Journal of Mathematical Research & Exposition Mar., 2009, Vol. 29, No. 2, pp. 213–218 DOI:10.3770/j.issn:1000-341X.2009.02.003 Http://jmre.dlut.edu.cn

An Inequality of Bohr Type on Hardy-Sobolev Classes

LI Xue Hua

(College of Science, China Agricultural University, Beijing 100083, China) (E-mail: lixh@cau.edu.cn)

Abstract Let $\beta > 0$ and $S_{\beta} := \{z \in \mathbb{C} : |\operatorname{Im} z| < \beta\}$ be a strip in the complex plane. For an integer $r \ge 0$, let $H^r_{\infty,\beta}$ denote those real-valued functions f on \mathbb{R} , which are analytic in S_{β} and satisfy the restriction $|f^{(r)}(z)| \le 1$, $z \in S_{\beta}$. For $\sigma > 0$, denote by B_{σ} the class of functions f which have spectra in $(-2\pi\sigma, 2\pi\sigma)$. And let B^{\perp}_{σ} be the class of functions f which have no spectrum in $(-2\pi\sigma, 2\pi\sigma)$. We prove an inequality of Bohr type

$$\|f\|_{\infty} \leq \frac{\pi}{\sqrt{\lambda}\Lambda\sigma^r} \sum_{k=0}^{\infty} \frac{(-1)^{k(r+1)}}{(2k+1)^r \sinh((2k+1)2\sigma\beta)}, \qquad f \in H^r_{\infty,\beta} \cap B_{\sigma}^{\perp}.$$

where $\lambda \in (0,1)$, Λ and Λ' are the complete elliptic integrals of the first kind for the moduli λ and $\lambda' = \sqrt{1 - \lambda^2}$, respectively, and λ satisfies

$$\frac{4\Lambda\beta}{\pi\Lambda'} = \frac{1}{\sigma}.$$

The constant in the above inequality is exact.

Keywords Hardy-Sobolev classes; the spectrum of a function; an inequality of Bohr type.

Document code A MR(2000) Subject Classification 65E05; 30E10 Chinese Library Classification 0174.5

1. Introduction

First we give the definition of the spectrum of a function.

Definition 1.1^[1] We denote by $\Theta(\mathbb{R})$ the totality of functions $f \in C^{\infty}(\mathbb{R})$ such that

$$\sup_{x\in\mathbb{R}}|x^{\gamma}D^{\alpha}f(x)|<\infty$$

for every non-negative integers α and γ . Such functions are called rapidly decreasing (at ∞).

Definition 1.2^[1] For any $f \in \Theta(\mathbb{R})$, define its Fourier transform \hat{f} by

$$\hat{f}(\xi) = \int_{-\infty}^{+\infty} f(x) e^{-ix\xi} \mathrm{d}x.$$

The smallest closed set outside which $\hat{f}(\xi)$ vanishes is called the spectrum of f(x).

Received date: 2007-03-12; Accepted date: 2007-05-26

Foundation item: the National Natural Science Special-Purpose Foundation of China (No. 10826079); the National Natural Science Foundation of China (No. 10671019); the Initial Research Fund of China Agricultural University (No. 2006061).

For $\sigma > 0$, denote by B_{σ} the class of functions f which have spectra in $(-2\pi\sigma, 2\pi\sigma)$. And let B_{σ}^{\perp} be the class of functions f which have no spectrum in $(-2\pi\sigma, 2\pi\sigma)$. As usual, $L_{\infty}(\mathbb{R})$ denotes the space of real-valued functions f on \mathbb{R} with the usual norm $||f||_{\infty} := \sup_{x \in \mathbb{R}} |f(x)| < \infty$.

We now give the classes of functions studied here. Let $\beta > 0$ and $S_{\beta} := \{z \in \mathbb{C} : |\text{Im } z| < \beta\}$ be a strip in the complex plane. For an integer $r \ge 0$, let $H^r_{\infty,\beta}$ be the Hardy-Sobolev class of real-valued functions f on \mathbb{R} , which are analytic in the strip S_{β} and satisfy the condition $|f^{(r)}(z)| \le 1, z \in S_{\beta}$. Denote by $\widetilde{H}^r_{\infty,\beta}^{[2]}$ those 2π -periodic functions in $H^r_{\infty,\beta}$.

Let f be a real function of the real variable x with a bounded derivative. Suppose that $f \in B_{\sigma}^{\perp}$. The inequality

$$\|f\|_{\infty} \le (4\sigma)^{-1} \|f'\|_{\infty} \tag{1.1}$$

was given by Bohr^[3] for almost periodic f(x) with a proof based on the theory of analytic functions. The constant $(4\sigma)^{-1}$ in (1.1) is the best possible. Iteration of (1.1) gives the inequality

$$\|f\|_{\infty} \le \sigma^{-n} t_n \|f^{(n)}\|_{\infty} \tag{1.2}$$

with $t_n = 4^{-n}$. With methods from the theory of real functions, Favard^[4] found that the best possible value of t_n is

$$t_n = (2\pi)^{-n} \cdot \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k(n+1)}}{(2k+1)^{n+1}} \,.$$

Hörmander^[5] obtained the following generalization of the inequality of Bohr type: if f(x) is real and

$$-M_1 \le f^{(n)}(x) \le M_2, \tag{1.3}$$

then

$$-\sigma^{-n}\mu_1^{(n)}(M_1, M_2) \le f(x) \le \sigma^{-n}\mu_2^{(n)}(M_1, M_2),$$
(1.4)

where $\mu_1^{(n)}$ and $\mu_2^{(n)}$ denote the best possible constants and are defined by

$$-\mu_1^{(n)}(M_1, M_2) = \min_x h_n(x; M_1, M_2), \quad \mu_2^{(n)}(M_1, M_2) = \max_x h_n(x; M_1, M_2),$$

where

$$h_n(x; M_1, M_2) = \frac{M_1 + M_2}{(n+1)!} \{ \overline{B}_{n+1}(x + \frac{M_2}{2(M_1 + M_2)}) - \overline{B}_{n+1}(x - \frac{M_2}{2(M_1 + M_2)}) \},\$$

and the functions $\overline{B}_n(x)$ have the period 1 and coincide with the Bernoulli polynomials $B_n(x)$ in the interval (0, 1).

In this paper, we get an inequality of Bohr type for the class of functions $H^r_{\infty,\beta}$.

We introduce the function $\Phi_{\lambda,r,\beta}$ which will be proved to be the extremal function of the inequality of Bohr type for some $\lambda \in (0,1)$, and give the explicit presentation of its uniform norm $\|\Phi_{\lambda,r,\beta}\|_{\infty}$.

Let Λ and Λ' be the complete elliptic integrals of the first kind for the moduli $\lambda \in (0, 1)$ and

 $\lambda' = \sqrt{1 - \lambda^2}$, respectively. Put

$$\Phi_{\lambda,0,\beta}(z) := \frac{\pi}{\sqrt{\lambda}\Lambda} \sum_{k=0}^{\infty} \frac{\sin((2k+1)\frac{\pi\Lambda'}{4\Lambda\beta}z)}{\sinh((2k+1)\frac{\pi\Lambda'}{2\Lambda})},$$

$$\Phi_{\lambda,2j-1,\beta}(z) := \int_{\frac{2\Lambda\beta}{\Lambda'}}^{z} \Phi_{\lambda,2j-2,\beta}(\mu) d\mu, \qquad j = 1, 2, \dots.$$
(1.5)

$$\Phi_{\lambda,2j,\beta}(z) := \int_{0}^{z} \Phi_{\lambda,2j-1,\beta}(\mu) d\mu,$$

Then from [6], we have

$$\Phi_{\lambda,r,\beta}(z) = \frac{\pi}{\sqrt{\lambda}\Lambda} \left(\frac{4\Lambda\beta}{\pi\Lambda'}\right)^r \sum_{k=0}^{\infty} \frac{\sin((2k+1)\frac{\pi\Lambda'}{4\Lambda\beta}z - \pi r/2)}{(2k+1)^r \sinh((2k+1)\frac{\pi\Lambda'}{2\Lambda})},$$

$$\|\Phi_{\lambda,r,\beta}\|_{\infty} = \frac{\pi}{\sqrt{\lambda}\Lambda} \left(\frac{4\Lambda\beta}{\pi\Lambda'}\right)^r \sum_{k=0}^{\infty} \frac{(-1)^{k(r+1)}}{(2k+1)^r \sinh((2k+1)\frac{\pi\Lambda'}{2\Lambda})},$$

$$r = 0, 1, \dots .$$
(1.6)

When λ satisfies $4\Lambda\beta/(\pi\Lambda') = 1/n$ for some fixed $n \in \mathbb{N}$, we know that $\Phi_{\lambda,r,\beta}(z) = \Phi_{n,r}^{\beta}(z)^{[7]}$.

We are now ready to state the main result.

Theorem 1.3 Let $\sigma > 0$ and r = 0, 1, 2, Then

$$\|f\|_{\infty} \le \|\Phi_{\lambda,r,\beta}\|_{\infty} = \frac{\pi}{\sqrt{\lambda}\Lambda\sigma^r} \sum_{k=0}^{\infty} \frac{(-1)^{k(r+1)}}{(2k+1)^r \sinh((2k+1)2\sigma\beta)}, \quad f \in H^r_{\infty,\beta} \cap B^{\perp}_{\sigma}, \tag{1.7}$$

where $\lambda \in (0, 1)$ satisfying

$$4\Lambda\beta/(\pi\Lambda') = 1/\sigma. \tag{1.8}$$

The constant in the inequality (1.7) is best possible, which means that

$$\sup_{f \in H_{\infty,\beta}^r \cap B_{\sigma}^{\perp}} \|f\|_{\infty} = \|\Phi_{\lambda,r,\beta}\|_{\infty} = \frac{\pi}{\sqrt{\lambda}\Lambda\sigma^r} \sum_{k=0}^{\infty} \frac{(-1)^{k(r+1)}}{(2k+1)^r \sinh((2k+1)2\sigma\beta)}$$

Remark 1.4 From [7, 8], we know that

$$\sup_{f \in \tilde{H}_{\infty,\beta}^{r} \cap \mathcal{T}_{n}^{\perp}} \|f\|_{\infty} = \|\Phi_{n,r}^{\beta}\|_{\infty} = \frac{\pi}{\sqrt{\lambda}\Lambda n^{r}} \sum_{k=0}^{\infty} \frac{(-1)^{k(r+1)}}{(2k+1)^{r}\sinh((2k+1)2n\beta)},$$
(1.9)

where $\mathcal{T}_n := \operatorname{span}\{1, \cos t, \sin t, \dots, \cos((n-1)t), \sin((n-1)t)\}$ is the space of trigonometric polynomials with order n-1, and $f \in \mathcal{T}_n^{\perp}$ means that $e^{2\pi}$

$$\int_{0}^{2\pi} f(t) \sin(kt) dt = 0,$$

$$\int_{0}^{2\pi} f(t) \cos(kt) dt = 0,$$

$$k = 0, 1, \dots, n-1.$$

Thus, Theorem 1.3 is the generalization of this result.

2. Proof of main result

First we give some auxiliary results.

Lemma 2.1 For any $\sigma > 0$, there exists a $\lambda_{\sigma} \in (0, 1)$ such that

$$4\Lambda_{\sigma}\beta/(\pi\Lambda_{\sigma}') = 1/\sigma, \tag{2.1}$$

where Λ_{σ} and Λ'_{σ} are the complete elliptic integrals of the first kind for the moduli $\lambda_{\sigma} \in (0, 1)$ and $\lambda'_{\sigma} = \sqrt{1 - \lambda_{\sigma}^2}$, respectively.

Proof Since $\Lambda \to \frac{\pi}{2}$ and $\Lambda' \to +\infty$ as $\lambda \to 0^+$, $\frac{4\Lambda\beta}{\pi\Lambda'} \to 0^+$ as $\lambda \to 0^+$. On the other hand, when $\lambda \to 1^-$, $\Lambda \to +\infty$ and $\Lambda' \to \frac{\pi}{2}$, i.e., when $\lambda \to 1^-$, $\frac{4\Lambda\beta}{\pi\Lambda'} \to +\infty$. So from the fact that $4\Lambda\beta/(\pi\Lambda')$ continuously depends on λ , it follows that for any $\sigma > 0$, there exists a $\lambda_{\sigma} \in (0, 1)$ such that (2.1) holds. Lemma 2.1 is proved.

We now consider continuous functions φ on \mathbb{R} with the properties

$$\varphi(x) \ge 0, \quad \sum_{-\infty}^{+\infty} \varphi(x+n) \le 1, \quad \varphi(0) = 1.$$
 (2.2)

An example of such a function is $\varphi(x) = (\pi x)^{-2} \sin^2(\pi x)$. So we can take a fixed function φ on \mathbb{R} having the properties (2.2). If g is a bounded function on \mathbb{R} , we set

$$g_h(x) = \sum_{-\infty}^{+\infty} \varphi(hx + n)g(x + nh^{-1}), \qquad (2.3)$$

where h > 0. It is evident that the series converges on \mathbb{R} and that $g_h(x)$ has the period h^{-1} .

Lemma 2.2^[5] If $-1 \leq g(x) \leq 1$ for all $x \in \mathbb{R}$, then $-1 \leq g_h(x) \leq 1$ and $g_h(x)$ tends to g(x) as $h \longrightarrow 0^+$, uniformly on every bounded set of \mathbb{R} .

From [5], we know that a function f has no spectrum in $(-2\pi\sigma, 2\pi\sigma)$ means explicitly that $\int_{-\infty}^{+\infty} f(x)\psi(x) dx = 0$ if $\psi(x) \in \Psi$ and $\hat{\psi}(\xi)$ vanishes outside a compact set in $(-2\pi\sigma, 2\pi\sigma)$, where Ψ is the class of all infinitely differentiable functions on \mathbb{R} which vanish at infinity together with all their derivatives more rapidly than any inverse power of x.

It also follows from [5] that there exists a function φ on \mathbb{R} having the properties (2.2) and the properties that $\varphi \in \Psi$ and $\hat{\varphi}(\xi)$ shall vanish outside a bounded set of \mathbb{R} . Denote by M a number such that $\hat{\varphi}(\xi) = 0$ for $|\xi| \ge M$. The Fourier transform of $h\varphi(hx)e^{-ikhx}$ is $\hat{\varphi}((\xi + kh)/h) = \hat{\varphi}(\xi h^{-1} + k)$. It vanishes outside an interval contained in $(-2\pi\sigma, 2\pi\sigma)$ if $|kh| < 2\pi\sigma - Mh$.

Lemma 2.3^[5] $g_h(x)$ has no spectrum in $(-(2\pi\sigma - Mh), (2\pi\sigma - Mh))$ if g(x) has no spectrum in $(-2\pi\sigma, 2\pi\sigma)$.

Lemma 2.4 Let $\sigma > 0$ and $r = 0, 1, 2, \ldots$ Then for any $f \in H^r_{\infty,\beta} \cap B^{\perp}_{\sigma}$, there exists a $F \in H^{r+1}_{\infty,\beta}$ such that

$$F'(z) = f(z), \quad z \in S_\beta,$$

and

$$\|F\|_{\infty} \le \|\Phi_{\lambda_{\sigma}, r+1, \beta}\|_{\infty},\tag{2.4}$$

where $\lambda_{\sigma} \in (0, 1)$ satisfying equality (2.1).

Proof Let $\sigma > 0$ and $r = 0, 1, 2, \ldots$ For any $f \in H^r_{\infty,\beta} \cap B^{\perp}_{\sigma}$, define the periodic approximating

function (2.3) of $f^{(r)}$ by $f_h^{(r)}$ on \mathbb{R} . Since $f \in H^r_{\infty,\beta}$, by Lemma 2.2, we have $-1 \leq f_h^{(r)}(x) \leq 1$ for all $x \in \mathbb{R}$ and $f_h^{(r)}$ tends to $f^{(r)}$ as $h \longrightarrow 0^+$, uniformly on every bounded set of \mathbb{R} . Since $f \in B^{\perp}_{\sigma}$, $f^{(r)}$ has no spectrum in $(-2\pi\sigma, 2\pi\sigma)$. So from Lemma 2.3, it follows that $f_h^{(r)}(x)$ has no spectrum in $(-(2\pi\sigma - Mh), (2\pi\sigma - Mh))$, where the function φ on \mathbb{R} has the properties (2.2) and the properties that $\varphi \in \Psi$ and $\hat{\varphi}(\xi) = 0$ for $|\xi| \geq M$, and h is so small that $2\pi\sigma - Mh > 0$. Then there exists a periodic function f_h on \mathbb{R} with zero mean value satisfying the r-th derivative of $f_h(x)$ is $f_h^{(r)}(x)$ and f_h tends to f as $h \longrightarrow 0^+$, uniformly on every bounded set of \mathbb{R} . So there exists a periodic integral of f_h on \mathbb{R} , denoted by $F_h(x) := \int_0^x f_h(t) dt + c_0$, such that

$$F'_h(x) = f_h(x), \quad x \in \mathbb{R},$$

and

$$|F_h\|_{\infty} \le \|\Phi_{\lambda_{\sigma}, r+1, \beta}\|_{\infty}$$

where $c_0 \in \mathbb{R}$ and $\lambda_{\sigma} \in (0,1)$ satisfying (2.1). Denote by $F(x) := \int_0^x f(t) dt + c_0$ the integral of f(x) on \mathbb{R} . Then F'(x) = f(x), $x \in \mathbb{R}$ and $F_h(x)$ tends to F(x) as $h \longrightarrow 0^+$, uniformly on every bounded set of \mathbb{R} . So from the fact that $||F||_{\infty} \leq ||F - F_h||_{\infty} + ||F_h||_{\infty}$, we know that $||F||_{\infty} \leq ||\Phi_{\lambda_{\sigma},r+1,\beta}||_{\infty}$, as $h \longrightarrow 0^+$. Now it follows from the uniqueness theorem of analytic functions that there exists a $F \in H^{r+1}_{\infty,\beta}$ such that F'(z) = f(z), $z \in S_{\beta}$ and (2.4) holds. Lemma 2.4 is proved.

Lemma 2.5^[6, Corollary 3.15] Let $r = 0, 1, 2, \ldots$ If $f \in H^r_{\infty,\beta}$ and the inequality $||f||_{\infty} \leq ||\Phi_{\lambda,r,\beta}||_{\infty}$ holds for some $\lambda \in (0, 1)$, then for all $1 \leq l \leq r + 1$,

$$\|f^{(l)}\|_{\infty} \le \|\Phi^{(l)}_{\lambda,r,\beta}\|_{\infty} = \frac{\pi}{\sqrt{\lambda}\Lambda} (\frac{4\Lambda\beta}{\pi\Lambda'})^{r-l} \sum_{k=0}^{\infty} \frac{(-1)^{k(r-l+1)}}{(2k+1)^{r-l}\sinh((2k+1)\frac{\pi\Lambda'}{2\Lambda})}.$$
 (2.5)

Lemma 2.6 Let $\sigma > 0$. Then $\Phi_{\lambda_{\sigma},r,\beta} \in H^r_{\infty,\beta} \cap B^{\perp}_{\sigma}$, where λ_{σ} satisfies (2.1).

Proof Let $\sigma > 0$ and λ_{σ} satisfy (2.1). It is obvious that $\Phi_{\lambda_{\sigma},r,\beta} \in H^{r}_{\infty,\beta}$. We only need to prove that $\Phi_{\lambda_{\sigma},r,\beta} \in B^{\perp}_{\sigma}$. In fact, it follows from the condition: λ_{σ} satisfies (2.1) that

$$\int_{-\infty}^{+\infty} \Phi_{\lambda_{\sigma},r,\beta}(x)\psi(x)\mathrm{d}x = 0$$

if $\psi(x) \in \Psi$ and $\hat{\psi}(\xi)$ vanishes outside a compact set in $(-2\pi\sigma, 2\pi\sigma)$. So $\Phi_{\lambda_{\sigma}, r, \beta} \in B_{\sigma}^{\perp}$.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3 Let $\sigma > 0$ and $r = 0, 1, 2, \ldots$ Then from Lemma 2.4, it follows that for any $f \in H^r_{\infty,\beta} \cap B^{\perp}_{\sigma}$, there exists an $F \in H^{r+1}_{\infty,\beta}$ such that

$$F'(z) = f(z), \quad z \in S_\beta,$$

and

$$||F||_{\infty} \le ||\Phi_{\lambda_{\sigma}, r+1, \beta}||_{\infty},$$

which together with Lemma 2.5 gives

$$\sup_{f \in H^r_{\infty,\beta} \cap B^{\perp}_{\sigma}} \|f\|_{\infty} \leq \sup_{F \in H^{r+1}_{\infty,\beta}} \|F'\|_{\infty} = \|\Phi'_{\lambda_{\sigma},r+1,\beta}\|_{\infty},$$

i.e.

$$\sup_{f \in H^r_{\infty,\beta} \cap B^{\perp}_{\sigma}} \|f\|_{\infty} \le \|\Phi_{\lambda_{\sigma},r,\beta}\|_{\infty},$$

where $\lambda_{\sigma} \in (0, 1)$ satisfying (2.1). And from Lemma 2.6, we know that $\Phi_{\lambda_{\sigma}, r, \beta} \in H^{r}_{\infty, \beta} \cap B^{\perp}_{\sigma}$ for λ_{σ} satisfying (2.1). So

$$\sup_{f\in H^r_{\infty,\beta}\cap B^{\perp}_{\sigma}} \|f\|_{\infty} = \|\Phi_{\lambda_{\sigma},r,\beta}\|_{\infty} = \frac{\pi}{\sqrt{\lambda_{\sigma}}\Lambda_{\sigma}\sigma^r} \sum_{k=0}^{\infty} \frac{(-1)^{k(r+1)}}{(2k+1)^r \sinh((2k+1)2\sigma\beta)}.$$

Theorem 1.3 is proved.

References

- [1] YOSIDA K. Functional Analysis [M]. Berlin: Springer-Verlag, 1999.
- [2] FANG Gensun, LI Xuehua. Optimal quadrature problem on classes defined by kernels satisfying certain oscillation properties [J]. Numer. Math., 2006, 105(1): 133–158.
- [3] BOHR H. Ein allgemeiner Satz über die Integration eines trigonometrischen Polynoms [J]. Prace. Matem.
 -Fiz., 1935, 43: 273–288.
- [4] FAVARD J. Application de la formule sommatoire d'Euler à la démonstration de quelques propriétés extrémales des intégrales des fonctions périodiques et presque-périodiques [J]. Mat. Tidsskr., 1936, B: 81–94.
- [5] HÖRMANDER L. A new proof and a generalization of an inequality of Bohr [J]. Math. Scand., 1954, 2: 33–45.
- [6] OSIPENKO K YU. Optimal Recovery of Analytic Functions [M]. New York: Nova Science Publishers, 2001.
- [7] OSIPENKO K YU. Exact n-widths of Hardy-Sobolev classes [J]. Constr. Approx., 1997, 13(1): 17–27.
- [8] FANG Gensun, LI Xuehua. Comparison theorems of Kolmogorov type and exact values of n-widths on Hardy-Sobolev classes [J]. Math. Comp., 2006, 75(253): 241–258.