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Abstract In the present paper the properties of morphisms in effect algebras are discussed.

The conditions for the morphisms in effect algebras to be join-preservation and meet-preservation

are given. From the categorical point of view, some properties of ideals, filters and congruence

relations under morphisms are obtained.
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1. Introduction

Effect algebras, as a useful quantum model, can deal with sharp and unsharp problems. So

it has aroused the interest of many scholars in the related fields such as orthomodular lattice,

orthomodular posets, orthoalgebras and so on.

Morphism is a crucial tool to reveal the relation between algebraic systems, and to research

algebraic structures. The purpose of the present paper is to discuss the properties of effect mor-

phisms.

Definition 1.1[3] A structure (E;⊕, 0, 1) is called an effect algebra if 0, 1 are two distinguished

elements and ⊕ is a partially defined binary operation on E which satisfies the following condi-

tions for any a, b, c ∈ E:

(Ai) If a ⊕ b is defined, then b ⊕ a is defined and a ⊕ b = b ⊕ a;

(Aii) If a ⊕ b and (a ⊕ b) ⊕ c are defined, then b ⊕ c and a ⊕ (b ⊕ c) are defined, and

(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c);

(Aiii) For every a ∈ E, there exists a unique b ∈ E, such that a ⊕ b = 1 (we put b = a′);

(Aiv) If 1 ⊕ a is defined, then a = 0.

Effect algebras were introduced by Foulis and Bennett in [3]. Independently, Kôpka and

Chovanec[7] introduced an essentially equivalent structure called D-posets. Another equivalent

structure, called weak orthoalgebras, was introduced by Giuntini and Greuling in [8].
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For brevity, we denote the effect algebra (E;⊕, 0, 1) by E. In the effect algebra E, we write

a ≤ b iff there is c ∈ E such that a ⊕ c = b. It is easy to check that ≤ is a partial order on E.

If E with the defined partial order is a lattice, then E is called a lattice ordered effect algebra.

If E with the order ≤ is a totally ordered lattice, then E is called a totally ordered lattice effect

algebra. In the following we will take the liberty of using the symbol a ⊥ b to denote a ⊕ b if it

is defined. Moreover, it is possible to introduce a new partial operation ⊖ which is defined as

follows: If a ⊕ c is defined and a ⊕ c = b, then b ⊖ a = c.

In this section we recall the basic concepts and properties that shall be used in the present

paper.

Definition 1.2[2] Let E, F be effect algebras and φ : E → F be a mapping. If φ satisfies the

following conditions, then φ is called an effect morphism:

(Bi) φ(1) = 1;

(Bii) For every a, b ∈ E, if a ⊕ b is defined in E, then φ(a) ⊕ φ(b) is defined in F , and

φ(a ⊕ b) = φ(a) ⊕ φ(b).

If an effect morphism φ is a bijection and φ−1 is an effect morphism, then φ is called an effect

isomorphism.

Lemma 1.3[1] Let E be an effect algebra. Then the following assertions are true for every

a, b, c ∈ E:

(1) a ⊕ b is defined iff a ≤ b′;

(2) If a ⊕ b is defined and a ∨ b exists, then a ∧ b exists and a ⊕ b = (a ∧ b) ⊕ (a ∨ b);

(3) a ≤ a ⊕ b;

(4) (a′)′ = a, 0′ = 1, 1′ = 0;

(5) a ⊕ 0 = a.

Let E be a lattice ordered effect algebras. We have

(6) If a, b ≤ c′, then (a ∨ b) ⊕ c = (a ⊕ c) ∨ (b ⊕ c), (a ∧ b) ⊕ c = (a ⊕ c) ∧ (b ⊕ c);

(7) If c ≤ a, b, then(a ∨ b) ⊖ c = (a ⊖ c) ∨ (b ⊖ c), (a ∧ b) ⊖ c = (a ⊖ c) ∧ (b ⊖ c).

Lemma 1.4 Let E be an effect algebra. The following properties hold for every a, b, c ∈ E:

(1) If a ≤ b, then (a ⊕ b′)′ ⊕ a = b;

(2) If a ≤ b, then b′ ≤ a′;

(3) (a ∨ b)′ = a′ ∧ b′, (a ∧ b)′ = a′ ∨ b′;

(4) If c ≤ a ≤ b′, then (a ⊕ b) ⊖ c = (a ⊖ c) ⊕ b.

2. Basic properties

Proposition 2.1 Let E, F be two effect algebras and φ : E → F be an effect morphism. The

following property holds for every a, b, c ∈ E:

(1) If a ≥ b, then φ(a) ≥ φ(b);

(2) φ(a′) = (φ(a))′;

(3) If b ≥ a, then φ(b ⊖ a) = φ(b) ⊖ φ(a);
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(4) φ(0) = 0;

(5) If φ(x) = 1, then φ(x′) = 0.

Proof The proof is trivial and so is omitted.

Proposition 2.2 Let φ : E1 → E2 be an effect morphism. If φ is a one-to-one mapping and

E1 is a totally ordered lattice, then a ≥ b if and only if φ(a) ≥ φ(b).

Proof Necessity is clear. For the sufficiency, suppose on the contrary that a < b. Since φ is an

order-preserving and one-to-one mapping, we have φ(a) < φ(b), a contradiction, and this proves

that a ≥ b.

Proposition 2.3 Let φ : E → F be an effect morphism. If φ is a bijection and E is a totally

ordered lattice effect algebra, then φ−1 is also an effect morphism.

Proof Since φ(1) = 1, we have 1 = φ−1(1). ∀a, b ∈ F , assume that a ⊕ b is defined. Since

φ is a surjection, there exist a, b ∈ E such that φ(a) = a, φ(b) = b. Hence φ(a) ≤ φ(b′).

By Proposition 2.2, we have a ≤ b′. Thus a ⊕ b is defined. Since φ(a ⊕ b) = a ⊕ b, we have

φ−1(a ⊕ b) = a ⊕ b = φ−1(a) ⊕ φ−1(b). Then φ−1 : F → E is an effect morphism.

Proposition 2.4 Let φ1 : E1 → E2 and φ2 : E2 → E3 be effect morphisms. Then φ2 ◦ φ1 :

E1 → E3 is an effect morphism.

Proof By the definition, it is easy to check the proposition above.

3. Monomorphism

Definition 3.1[6] Let φ : E → F be an effect morphism. If for every a, b ∈ E, φ(a) ≤ φ(b)

implies a ≤ b, then φ is called an effect monomorphism.

Definition 3.2[6] Let φ : E → F be an effect morphism. For all a, b ∈ E, if φ(a) ≤ φ(b), then

there exists a1 ∈ E such that φ(a1) = φ(a) and a1 ≤ b. We call such φ a strong morphism.

Proposition 3.3 Let φ : E1 → E2 be an effect morphism. Then following propositions are

equivalent:

(1) If φ(a) ≤ φ(b), a, b ∈ E1, then a ≤ b;

(2) If φ(a) ⊕ φ(b) is defined, a, b ∈ E1, then a ⊕ b is defined.

Proof (1) ⇒ (2). Assume that φ(a) ⊕ φ(b) is defined. Then φ(a) ≤ φ(b′). Thus a ≤ b′ by

conditions. Therefore a ⊕ b is defined.

(2) ⇒ (1). Assume that φ(a) ≤ φ(b). Since φ(a) ≤ φ′(b′), φ(a)⊕φ(b′) is defined. Thus a⊕ b′

is defined by conditions, and then a ≤ b.

Proposition 3.4 Let φ : E1 → E2 be a strong morphism and a, b ∈ E1.

(1) If φ(a) ≤ φ(b), then there exists b1 ∈ E1 such that φ(b1) = φ(b) and a ≤ b1.

(2) If φ(a) ⊕ φ(b) is defined, then there exists a1 ∈ E1 such that φ(a1) = φ(a) and a1 ⊕ b
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is defined.

Proof (1) It follows from the hypotheses that φ(b′) ≤ φ(a′). Since φ is a strong morphism,

thus there exists c ∈ E1 such that φ(c) = φ(b′) and c ≤ a′. Thus, there exists b1 ∈ E1 such

that φ(b1) = φ(b) and a ≤ b1, where b1 = c′.

(2) It follows from the hypotheses that φ(b) ≤ φ(a′). Since φ is a strong morphism, there

exists a1 ∈ E1 such that φ(a′

1) = φ(a) and b ≤ a1. Then a′

1 ⊕ b is defined.

Theorem 3.5 Let φ : E1 → E2 be an effect morphism and E1, E2 be lattice ordered effect

algebras. If φ is a full monomorphism, then φ is join-preserving and meet-preserving.

Proof ∀a, b ∈ E1, it is easy to verify that φ(a∨ b) is a super bound of φ(a) and φ(b). Assume c

is a super bound of φ(a) and φ(b), where c ∈ E2. There exists c ∈ E1 such that φ(c) = c by the

condition. We have φ(a) ≤ φ(c) and φ(b) ≤ φ(c). Since φ is a monomorphism, we have a ≤ c and

b ≤ c. Then a ∨ b ≤ c, such that φ(a ∨ b) ≤ φ(c) = c. We conclude that φ(a ∨ b) = φ(a) ∨ φ(b).

For same reasons, it is easy to check that φ(a ∧ b) = φ(a) ∧ φ(b). 2

Theorem 3.6 Let φ : E → F be a strong morphism. Then φ(E) is a sub-effect algebra of F .

Proof (i) Since φ(0) = 0 and φ(1) = 1, we have 0, 1 ∈ φ(E).

(ii) For a ∈ φ(E), set a ∈ E such that φ(a) = a. Since φ(a⊕a′) = 1, we have φ(a)⊕φ(a′) = 1,

then a′ = φ(a′) ∈ φ(E).

(iii) For a, b ∈ φ(E) with a ⊥ b, set φ(a) = a and φ(b) = b, a, b ∈ E. By Proposition 3.4,

there exists a1 ∈ E such that φ(a1) = φ(a) and a1 ⊥ b. Since φ(a1 ⊕ b) = φ(a) ⊕ φ(b), we get

a ⊕ b = φ(a) ⊕ φ(b) ∈ φ(E). To sum up, φ(E) is a sub-effect algebra of F . 2

By Definition 3.1 and Proposition 3.3, we have the following proposition.

Proposition 3.7 Let φ : E1 → E2 be an effect morphism. If φ is a full monomorphism, then

φ−1 : E2 → E1 is effect morphism.

4. Ideal, filter and congruence

Theorem 4.1 Suppose that E, F are two lattice ordered effect algebras, φ : E → F is an

effect morphism, and φ is a surjective strong morphism. Then the following properties hold:

(1) If I is a lattice ideal of E, then φ(I) is also a lattice ideal of F ;

(2) If J is a lattice filter of E, then φ(J) is also a lattice filter of F ;

(3) ∀a ∈ E, φ(↓ (a)) =↓ (φ(a)), φ(↑ (a)) =↑ (φ(a)).

Proof (1) Since 0 = φ(0) ∈ φ(I), φ(I) 6= ∅. ∀b ∈ F , suppose that b ≤ a and a ∈ φ(I). Then

there exist a ∈ I and b ∈ E such that φ(a) = a and φ(b) = b, thus φ(b) ≤ φ(a). Since φ is

a strong morphism, we have b1 ∈ E such that φ(b1) = φ(b) and b1 ≤ a, and moreover I is a

lattice ideal. Hence b1 ∈ I. Thus b = φ(b1) ∈ φ(I). ∀a, b ∈ φ(I), there exist a, b ∈ I such that

φ(a) = a, φ(b) = b. Because I is a lattice ideal, we have a ∨ b ∈ I. Since φ(a ∨ b) ≥ φ(a) ∨ φ(b),

we have a ∨ b = φ(a) ∨ φ(b) ∈ φ(I). Then φ(I) is a lattice ideal of F .
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(2) Since 1 ∈ J , φ(1) = 1 ∈ φ(J). ∀y ∈ F , let x ≤ y and x ∈ φ(J). Then there exist x ∈ J

and y ∈ E such that φ(x) = x and φ(y) = y. Because φ is a strong morphism, there exists

y1 ∈ E such that φ(y1) = φ(y) and x ≤ y1. Since J is a lattice filter, y = φ(y1) ∈ φ(J).

∀x, y ∈ φ(J), we have x, y ∈ J such that φ(x) = x and φ(y) = y. Because x ∧ y ∈ J and

φ(x) ∧ φ(y) ≥ φ(x ∧ y), x ∧ y ∈ φ(I). Then φ(J) is a lattice filter.

(3) For any y ∈ φ(↓ (a)), since there exists x ∈ E such that x ≤ a and y = φ(x), we have

y = φ(x) ≤ φ(a). Then y ∈↓ (φ(a)). Conversely, ∀y ∈↓ (φ(a)), since y ≤ φ(a) and φ is a

surjective morphism, there exists x ∈ E such that φ(x) = y. Because φ is a strong morphism,

there exists x1 ∈ E such that φ(x1) = φ(x) = y and x1 ≤ a. Then y ∈ φ(↓ (a)). For the same

reason, we can get the other direction. 2

Definition 4.2[8] Let (E;⊕, 0, 1) be an effect algebra. A binary relation ∼ on E is a congruence

if it satisfies the following conditions:

(1) ∼ is an equivalence relation;

(2) a ∼ a1, b ∼ b1, a ⊥ b, a1 ⊥ b1 imply a ⊕ b ∼ a1 ⊕ b1;

(3) a ⊥ b, a ∼ a1 imply that there exists a b1 ∈ E such that b ∼ b1, a1 ⊥ b1.

Proposition 4.3 Let φ : E1 → E2 be an effect morphism and ∼ be a binary relation on E1

satisfying a ∼ b iff φ(a) = φ(b). If φ is a monomorphism, then:

(1) ∼ is an equivalent relation in E1;

(2) If a ∼ a1, b ∼ b1, and a ≤ b′, then a1 ≤ b′1;

(3) If a ∼ a1, b ∼ b1, and a ⊕ b is defined, then a1 ⊕ b1 is defined and a ⊕ b ∼ a1 ⊕ b1;

(4) If a ∼ b, then a′ ∼ b′;

(5) If a ⊕ b ∼ a1 ⊕ b1 and a ∼ a1, then b ∼ b1.

Proof (1) It is obvious and so is omitted.

(2) Because φ(a) = φ(a1), φ(b) = φ(b1) and φ(a) ≤ φ(b′), we have φ(a1) ≤ φ(b′1). Since φ is

a monomorphism, a1 ≤ b′1.

(3) Since a ≤ b′, a1 ≤ b′1 by (2). Hence φ(a) ≤ φ′(b) and φ(a1) ≤ φ′(b1). Thus φ(a)⊕E2
φ(b) =

φ(a ⊕E1
b) = φ(a1) ⊕E2

φ(b1) = φ(a1 ⊕E1
b1). We conclude that a ⊕ b ∼ a1 ⊕ b1.

(4) It is easy to check the item (4) by Proposition 2.1.

(5) Because φ(a ⊕ b) = φ(a1 ⊕ b1) and φ(a) = φ(a1), we have φ(a) ⊕ φ(b) = φ(a1) ⊕ φ(b1).

Then φ(b) = φ(b1), so b ∼ b1.

Theorem 4.4 Let E1 be an effect algebra and ∼ be a congruence which is non-trivial in E1.

Denote by [a] the congruence class of a. Let E = E1/∼ = {[a]|a ∈ E1}. Provide ⊕E in E as

follows: when a ≤ b′, then [a] ⊕E [b] = [a ⊕E1
b]. Then (E1/∼,⊕E, [0], [1]) is an effect algebra.

Proof By Definition 1.1, it is easy to check Theorem 4.4 above.

5. Functor and adjoint functor

Let (E;⊕, 0, 1) be a lattice ordered effect algebra. Take E as a category, whose object class
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is an E set. Suppose that Hom(a.b) is a morphism set, ∀a, b ∈ E, Hom(a, b) is a cell set when

a ≤ b, and Hom(a, b) is an empty set when a 6≤ b. If E1, E2 are lattice ordered effect algebras

and φ : E1 → E2 is an effect morphism, then we take φ to be functor between categories.

Proposition 5.1 Let E1, E2 be two lattice ordered effect algebras and φ : E1 → E2 be an

effect morphism. Then following propositions are equivalent:

(1) φ is an isomorphism of effect algebras;

(2) Functor φ is a category isomorphism.

Proof (1)⇒(2). Because φ : E1 → E2 is an isomorphism of effect algebras, φ is a bijection and

φ−1 is an effect morphism. Since φ−1 ◦ φ = idE1
, φ ◦ φ−1 = idE2

, obviously, idE1
and idE2

are

identity functors. Then φ is a category isomorphism.

(2)⇒(1). If φ is a category isomorphism, then it follows from definition that there exists

the mapping ω : E2 → E1 which preserves order and φ ◦ w = idE2
and w ◦ φ = idE1

. So φ is

a bijection and φ−1 = w. Because φ−1(1E2
) = φ−1(φ(1E1

)) = 1E1
. ∀x, y ∈ E2, assume that

x ≤ y′. Then ∃ x, y ∈ E1 such that φ(x) = x and φ(y) = y, i.e., φ(x) ≤ φ(y′). We have

x = w ◦ φ(x) ≤ w ◦ φ(y′) = y′. Thus, φ−1(x ⊕E2
y) = φ−1(φ(x) ⊕E2

φ(y)) = φ−1(φ(x ⊕E1
y)) =

x ⊕E1
y = φ−1(x) ⊕E1

φ−1(y). Then φ is an isomorphism of effect algebras. 2

Theorem 5.2 Let φ : E → F and θ : F → E be two effect morphisms. If φ is a left adjoint

of θ, then φ is a surjection if and only if θ is an effect monomorphism.

Proof Assume that φ is a surjection. ∀a, b ∈ F , let θ(a) ≤ θ(b). There exist a, b ∈ E

such that φ(a) = a and φ(b) = b. Thus θ(φ(a)) ≤ θ(φ(b)). We have φ(a) = φ(θ(φ(a))) ≤

φ(θ(φ(b))) = φ(b), that is, a ≤ b, and so θ is an effect monomorphism. Conversely, assume that

θ is an effect monomorphism. By the hypothesis, ∀b ∈ F , θ(b) = θ(φ(θ(b))). Hence b ≤ φ(θ(b))

and b ≥ φ(θ(b)). Then b = φ(θ(b)). For any b ∈ F, we have a = θ(b) such that φ(a) = b. Thus,

φ is a surjection. 2

Theorem 5.3 Let E1, E2 be effect algebras and let φ : E1 → E2, θ : E2 → E1 be effect

morphisms. If φ is a left adjoint functor of θ, then j = θ ◦φ has the following properties for every

a ∈ E:

(1) j(a) ≥ a;

(2) j(j(a)) ≤ j(a);

(3) When φ is a monomorphism, Lj = {x ∈ E1|j(x) = x} is a sub-effect algebra of E1.

Proof The proofs of (1) and (2) are trivial.

(3) Since j(0E1
) = θ ◦ φ(0E1

) = 0E1
and j(1E1

) = θ ◦ φ(1E1
) = 1E1

, we have 0E1
, 1E1

∈ Lj.

∀a ∈ Lj , because j(a′) = θ ◦ φ(a′) = θ(φ′(a)) = θ′(φ(a)) = j′(a) = a′, a′ ∈ Lj . ∀a, b ∈ Lj, if

a ≤ b′, then j(a ⊕E1
b) = θ ◦ φ(a ⊕E1

b) = θ ◦ φ(a) ⊕E1
θ ◦ φ(b) = a ⊕E1

b. We have a ⊕ b ∈ Lj .

(Ai) If a ⊕ b is defined and a ⊕ b ∈ Lj , since a ⊕ b = b ⊕ a in E, we have b ⊕ a ∈ Lj.

(Aii) Aussme that b⊕c and a⊕ (b⊕c) are defined, and b⊕c, a⊕ (b⊕c) ∈ Lj. Since Lj ⊆ E1,
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a ⊕ b is defined in E1 and a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c in E1, we have (a ⊕ b) ⊕ c ∈ Lj . Because

j(a⊕ b) ≥ a⊕ b, φ(θ ◦φ(a⊕ b)) = φ◦ θ(φ(a⊕ b)) ≤ φ(a⊕ b) and φ is a monomorphism, we obtain

θ ◦ φ(a ⊕ b) ≤ a ⊕ b, that is, j(a ⊕ b) ≤ a ⊕ b. Thus j(a ⊕ b) = a ⊕ b and so a ⊕ b ∈ Lj.

(Aiii) ∀a ∈ Lj, since a′ ∈ Lj, a ⊕ a′ = 1.

(Aiv) If 1 ⊕ a ∈ Lj , since Lj ⊆ E1, we have a = 0E1
.

To sum up, Lj is a sub-effect algebra of E1. 2

Corollary 5.4 Let E1, E2 be two effect algebras and let φ : E1 → E2, θ : E2 → E1 be two effect

morphisms. If φ is a left adjoint functor of θ, then

(1) j = θ ◦ φ is a closure mapping.

(2) When E1 is a meet-semi-lattice, Lj is also a meet-semi-lattice.

Proof (1) By Theorem 5.3, it is clear that j ◦ j = j.

(2) ∀x1, x2 ∈ Lj , it follows from that j is isotone that j(x1 ∧ x2) ≤ j(x1) ∧ j(x2). We can

get j(x1 ∧ x2) = x1 ∧ x2 by Theorem 5.3, and so x1 ∧ x2 ∈ Lj. Then Lj is a meet-semi-lattice

too.

Theorem 5.5 Let φ1 : E1 → E2, φ2 : E2 → E1 be two effect morphisms, E1, E2 be two lattice

order effect algebras, and φ1 be a left adjoint of φ2. Then

(1) If φ1 is a meet-preserving mapping and φ2 is a surjection, then φ2 is a prime element-

preserving.

(2) If φ2 is a join-preserving mapping and φ1 is a surjection, then φ1 is a coprime element-

preserving.

(3) If F is a prime filter of E1 and φ1 is a bijection, then φ1(F ) is also a prime filter of

E2.

(4) If I is a prime ideal of E2 and φ2 is a bijection, then φ2(I) is also a prime ideal of

E1.

Proof (1) ∀a, b ∈ E1, let c be a prime element of E2 and a ∧ b ≤ φ2(c). Since φ2 is a

surjection, there exist a, b ∈ E2 such that φ2(a) = a and φ2(b) = b. It follows from that φ1 is a

left adjoint of φ2 and φ1 is a meet-preserving mapping that φ1(φ2(a)) ∧ φ1(φ2(b)) ≤ c. Thus

a = φ2(a) ≤ φ2(c) or b = φ2(b) ≤ φ2(c). We conclude that φ2(c) is a prime element.

(2) ∀a, b ∈ E2, let c be a coprime element of E1 and a∨b ≥ φ1(c). Since φ1 is a surjection,

there exist a, b ∈ E1 such that φ1(a) = a and φ1(b) = b. Because φ1 is a left adjoint of φ2 and

φ2 is a join-preserving, c ≤ φ2(φ1(a)) ∨ φ2(φ1(b)). Thus φ1(c) ≤ a or φ1(c) ≤ b. Then φ1(c)

is a coprime element.

(3) Since 0E1
6∈ F , 0E2

6∈ φ1(F ). ∀b ∈ E2, ∀a ∈ φ1(F ), let a ≤ b. Since φ1 is a bijection,

there exist b ∈ E1 and a ∈ F such that b = φ1(b) and a = φ1(a). It follows from that φ1 is a

left adjoint of φ2 that a ≤ φ2(φ1(b)). Thus, φ2(φ1(b)) ∈ F . Then b = φ1(φ2(φ1(b))) ∈ φ1(F ).

Therefore φ1(F ) is a supper-set.

∀a, b ∈ φ1(F ), let φ1(a) = a and φ1(b) = b, where a, b ∈ F . Since F is a filter, we have

c ∈ F such that a ≥ c and b ≥ c. Thus, there exists φ1(c) ∈ φ1(F ) such that a ≥ φ1(c) and
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b ≥ φ1(c), so φ1(F ) is a proper filter.

∀a, b ∈ E2, let a ∨ b ∈ φ1(F ). By the condition, ∃a, b ∈ E1 such that φ1(a) = a, φ1(b) = b,

thus ∃c ∈ F such that φ1(a) ∨ φ1(b) = φ1(c). Since φ1 is a left adjoint of φ2, φ1 is join-

preserving. Thus a ∨ b = c, that is, a ∨ b ∈ F . So a ∈ F or b ∈ F . Then a ∈ φ1(F ) or

b ∈ φ1(F ). We conclude that φ1(F ) is a prime filter.

(4) In the same way as in (3), it is easy to show that φ2(I) is a prime ideal. 2
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