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Abstract Let β > 0 and Sβ := {z ∈ C : |Im z| < β} be a strip in the complex plane. For

an integer r ≥ 0, let Hr
∞,β denote those real-valued functions f on R, which are analytic in Sβ

and satisfy the restriction |f (r)(z)| ≤ 1, z ∈ Sβ. For σ > 0, denote by Bσ the class of functions

f which have spectra in (−2πσ, 2πσ). And let B⊥

σ be the class of functions f which have no

spectrum in (−2πσ, 2πσ). We prove an inequality of Bohr type

‖f‖∞ ≤ π√
λΛσr

∞∑

k=0

(−1)k(r+1)

(2k + 1)r sinh((2k + 1)2σβ)
, f ∈ H

r
∞,β ∩ B

⊥

σ ,

where λ ∈ (0, 1), Λ and Λ′ are the complete elliptic integrals of the first kind for the moduli λ

and λ′ =
√

1 − λ2, respectively, and λ satisfies

4Λβ

πΛ′
=

1

σ
.

The constant in the above inequality is exact.
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1. Introduction

First we give the definition of the spectrum of a function.

Definition 1.1
[1] We denote by Θ(R) the totality of functions f ∈ C∞(R) such that

sup
x∈R

|xγDαf(x)| <∞

for every non-negative integers α and γ. Such functions are called rapidly decreasing (at ∞).

Definition 1.2
[1] For any f ∈ Θ(R), define its Fourier transform f̂ by

f̂(ξ) =

∫ +∞

−∞

f(x)e−ixξdx.

The smallest closed set outside which f̂(ξ) vanishes is called the spectrum of f(x).
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For σ > 0, denote by Bσ the class of functions f which have spectra in (−2πσ, 2πσ). And let

B⊥
σ be the class of functions f which have no spectrum in (−2πσ, 2πσ). As usual, L∞(R) denotes

the space of real-valued functions f on R with the usual norm ‖f‖∞ := supx∈R
|f(x)| <∞.

We now give the classes of functions studied here. Let β > 0 and Sβ := {z ∈ C : |Im z| < β}
be a strip in the complex plane. For an integer r ≥ 0, let Hr

∞,β be the Hardy-Sobolev class

of real-valued functions f on R, which are analytic in the strip Sβ and satisfy the condition

|f (r)(z)| ≤ 1, z ∈ Sβ . Denote by H̃r
∞,β

[2] those 2π-periodic functions in Hr
∞,β.

Let f be a real function of the real variable x with a bounded derivative. Suppose that

f ∈ B⊥
σ . The inequality

‖f‖∞ ≤ (4σ)−1‖f ′‖∞ (1.1)

was given by Bohr[3] for almost periodic f(x) with a proof based on the theory of analytic

functions. The constant (4σ)−1 in (1.1) is the best possible. Iteration of (1.1) gives the inequality

‖f‖∞ ≤ σ−ntn‖f (n)‖∞ (1.2)

with tn = 4−n. With methods from the theory of real functions, Favard[4] found that the best

possible value of tn is

tn = (2π)−n · 4

π

∞∑

k=0

(−1)k(n+1)

(2k + 1)n+1
.

Hörmander[5] obtained the following generalization of the inequality of Bohr type: if f(x) is real

and

−M1 ≤ f (n)(x) ≤M2, (1.3)

then

−σ−nµ
(n)
1 (M1,M2) ≤ f(x) ≤ σ−nµ

(n)
2 (M1,M2), (1.4)

where µ
(n)
1 and µ

(n)
2 denote the best possible constants and are defined by

−µ(n)
1 (M1,M2) = min

x
hn(x;M1,M2), µ

(n)
2 (M1,M2) = max

x
hn(x;M1,M2),

where

hn(x;M1,M2) =
M1 +M2

(n+ 1)!
{Bn+1(x +

M2

2(M1 +M2)
) −Bn+1(x− M2

2(M1 +M2)
)},

and the functions Bn(x) have the period 1 and coincide with the Bernoulli polynomials Bn(x)

in the interval (0, 1).

In this paper, we get an inequality of Bohr type for the class of functions Hr
∞,β .

We introduce the function Φλ,r,β which will be proved to be the extremal function of the

inequality of Bohr type for some λ ∈ (0, 1), and give the explicit presentation of its uniform

norm ‖Φλ,r,β‖∞.

Let Λ and Λ′ be the complete elliptic integrals of the first kind for the moduli λ ∈ (0, 1) and
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λ′ =
√

1 − λ2, respectively. Put

Φλ,0,β(z) :=
π√
λΛ

∞∑

k=0

sin((2k + 1) πΛ′

4Λβ
z)

sinh((2k + 1)πΛ′

2Λ )
,

Φλ,2j−1,β(z) :=

∫ z

2Λβ

Λ′

Φλ,2j−2,β(µ)dµ,

Φλ,2j,β(z) :=

∫ z

0

Φλ,2j−1,β(µ)dµ,

j = 1, 2, . . . . (1.5)

Then from [6], we have

Φλ,r,β(z) =
π√
λΛ

(
4Λβ

πΛ′
)r

∞∑

k=0

sin((2k + 1) πΛ′

4Λβ
z − πr/2)

(2k + 1)r sinh((2k + 1)πΛ′

2Λ )
,

‖Φλ,r,β‖∞ =
π√
λΛ

(
4Λβ

πΛ′
)r

∞∑

k=0

(−1)k(r+1)

(2k + 1)r sinh((2k + 1)πΛ′

2Λ )
,

r = 0, 1, . . . . (1.6)

When λ satisfies 4Λβ/(πΛ′) = 1/n for some fixed n ∈ N, we know that Φλ,r,β(z) = Φβ
n,r(z)

[7].

We are now ready to state the main result.

Theorem 1.3 Let σ > 0 and r = 0, 1, 2, . . . . Then

‖f‖∞ ≤ ‖Φλ,r,β‖∞ =
π√
λΛσr

∞∑

k=0

(−1)k(r+1)

(2k + 1)r sinh((2k + 1)2σβ)
, f ∈ Hr

∞,β ∩B⊥
σ , (1.7)

where λ ∈ (0, 1) satisfying

4Λβ/(πΛ′) = 1/σ. (1.8)

The constant in the inequality (1.7) is best possible, which means that

sup
f∈Hr

∞,β
∩B⊥

σ

‖f‖∞ = ‖Φλ,r,β‖∞ =
π√
λΛσr

∞∑

k=0

(−1)k(r+1)

(2k + 1)r sinh((2k + 1)2σβ)
.

Remark 1.4 From [7, 8], we know that

sup
f∈H̃r

∞,β
∩T ⊥

n

‖f‖∞ = ‖Φβ
n,r‖∞ =

π√
λΛnr

∞∑

k=0

(−1)k(r+1)

(2k + 1)r sinh((2k + 1)2nβ)
, (1.9)

where Tn := span{1, cos t, sin t, . . . , cos((n − 1)t), sin((n − 1)t)} is the space of trigonometric

polynomials with order n− 1, and f ∈ T ⊥
n means that

∫ 2π

0

f(t) sin(kt)dt = 0,
∫ 2π

0

f(t) cos(kt)dt = 0,

k = 0, 1, . . . , n− 1.

Thus, Theorem 1.3 is the generalization of this result.

2. Proof of main result

First we give some auxiliary results.
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Lemma 2.1 For any σ > 0, there exists a λσ ∈ (0, 1) such that

4Λσβ/(πΛ′
σ) = 1/σ, (2.1)

where Λσ and Λ′
σ are the complete elliptic integrals of the first kind for the moduli λσ ∈ (0, 1)

and λ′σ =
√

1 − λ2
σ, respectively.

Proof Since Λ → π
2 and Λ′ → +∞ as λ → 0+, 4Λβ

πΛ′ → 0+ as λ → 0+. On the other hand,

when λ → 1−, Λ → +∞ and Λ′ → π
2 , i.e., when λ → 1−, 4Λβ

πΛ′ → +∞. So from the fact that

4Λβ/(πΛ′) continuously depends on λ, it follows that for any σ > 0, there exists a λσ ∈ (0, 1)

such that (2.1) holds. Lemma 2.1 is proved. 2

We now consider continuous functions ϕ on R with the properties

ϕ(x) ≥ 0,
+∞∑

−∞

ϕ(x+ n) ≤ 1, ϕ(0) = 1. (2.2)

An example of such a function is ϕ(x) = (πx)−2 sin2(πx). So we can take a fixed function ϕ on

R having the properties (2.2). If g is a bounded function on R, we set

gh(x) =

+∞∑

−∞

ϕ(hx+ n)g(x+ nh−1), (2.3)

where h > 0. It is evident that the series converges on R and that gh(x) has the period h−1.

Lemma 2.2
[5] If −1 ≤ g(x) ≤ 1 for all x ∈ R, then −1 ≤ gh(x) ≤ 1 and gh(x) tends to g(x) as

h −→ 0+, uniformly on every bounded set of R.

From [5], we know that a function f has no spectrum in (−2πσ, 2πσ) means explicitly that∫ +∞

−∞
f(x)ψ(x) dx = 0 if ψ(x) ∈ Ψ and ψ̂(ξ) vanishes outside a compact set in (−2πσ, 2πσ), where

Ψ is the class of all infinitely differentiable functions on R which vanish at infinity together with

all their derivatives more rapidly than any inverse power of x.

It also follows from [5] that there exists a function ϕ on R having the properties (2.2) and the

properties that ϕ ∈ Ψ and ϕ̂(ξ) shall vanish outside a bounded set of R. Denote by M a number

such that ϕ̂(ξ) = 0 for |ξ| ≥ M . The Fourier transform of hϕ(hx)e−ikhx is ϕ̂((ξ + kh)/h) =

ϕ̂(ξh−1 + k). It vanishes outside an interval contained in (−2πσ, 2πσ) if |kh| < 2πσ −Mh.

Lemma 2.3
[5] gh(x) has no spectrum in

(
−(2πσ −Mh), (2πσ −Mh)

)
if g(x) has no spectrum

in (−2πσ, 2πσ).

Lemma 2.4 Let σ > 0 and r = 0, 1, 2, . . . . Then for any f ∈ Hr
∞,β ∩ B⊥

σ , there exists a

F ∈ Hr+1
∞,β such that

F ′(z) = f(z), z ∈ Sβ,

and

‖F‖∞ ≤ ‖Φλσ,r+1,β‖∞, (2.4)

where λσ ∈ (0, 1) satisfying equality (2.1).

Proof Let σ > 0 and r = 0, 1, 2, . . . . For any f ∈ Hr
∞,β ∩B⊥

σ , define the periodic approximating
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function (2.3) of f (r) by f
(r)
h on R. Since f ∈ Hr

∞,β, by Lemma 2.2, we have −1 ≤ f
(r)
h (x) ≤ 1

for all x ∈ R and f
(r)
h tends to f (r) as h −→ 0+, uniformly on every bounded set of R. Since

f ∈ B⊥
σ , f (r) has no spectrum in (−2πσ, 2πσ). So from Lemma 2.3, it follows that f

(r)
h (x) has

no spectrum in (−(2πσ−Mh), (2πσ−Mh)), where the function ϕ on R has the properties (2.2)

and the properties that ϕ ∈ Ψ and ϕ̂(ξ) = 0 for |ξ| ≥M , and h is so small that 2πσ −Mh > 0.

Then there exists a periodic function fh on R with zero mean value satisfying the r-th derivative

of fh(x) is f
(r)
h (x) and fh tends to f as h −→ 0+, uniformly on every bounded set of R. So there

exists a periodic integral of fh on R, denoted by Fh(x) :=
∫ x

0 fh(t) dt+ c0, such that

F ′
h(x) = fh(x), x ∈ R,

and

‖Fh‖∞ ≤ ‖Φλσ ,r+1,β‖∞,

where c0 ∈ R and λσ ∈ (0, 1) satisfying (2.1). Denote by F (x) :=
∫ x

0
f(t) dt + c0 the integral

of f(x) on R. Then F ′(x) = f(x), x ∈ R and Fh(x) tends to F (x) as h −→ 0+, uniformly on

every bounded set of R. So from the fact that ‖F‖∞ ≤ ‖F − Fh‖∞ + ‖Fh‖∞, we know that

‖F‖∞ ≤ ‖Φλσ,r+1,β‖∞, as h −→ 0+. Now it follows from the uniqueness theorem of analytic

functions that there exists a F ∈ Hr+1
∞,β such that F ′(z) = f(z), z ∈ Sβ and (2.4) holds. Lemma

2.4 is proved. 2

Lemma 2.5
[6,Corollary 3.15] Let r = 0, 1, 2, . . . . If f ∈ Hr

∞,β and the inequality ‖f‖∞ ≤
‖Φλ,r,β‖∞ holds for some λ ∈ (0, 1), then for all 1 ≤ l ≤ r + 1,

‖f (l)‖∞ ≤ ‖Φ(l)
λ,r,β‖∞ =

π√
λΛ

(
4Λβ

πΛ′
)r−l

∞∑

k=0

(−1)k(r−l+1)

(2k + 1)r−l sinh((2k + 1)πΛ′

2Λ )
. (2.5)

Lemma 2.6 Let σ > 0. Then Φλσ ,r,β ∈ Hr
∞,β ∩B⊥

σ , where λσ satisfies (2.1).

Proof Let σ > 0 and λσ satisfy (2.1). It is obvious that Φλσ ,r,β ∈ Hr
∞,β . We only need to prove

that Φλσ ,r,β ∈ B⊥
σ . In fact, it follows from the condition: λσ satisfies (2.1) that

∫ +∞

−∞

Φλσ ,r,β(x)ψ(x)dx = 0

if ψ(x) ∈ Ψ and ψ̂(ξ) vanishes outside a compact set in (−2πσ, 2πσ). So Φλσ ,r,β ∈ B⊥
σ . 2

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3 Let σ > 0 and r = 0, 1, 2, . . . . Then from Lemma 2.4, it follows that

for any f ∈ Hr
∞,β ∩B⊥

σ , there exists an F ∈ Hr+1
∞,β such that

F ′(z) = f(z), z ∈ Sβ,

and

‖F‖∞ ≤ ‖Φλσ,r+1,β‖∞,
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which together with Lemma 2.5 gives

sup
f∈Hr

∞,β
∩B⊥

σ

‖f‖∞ ≤ sup
F∈H

r+1

∞,β

‖F ′‖∞ = ‖Φ′
λσ,r+1,β‖∞,

i.e.

sup
f∈Hr

∞,β
∩B⊥

σ

‖f‖∞ ≤ ‖Φλσ ,r,β‖∞,

where λσ ∈ (0, 1) satisfying (2.1). And from Lemma 2.6, we know that Φλσ ,r,β ∈ Hr
∞,β ∩B⊥

σ for

λσ satisfying (2.1). So

sup
f∈Hr

∞,β
∩B⊥

σ

‖f‖∞ = ‖Φλσ,r,β‖∞ =
π√

λσΛσσr

∞∑

k=0

(−1)k(r+1)

(2k + 1)r sinh((2k + 1)2σβ)
.

Theorem 1.3 is proved. 2
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