq\left\|F-F_{h}\right\|_{\infty}+\left\|F_{h}\right\|_{\infty}$, we know that $\|F\|_{\infty} \leq\left\|\Phi_{\lambda_{\sigma}, r+1, \beta}\right\|_{\infty}$, as $h \longrightarrow 0^{+}$. Now it follows from the uniqueness theorem of analytic functions that there exists a $F \in H_{\infty, \beta}^{r+1}$ such that $F^{\prime}(z)=f(z), z \in S_{\beta}$ and (2.4) holds. Lemma 2.4 is proved.

Lemma 2.5 ${ }^{[6, \text { Corollary 3.15] }}$ Let $r=0,1,2, \ldots$. If $f \in H_{\infty, \beta}^{r}$ and the inequality $\|f\|_{\infty} \leq$ $\left\|\Phi_{\lambda, r, \beta}\right\|_{\infty}$ holds for some $\lambda \in(0,1)$, then for all $1 \leq l \leq r+1$,

$$
\begin{equation*}
\left\|f^{(l)}\right\|_{\infty} \leq\left\|\Phi_{\lambda, r, \beta}^{(l)}\right\|_{\infty}=\frac{\pi}{\sqrt{\lambda} \Lambda}\left(\frac{4 \Lambda \beta}{\pi \Lambda^{\prime}}\right)^{r-l} \sum_{k=0}^{\infty} \frac{(-1)^{k(r-l+1)}}{(2 k+1)^{r-l} \sinh \left((2 k+1) \frac{\pi \Lambda^{\prime}}{2 \Lambda}\right)} \tag{2.5}
\end{equation*}
$$

Lemma 2.6 Let $\sigma>0$. Then $\Phi_{\lambda_{\sigma}, r, \beta} \in H_{\infty, \beta}^{r} \cap B_{\sigma}^{\perp}$, where λ_{σ} satisfies (2.1).
Proof Let $\sigma>0$ and λ_{σ} satisfy (2.1). It is obvious that $\Phi_{\lambda_{\sigma}, r, \beta} \in H_{\infty, \beta}^{r}$. We only need to prove that $\Phi_{\lambda_{\sigma}, r, \beta} \in B_{\sigma}^{\perp}$. In fact, it follows from the condition: λ_{σ} satisfies (2.1) that

$$
\int_{-\infty}^{+\infty} \Phi_{\lambda_{\sigma}, r, \beta}(x) \psi(x) \mathrm{d} x=0
$$

if $\psi(x) \in \Psi$ and $\hat{\psi}(\xi)$ vanishes outside a compact set in $(-2 \pi \sigma, 2 \pi \sigma)$. So $\Phi_{\lambda_{\sigma}, r, \beta} \in B_{\sigma}^{\perp}$.
We are now ready to prove Theorem 1.3.
Proof of Theorem 1.3 Let $\sigma>0$ and $r=0,1,2, \ldots$. Then from Lemma 2.4, it follows that for any $f \in H_{\infty, \beta}^{r} \cap B_{\sigma}^{\perp}$, there exists an $F \in H_{\infty, \beta}^{r+1}$ such that

$$
F^{\prime}(z)=f(z), \quad z \in S_{\beta}
$$

and

$$
\|F\|_{\infty} \leq\left\|\Phi_{\lambda_{\sigma}, r+1, \beta}\right\|_{\infty}
$$

which together with Lemma 2.5 gives

$$
\sup _{f \in H_{\infty, \beta}^{r} \cap B_{\sigma}^{+}}\|f\|_{\infty} \leq \sup _{F \in H_{\infty, \beta}^{r+1}}\left\|F^{\prime}\right\|_{\infty}=\left\|\Phi_{\lambda_{\sigma}, r+1, \beta}^{\prime}\right\|_{\infty},
$$

i.e.

$$
\sup _{\in H_{\infty, \beta}^{r} \cap B_{\sigma}^{\perp}}\|f\|_{\infty} \leq\left\|\Phi_{\lambda_{\sigma}, r, \beta}\right\|_{\infty},
$$

where $\lambda_{\sigma} \in(0,1)$ satisfying (2.1). And from Lemma 2.6, we know that $\Phi_{\lambda_{\sigma}, r, \beta} \in H_{\infty, \beta}^{r} \cap B_{\sigma}^{\perp}$ for λ_{σ} satisfying (2.1). So

$$
\sup _{f \in H_{\infty, \beta}^{r} \cap B_{\sigma}^{\perp}}\|f\|_{\infty}=\left\|\Phi_{\lambda_{\sigma}, r, \beta}\right\|_{\infty}=\frac{\pi}{\sqrt{\lambda_{\sigma}} \Lambda_{\sigma} \sigma^{r}} \sum_{k=0}^{\infty} \frac{(-1)^{k(r+1)}}{(2 k+1)^{r} \sinh ((2 k+1) 2 \sigma \beta)} .
$$

Theorem 1.3 is proved.

References

[1] YOSIDA K. Functional Analysis [M]. Berlin: Springer-Verlag, 1999.
[2] FANG Gensun, LI Xuehua. Optimal quadrature problem on classes defined by kernels satisfying certain oscillation properties [J]. Numer. Math., 2006, 105(1): 133-158.
[3] BOHR H. Ein allgemeiner Satz über die Integration eines trigonometrischen Polynoms [J]. Prace. Matem. -Fiz., 1935, 43: 273-288.
[4] FAVARD J. Application de la formule sommatoire d'Euler à la démonstration de quelques propriétés extrémales des intégrales des fonctions périodiques et presque-périodiques [J]. Mat. Tidsskr., 1936, B: 81-94.
[5] HÖRMANDER L. A new proof and a generalization of an inequality of Bohr [J]. Math. Scand., 1954, 2: 33-45.
[6] OSIPENKO K YU. Optimal Recovery of Analytic Functions [M]. New York: Nova Science Publishers, 2001.
[7] OSIPENKO K YU. Exact n-widths of Hardy-Sobolev classes [J]. Constr. Approx., 1997, 13(1): 17-27.
[8] FANG Gensun, LI Xuehua. Comparison theorems of Kolmogorov type and exact values of n-widths on Hardy-Sobolev classes [J]. Math. Comp., 2006, 75(253): 241-258.

